Oxytocin: Difference between revisions

Jump to navigation Jump to search
Deepika Beereddy (talk | contribs)
No edit summary
imported>Doc James
Reverted to revision 877997500 by Арсений Галимов (talk): ? (TW)
 
(13 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{DrugProjectFormSinglePage
{{About|the hormone|its use as a medication|Oxytocin (medication)}}
|authorTag={{DB}}
{{distinguish|Oxycontin}}
|genericName=Oxytocin
{{Drugbox
|aOrAn=a
| Watchedfields = changed
|drugClass=reproductive control agent
| verifiedrevid = 691721176
|indicationType=treatment
| IUPAC_name = 1-({(4''R'',7''S'',10''S'',13''S'',16''S'',19''R'')-19-amino-7-(2-amino-2-oxoethyl)-10-(3-amino-3-oxopropyl)-16-(4-hydroxybenzyl)-13-[(1''S'')-1-methylpropyl]-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentaazacycloicosan-4-yl}carbonyl)-<small>L</small>-prolyl-<small>L</small>-leucylglycinamide
|hasBlackBoxWarning=Yes
| image = Oxytocin with labels.png
|adverseReactions=<!--Black Box Warning-->
| width =  
|blackBoxWarningTitle=<span style="color:#FF0000;">ConditionName: </span>
| image2 = OxitocinaCPK3D.png
|blackBoxWarningBody=<i><span style="color:#FF0000;">ConditionName: </span></i>


* Content
<!--Physiological data-->
| source_tissues = [[pituitary gland]]
| target_tissues = wide spread
| receptors = [[oxytocin receptor]]
| agonists =
| antagonists = [[atosiban]]
| precursor = oxytocin/neurophysin I prepropeptide
| biosynthesis =


<!--Adult Indications and Dosage-->
<!--Pharmacokinetic data-->
| pronounce = {{IPAc-en|ˌ|ɒ|k|s|ɪ|ˈ|t|oʊ|s|ɪ|n}}
| bioavailability =
| protein_bound = 30%
| metabolism = liver and other [[oxytocinase]]s
| elimination_half-life = 1–6 min (IV)<br />~2 h (intranasal)<ref name="pmid22436536">{{cite journal | vauthors = Weisman O, Zagoory-Sharon O, Feldman R | title = Intranasal oxytocin administration is reflected in human saliva | journal = Psychoneuroendocrinology | volume = 37 | issue = 9 | pages = 1582–6 | year = 2012 | pmid = 22436536 | doi = 10.1016/j.psyneuen.2012.02.014 }}</ref><ref name="pmid22467107">{{cite journal | vauthors = Huffmeijer R, Alink LR, Tops M, Grewen KM, Light KC, Bakermans-Kranenburg MJ, Ijzendoorn MH | title = Salivary levels of oxytocin remain elevated for more than two hours after intranasal oxytocin administration | journal = Neuro Endocrinology Letters | volume = 33 | issue = 1 | pages = 21–5 | year = 2012 | pmid = 22467107 | doi =  }}</ref>
| excretion = Biliary and [[kidney]]


<!--FDA-Labeled Indications and Dosage (Adult)-->
<!--Identifiers-->
|fdaLIADAdult=[[File:Oxytocin indications.png|600px|thumbnail|left]]
| CAS_number_Ref = {{cascite|correct|??}}
{{clear}}
| CAS_number = 50-56-6
| PubChem = 439302
| IUPHAR_ligand = 2174
| DrugBank_Ref = {{drugbankcite|correct|drugbank}}
| DrugBank = DB00107
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 388434
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = 1JQS135EYN
| KEGG_Ref = {{keggcite|correct|kegg}}
| KEGG = D00089
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 7872
| ChEMBL_Ref = {{ebicite|correct|EBI}}
| ChEMBL = 395429


=====Induction of labor, Medically indicated=====
<!--Chemical data-->
| C=43 | H=66 | N=12 | O=12 | S=2
| molecular_weight = 1007.19 g/mol


Oxytocin injection (synthetic) is indicated for the initiation or improvement of uterine contractions, where this is desirable and considered suitable, in order to achieve early vaginal delivery for fetal or maternal reasons.  It is indicated for (1) induction of labor in patients with a medical indication for the initiation of labor, such as Rh problems, maternal diabetes, pre-eclampsia at or near term, when delivery is in the best interest of mother and fetus or when membranes are prematurely ruptured and delivery is indicated; (2) stimulation or reinforcement of labor, as in selected cases of uterine inertia;
| smiles = CC[C@H](C)[C@@H]1NC(=O)[C@H](Cc2ccc(O)cc2)NC(=O)[C@@H](N)CSSC[C@H](NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC1=O)C(=O)N3CCC[C@H]3C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O
 
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
* Dosing Information
| StdInChI = 1S/C43H66N12O12S2/c1-5-22(4)35-42(66)49-26(12-13-32(45)57)38(62)51-29(17-33(46)58)39(63)53-30(20-69-68-19-25(44)36(60)50-28(40(64)54-35)16-23-8-10-24(56)11-9-23)43(67)55-14-6-7-31(55)41(65)52-27(15-21(2)3)37(61)48-18-34(47)59/h8-11,21-22,25-31,35,56H,5-7,12-20,44H2,1-4H3,(H2,45,57)(H2,46,58)(H2,47,59)(H,48,61)(H,49,66)(H,50,60)(H,51,62)(H,52,65)(H,53,63)(H,54,64)/t22-,25-,26-,27-,28-,29-,30-,31-,35-/m0/s1
 
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
:*Dosage of oxytocin is determined by uterine response.  The following dosage information is based upon the various regimens and indications in general use.
| StdInChIKey = XNOPRXBHLZRZKH-DSZYJQQASA-N
 
}}
Induction or Stimulation of Labor
Intravenous infusion (drip method) is the only acceptable method of administration for the induction or stimulation of labor.
 
Accurate control of the rate of infusion flow is essential.  An infusion pump or other such device and frequent monitoring of strength of contractions and fetal heart rate are necessary for the safe administration of oxytocin for the induction or stimulation of labor.  If uterine contractions become too powerful, the infusion can be abruptly stopped, and oxytocic stimulation of the uterine musculature will soon wane.
 
An intravenous infusion of a non-oxytocin containing solution should be started.  Physiologic electrolyte solutions should be used except under unusual circumstances.
 
To prepare the usual solution for intravenous infusion–one mL (10 units) is combined aseptically with 1,000 mL of a non-hydrating diluent.
 
The combined solution, rotated in the infusion bottle to insure thorough mixing, contains 10 mU/mL.  Add the container with dilute oxytocic solution to the system through the use of a constant infusion pump or other such device to control accurately the rate of infusion.
 
The initial dose should be no more than 1 to 2 mU/min.  The dose may be gradually increased in increments of no more than 1 to 2 mU/min., until a contraction pattern has been established which is similar to normal labor.
 
The fetal heart rate, resting uterine tone, and the frequency, duration, and force of contractions should be monitored.
 
The oxytocin infusion should be discontinued immediately in the event of uterine hyperactivity or fetal distress.  Oxygen should be administered to the mother.  The mother and fetus must be evaluated by the responsible physician.
 
=====Postpartum hemorrhage=====
 
Oxytocin injection (synthetic) is indicated to produce uterine contractions during the third stage of labor and to control postpartum bleeding or hemorrhage.
 
* Dosing Information
 
:* Dosage
 
====Treatment of Incomplete or Inevitable Abortion====
 
It is indicated for adjunctive therapy in the management of incomplete or inevitable abortion.  In the first trimester, curettage is generally considered primary therapy.  In second trimester abortion, oxytocin infusion will often be successful in emptying the uterus.  Other means of therapy, however, may be required in such cases.
 
* Dosing Information
 
:* Dosage
 
=====Condition4=====
 
* Dosing Information
 
:* Dosage
 
<!--Off-Label Use and Dosage (Adult)-->
 
<!--Guideline-Supported Use (Adult)-->
|offLabelAdultGuideSupport======Condition1=====
 
* Developed by:
 
* Class of Recommendation:
 
* Strength of Evidence:
 
* Dosing Information
 
:* Dosage
 
=====Condition2=====
 
There is limited information regarding <i>Off-Label Guideline-Supported Use</i> of {{PAGENAME}} in adult patients.
 
<!--Non–Guideline-Supported Use (Adult)-->
|offLabelAdultNoGuideSupport======Condition1=====
 
* Dosing Information
 
:* Dosage
 
=====Condition2=====
 
There is limited information regarding <i>Off-Label Non–Guideline-Supported Use</i> of {{PAGENAME}} in adult patients.
 
<!--Pediatric Indications and Dosage-->
 
<!--FDA-Labeled Indications and Dosage (Pediatric)-->
|fdaLIADPed======Condition1=====
 
* Dosing Information
 
:* Dosage
 
=====Condition2=====
 
There is limited information regarding <i>FDA-Labeled Use</i> of {{PAGENAME}} in pediatric patients.
 
<!--Off-Label Use and Dosage (Pediatric)-->
 
<!--Guideline-Supported Use (Pediatric)-->
|offLabelPedGuideSupport======Condition1=====
 
* Developed by:
 
* Class of Recommendation:
 
* Strength of Evidence:
 
* Dosing Information
 
:* Dosage
 
=====Condition2=====
 
There is limited information regarding <i>Off-Label Guideline-Supported Use</i> of {{PAGENAME}} in pediatric patients.
 
<!--Non–Guideline-Supported Use (Pediatric)-->
|offLabelPedNoGuideSupport======Condition1=====
 
* Dosing Information
 
:* Dosage
 
=====Condition2=====
 
There is limited information regarding <i>Off-Label Non–Guideline-Supported Use</i> of {{PAGENAME}} in pediatric patients.
 
<!--Contraindications-->
|contraindications=Oxytocin injection (synthetic) is contraindicated in any of the following conditions:
 
Significant cephalopelvic disproportion;
Unfavorable fetal positions or presentations which are undeliverable without conversion prior to delivery, i.e., transverse lies;
In obstetrical emergencies where the benefit-to-risk ratio for either the fetus or the mother favors surgical intervention;
In cases of fetal distress where delivery is not imminent;
Prolonged use in uterine inertia or severe toxemia;
Hypertonic uterine patterns;
Patients with hypersensitivity to the drug;
Induction or augmentation of labor in those cases where vaginal delivery is contraindicated, such as cord presentation or prolapse, total placenta previa, and vasa previa.
|warnings=Oxytocin injection (synthetic) when given for induction or stimulation of labor, must be administered only by the intravenous route and with adequate medical supervision in a hospital.
 
PRECAUTIONS
General
All patients receiving intravenous oxytocin must be under continuous observation by trained personnel with a thorough knowledge of the drug and qualified to identify complications.  A physician qualified to manage any complications should be immediately available.
 
When properly administered, oxytocin should stimulate uterine contractions similar to those seen in normal labor.  Overstimulation of the uterus by improper administration can be hazardous to both mother and fetus.  Even with proper administration and adequate supervision, hypertonic contractions can occur in patients whose uteri are hypersensitive to oxytocin.
 
Except in unusual circumstances, oxytocin should not be administered in the following conditions: prematurity, borderline cephalopelvic disproportion, previous major surgery on the cervix or uterus including caesarean section, overdistention of the uterus, grand multiparity or invasive cervical carcinoma.  Because of the variability of the combinations of factors which may be present in the conditions above, the definition of ‘‘unusual circumstances’’ must be left to the judgement of the physician.  The decision can only be made by carefully weighing the potential benefits which oxytocin can provide in a given case against rare but definite potential for the drug to produce hypertonicity or tetanic spasm.
 
Maternal deaths due to hypertensive episodes, subarachnoid hemorrhage, rupture of the uterus and fetal deaths due to various causes have been reported associated with the use of parenteral oxytocic drugs for induction of labor and for augmentation in the first and second stages of labor.
 
Oxytocin has been shown to have an intrinsic antidiuretic effect, acting to increase water reabsorption from the glomerular filtrate.  Consideration should, therefore, be given to the possibility of water intoxication, particularly when oxytocin is administered continuously by infusion and the patient is receiving fluids by mouth.
|clinicalTrials=The following adverse reactions have been reported in the mother:
 
Anaphylactic reaction
Postpartum hemorrhage
Cardiac arrhythmia
Fatal afibrinogenemia
Nausea
Vomiting
Premature ventricular contractions
Pelvic hematoma
Excessive dosage or hypersensitivity to the drug may result in uterine hypertonicity, spasm, tetanic contraction or rupture of the uterus.


The possibility of increased blood loss and afibrinogenemia should be kept in mind when administering the drug.
<!-- Definition and mechanism -->
'''Oxytocin''' ('''Oxt''') is a [[peptide hormone]] and [[neuropeptide]]. Oxytocin is normally produced by the [[paraventricular nucleus]] of the [[hypothalamus]] and released by the [[posterior pituitary]].<ref>{{cite book | title = Gray's Anatomy: The Anatomical Basis of Clinical Practice | date = 2015 | publisher = Elsevier Health Sciences | isbn = 978-0-7020-6851-5 | page = 358 | edition = 41 | url = https://books.google.com/books?id=b7FVCgAAQBAJ&pg=PA358 }}</ref> It plays a role in social bonding, [[sexual reproduction]], [[childbirth]], and the period after childbirth.<ref>{{cite journal | vauthors = Yang HP, Wang L, Han L, Wang SC | title = Nonsocial functions of hypothalamic oxytocin | journal = ISRN Neuroscience | volume = 2013 | pages = 179272 | date = 2013 | pmid = 24967304 | pmc = 4045544 | doi = 10.1155/2013/179272 }}</ref> Oxytocin is released into the bloodstream as a hormone in response to stretching of the [[cervix]] and [[uterus]] during labor and with stimulation of the nipples from [[breastfeeding]].<ref name=Chi2012>{{cite book | last1 = Chiras | first1 = Daniel D. | name-list-format = vanc | title = Human Biology | date = 2012 | publisher = Jones & Bartlett Learning | location = Sudbury, MA | isbn = 978-0-7637-8345-7 | page = 262 | edition = 7th | url = https://books.google.com/books?id=mqlY1n8Ez1oC&pg=PA262 }}</ref> This helps with birth, [[maternal bonding|bonding with the baby]], and [[lactation|milk production]].<ref name=Chi2012/><ref>{{cite book | title = Human Evolutionary Biology | date = 2010 | publisher = Cambridge University Press | isbn = 978-1-139-78900-4 | page = 282 | url = https://books.google.com/books?id=3NRf_8gwmO8C&pg=PA282 }}</ref> Oxytocin was discovered by [[Henry Hallett Dale|Henry Dale]] in 1906.<ref>{{cite journal |doi=10.1113/jphysiol.1906.sp001148 |pmid=16992821 |pmc=1465771 |title=On some physiological actions of ergot |journal=The Journal of Physiology |volume=34 |issue=3 |pages=163–206 |year=1906 |last1=Dale |first1=H. H }}</ref> Its molecular structure was determined in 1952.<ref>{{cite book | last1 = Corey | first1 = E.J. | name-list-format = vanc | title = Molecules and Medicine | date = 2012 | publisher = John Wiley & Sons | isbn = 978-1-118-36173-3 | url = https://books.google.com/books?id=jz2GN6DYoOoC&lpg=RA1-PT108&pg=RA1-PT110 | chapter = Oxytocin }}</ref> [[Oxytocin (medication)|Oxytocin]] is also used as a [[pharmaceutical drug|medication]] to facilitate [[childbirth]].<ref name="IUPHAR Oxytocin summary">{{cite web | title=Oxytocin: Summary | url=http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=summary&ligandId=2174 | website=IUPHAR/BPS guide to pharmacology | publisher=International Union of Basic and Clinical Pharmacology | accessdate=14 December 2016 | quote = Endogenous oxytocin is a hormone and neuropeptide, which plays a role in social bonding, sexual reproduction and is required during and after childbirth. Purified oxytocin is used clinically.}}</ref><ref name=AHFS2015>{{cite web|title=Oxytocin|url=https://www.drugs.com/monograph/oxytocin.html|publisher=The American Society of Health-System Pharmacists | access-date  = 1 June 2015}}</ref><ref>{{cite book | title = The Oxford Handbook of Prosocial Behavior | date = 2015 | publisher = Oxford University Press | isbn = 978-0-19-539981-3 | page = 354 | url = https://books.google.com/books?id=EfzOBwAAQBAJ&pg=PA354 }}</ref>


Severe water intoxication with convulsions and coma has occurred, and is associated with a slow oxytocin infusion over a 24-hour period.  Maternal death due to oxytocin-induced water intoxication has been reported.
==Biochemistry==
{{#invoke:Infobox_gene|getTemplateData|QID=Q14820911|entity_mouse=Q14820914}}


The following adverse reactions have been reported in the fetus or infant:
[[Estrogen]] has been found to increase the [[secretion]] of oxytocin and to increase the [[gene expression|expression]] of its [[receptor (biochemistry)|receptor]], the [[oxytocin receptor]], in the [[brain]].<ref name="GoldsteinMeston2005">{{cite book | first1 = Irwin | last1 = Goldstein | first2 = Cindy M. | last2 = Meston | first3 = Susan | last3 = Davis | first4 = Abdulmaged | last4 = Traish | name-list-format = vanc | title = Women's Sexual Function and Dysfunction: Study, Diagnosis and Treatment|url=https://books.google.com/books?id=3J7TnwpbZQwC&pg=PA205|date=17 November 2005|publisher=CRC Press|isbn=978-1-84214-263-9|pages=205–}}</ref> In women, a single dose of [[estradiol]] has been found to be sufficient to increase circulating oxytocin concentrations.<ref name="Acevedo-RodriguezMani2015" />


Due to induced uterine mobility:
===Biosynthesis===
[[File:The biosynthesis of the different forms of OT.jpg|alt=The biosynthesis of the different forms of OT|left|thumb|The biosynthesis of the different forms of OT]]
The oxytocin [[peptide]] is synthesized as an inactive precursor protein from the ''OXT'' [[gene]].<ref name="pmid2991279">{{cite journal | vauthors = Sausville E, Carney D, Battey J | title = The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line | journal = The Journal of Biological Chemistry | volume = 260 | issue = 18 | pages = 10236–41 | date = August 1985 | pmid = 2991279 | doi =  }}</ref><ref name="pmid1968469">{{cite journal | vauthors = Repaske DR, Phillips JA, Kirby LT, Tze WJ, D'Ercole AJ, Battey J | title = Molecular analysis of autosomal dominant neurohypophyseal diabetes insipidus | journal = The Journal of Clinical Endocrinology and Metabolism | volume = 70 | issue = 3 | pages = 752–7 | date = March 1990 | pmid = 1968469 | doi = 10.1210/jcem-70-3-752 }}</ref><ref name="pmid1978246">{{cite journal | vauthors = Summar ML, Phillips JA, Battey J, Castiglione CM, Kidd KK, Maness KJ, Weiffenbach B, Gravius TC | title = Linkage relationships of human arginine vasopressin-neurophysin-II and oxytocin-neurophysin-I to prodynorphin and other loci on chromosome 20 | journal = Molecular Endocrinology | volume = 4 | issue = 6 | pages = 947–50 | date = June 1990 | pmid = 1978246 | doi = 10.1210/mend-4-6-947 }}</ref> This precursor protein also includes the oxytocin carrier protein [[neurophysin I]].<ref name="pmid6153132">{{cite journal | vauthors = Brownstein MJ, Russell JT, Gainer H | title = Synthesis, transport, and release of posterior pituitary hormones | journal = Science | volume = 207 | issue = 4429 | pages = 373–8 | date = January 1980 | pmid = 6153132 | doi = 10.1126/science.6153132 | bibcode = 1980Sci...207..373B }}</ref> The inactive precursor protein is progressively hydrolyzed into smaller fragments (one of which is neurophysin I) via a series of enzymes. The last hydrolysis that releases the active oxytocin nonapeptide is catalyzed by [[peptidylglycine alpha-amidating monooxygenase]] (PAM).<ref name="pmid2769155">{{cite journal | vauthors = Sheldrick EL, Flint AP | title = Post-translational processing of oxytocin-neurophysin prohormone in the ovine corpus luteum: activity of peptidyl glycine alpha-amidating mono-oxygenase and concentrations of its cofactor, ascorbic acid | journal = The Journal of Endocrinology | volume = 122 | issue = 1 | pages = 313–22 | date = July 1989 | pmid = 2769155 | doi = 10.1677/joe.0.1220313 }}</ref>


Bradycardia
The activity of the PAM enzyme system is dependent upon [[vitamin C]] (ascorbate), which is a necessary vitamin cofactor. By chance, sodium ascorbate by itself was found to stimulate the production of oxytocin from ovarian tissue over a range of concentrations in a dose-dependent manner.<ref name="pmid3668432">{{cite journal | vauthors = Luck MR, Jungclas B | title = Catecholamines and ascorbic acid as stimulators of bovine ovarian oxytocin secretion | journal = The Journal of Endocrinology | volume = 114 | issue = 3 | pages = 423–30 | date = September 1987 | pmid = 3668432 | doi = 10.1677/joe.0.1140423 }}</ref> Many of the same tissues (''e.g.'' ovaries, testes, eyes, adrenals, placenta, thymus, pancreas) where PAM (and oxytocin by default) is found are also known to store higher concentrations of vitamin C.<ref name="pmid1106295">{{cite journal | vauthors = Hornig D | title = Distribution of ascorbic acid, metabolites and analogues in man and animals | journal = Annals of the New York Academy of Sciences | volume = 258 | issue =  | pages = 103–18 | date = September 1975 | pmid = 1106295 | doi = 10.1111/j.1749-6632.1975.tb29271.x | bibcode = 1975NYASA.258..103H }}</ref>
Premature ventricular contractions and other arrhythmias
Permanent CNS or brain damage
Fetal death
Due to use of oxytocin in the mother:


Neonatal retinal hemorrhage
Oxytocin is known to be metabolized by the [[oxytocinase]], [[leucyl/cystinyl aminopeptidase]].<ref name="pmid16054015">{{cite journal | vauthors = Tsujimoto M, Hattori A | title = The oxytocinase subfamily of M1 aminopeptidases | journal = Biochimica et Biophysica Acta | volume = 1751 | issue = 1 | pages = 9–18 | date = August 2005 | pmid = 16054015 | doi = 10.1016/j.bbapap.2004.09.011 }}</ref><ref name="pmid15894523">{{cite journal | vauthors = Nomura S, Ito T, Yamamoto E, Sumigama S, Iwase A, Okada M, Shibata K, Ando H, Ino K, Kikkawa F, Mizutani S | title = Gene regulation and physiological function of placental leucine aminopeptidase/oxytocinase during pregnancy | journal = Biochimica et Biophysica Acta | volume = 1751 | issue = 1 | pages = 19–25 | date = August 2005 | pmid = 15894523 | doi = 10.1016/j.bbapap.2005.04.006 }}</ref> Other oxytocinases are also known to exist.<ref name="pmid16054015" /><ref name="pmid1355623">{{cite journal | vauthors = Mizutani S, Yokosawa H, Tomoda Y | title = Degradation of oxytocin by the human placenta: effect of selective inhibitors | journal = Acta Endocrinologica | volume = 127 | issue = 1 | pages = 76–80 | date = July 1992 | pmid = 1355623 | doi = 10.1530/acta.0.1270076 }}</ref> [[Amastatin]], [[bestatin]] (ubenimex), [[leupeptin]], and [[puromycin]] have been found to inhibit the enzymatic degradation of oxytocin, though they also inhibit the degradation of various other peptides, such as [[vasopressin]], [[met-enkephalin]], and [[dynorphin A]].<ref name="pmid1355623" /><ref name="pmid6540873">{{cite journal | vauthors = Meisenberg G, Simmons WH | title = Amastatin potentiates the behavioral effects of [[vasopressin]] and oxytocin in mice | journal = Peptides | volume = 5 | issue = 3 | pages = 535–9 | year = 1984 | pmid = 6540873 | doi = 10.1016/0196-9781(84)90083-4 }}</ref><ref name="pmid1800950">{{cite journal | vauthors = Stancampiano R, Melis MR, Argiolas A | title = Proteolytic conversion of oxytocin by brain synaptic membranes: role of aminopeptidases and endopeptidases | journal = Peptides | volume = 12 | issue = 5 | pages = 1119–25 | year = 1991 | pmid = 1800950 | doi = 10.1016/0196-9781(91)90068-z }}</ref><ref name="pmid9013800">{{cite journal | vauthors = Itoh C, Watanabe M, Nagamatsu A, Soeda S, Kawarabayashi T, Shimeno H | title = Two molecular species of oxytocinase (L-cystine aminopeptidase) in human placenta: purification and characterization | journal = Biological & Pharmaceutical Bulletin | volume = 20 | issue = 1 | pages = 20–4 | date = January 1997 | pmid = 9013800 | doi = 10.1248/bpb.20.20 }}</ref>
Low Apgar scores at five minutes
Neonatal jaundice
|postmarketing=There is limited information regarding <i>Postmarketing Experience</i> of {{PAGENAME}} in the drug label.


=====Body as a Whole=====
===Neural sources===
In the [[hypothalamus]], oxytocin is made in [[magnocellular neurosecretory cell]]s of the [[supraoptic nucleus|supraoptic]] and [[paraventricular nucleus|paraventricular]] nuclei, and is stored in [[Herring bodies]] at the axon terminals in the posterior pituitary. It is then released into the blood from the [[posterior pituitary|posterior lobe]] ([[neurohypophysis]]) of the [[pituitary gland]]. These [[axons]] (likely, but [[dendrites]] have not been ruled out) have collaterals that innervate neurons in the [[nucleus accumbens]], a brain structure where oxytocin receptors are expressed.<ref name="Ross">{{cite journal | vauthors = Ross HE, Cole CD, Smith Y, Neumann ID, Landgraf R, Murphy AZ, Young LJ | title = Characterization of the oxytocin system regulating affiliative behavior in female prairie voles | journal = Neuroscience | volume = 162 | issue = 4 | pages = 892–903 | date = September 2009 | pmid = 19482070 | pmc = 2744157 | doi = 10.1016/j.neuroscience.2009.05.055 }}</ref> The [[endocrine system|endocrine]] effects of hormonal oxytocin and the cognitive or behavioral effects of oxytocin [[neuropeptide]]s are thought to be coordinated through its common release through these collaterals.<ref name="Ross"/> Oxytocin is also produced by some neurons in the paraventricular nucleus that project to other parts of the brain and to the spinal cord.<ref>{{cite journal | vauthors = Landgraf R, Neumann ID | title = Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication | journal = Frontiers in Neuroendocrinology | volume = 25 | issue = 3–4 | pages = 150–76 | year = 2004 | pmid = 15589267 | doi = 10.1016/j.yfrne.2004.05.001 }}</ref> Depending on the species, oxytocin receptor-expressing cells are located in other areas, including the [[amygdala]] and [[Bed nucleus of the stria terminalis|bed nucleus]] of the [[stria terminalis]].


In the [[pituitary gland]], oxytocin is packaged in large, dense-core vesicles, where it is bound to [[neurophysin I]] as shown in the inset of the figure; neurophysin is a large [[peptide]] fragment of the larger precursor [[protein]] molecule from which oxytocin is derived by [[enzyme|enzymatic]] cleavage.


Secretion of oxytocin from the neurosecretory nerve endings is regulated by the electrical activity of the oxytocin cells in the hypothalamus. These cells generate [[action potential]]s that propagate down [[axon]]s to the nerve endings in the pituitary; the endings contain large numbers of oxytocin-containing vesicles, which are released by [[exocytosis]] when the nerve terminals are depolarised.


=====Cardiovascular=====
===Non-neural sources===
Endogenous oxytocin concentrations in the brain have been found to be as much as 1000-fold higher than peripheral levels.<ref name="BaribeauAnagnostou2015">{{cite journal | vauthors = Baribeau DA, Anagnostou E | title = Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neurocircuits | journal = Frontiers in Neuroscience | volume = 9 | pages = 335 | year = 2015 | pmid = 26441508 | doi = 10.3389/fnins.2015.00335 | pmc=4585313}}</ref>


Outside the brain, oxytocin-containing cells have been identified in several diverse tissues, including in females in the [[corpus luteum]]<ref name="pmid7078636">{{cite journal | vauthors = [[Claire Wathes|Wathes DC]], Swann RW | title = Is oxytocin an ovarian hormone? | journal = Nature | volume = 297 | issue = 5863 | pages = 225–7 | date = May 1982 | pmid = 7078636 | doi = 10.1038/297225a0 | bibcode = 1982Natur.297..225W }}</ref><ref name="pmid6124806">{{cite journal | vauthors = Wathes DC, Swann RW, Pickering BT, Porter DG, Hull MG, Drife JO | title = Neurohypophysial hormones in the human ovary | journal = Lancet | volume = 2 | issue = 8295 | pages = 410–2 | date = August 1982 | pmid = 6124806 | doi = 10.1016/S0140-6736(82)90441-X }}</ref> and the placenta;<ref name="pmid6832059">{{cite journal | vauthors = Fields PA, Eldridge RK, Fuchs AR, Roberts RF, Fields MJ | title = Human placental and bovine corpora luteal oxytocin | journal = Endocrinology | volume = 112 | issue = 4 | pages = 1544–6 | date = April 1983 | pmid = 6832059 | doi = 10.1210/endo-112-4-1544 }}</ref> in males in the testicles' [[Leydig cell|interstitial cells of Leydig]];<ref name="pmid3995564">{{cite journal | vauthors = Guldenaar SE, Pickering BT | title = Immunocytochemical evidence for the presence of oxytocin in rat testis | journal = Cell and Tissue Research | volume = 240 | issue = 2 | pages = 485–7 | year = 1985 | pmid = 3995564 | doi = 10.1007/BF00222364 }}</ref> and in both sexes in the retina,<ref name="pmid6647119">{{cite journal | vauthors = Gauquelin G, Geelen G, Louis F, Allevard AM, Meunier C, Cuisinaud G, Benjanet S, Seidah NG, Chretien M, Legros JJ | title = Presence of vasopressin, oxytocin and neurophysin in the retina of mammals, effect of light and darkness, comparison with the neuropeptide content of the neurohypophysis and the pineal gland | journal = Peptides | volume = 4 | issue = 4 | pages = 509–15 | year = 1983 | pmid = 6647119 | doi = 10.1016/0196-9781(83)90056-6 }}</ref> the adrenal medulla,<ref name="pmid6699132">{{cite journal | vauthors = Ang VT, Jenkins JS | title = Neurohypophysial hormones in the adrenal medulla | journal = The Journal of Clinical Endocrinology and Metabolism | volume = 58 | issue = 4 | pages = 688–91 | date = April 1984 | pmid = 6699132 | doi = 10.1210/jcem-58-4-688 }}</ref> the thymus<ref name="pmid3961493">{{cite journal | vauthors = Geenen V, Legros JJ, Franchimont P, Baudrihaye M, Defresne MP, Boniver J | title = The neuroendocrine thymus: coexistence of oxytocin and neurophysin in the human thymus | journal = Science | volume = 232 | issue = 4749 | pages = 508–11 | date = April 1986 | pmid = 3961493 | doi = 10.1126/science.3961493 | bibcode = 1986Sci...232..508G }}</ref> and the pancreas.<ref name="pmid3195625">{{cite journal | vauthors = Amico JA, Finn FM, Haldar J | title = Oxytocin and vasopressin are present in human and rat pancreas | journal = The American Journal of the Medical Sciences | volume = 296 | issue = 5 | pages = 303–7 | date = November 1988 | pmid = 3195625 | doi = 10.1097/00000441-198811000-00003 | url = http://journals.lww.com/amjmedsci/Fulltext/1988/11000/Oxytocin_and_Vasopressin_Are_Present_in_Human_and.3.aspx }}</ref> The finding of significant amounts of this classically "[[neurohypophysial hormone|neurohypophysial]]" hormone outside the central nervous system raises many questions regarding its possible importance in these different tissues.


====Male====
The [[Leydig cells]] in some species have been shown to possess the biosynthetic machinery to manufacture testicular oxytocin ''de novo'', to be specific, in rats (which can synthesize vitamin C endogenously), and in guinea pigs, which, like humans, require an exogenous source of vitamin C (ascorbate) in their diets.<ref name="pmid1456839">{{cite journal | vauthors = Kukucka MA, Misra HP | title = HPLC determination of an oxytocin-like peptide produced by isolated guinea pig Leydig cells: stimulation by ascorbate | journal = Archives of Andrology | volume = 29 | issue = 2 | pages = 185–90 | year = 1992 | pmid = 1456839 | doi = 10.3109/01485019208987723 }}</ref>


=====Digestive=====
====Female====
Oxytocin is synthesized by [[corpora lutea]] of several species, including ruminants and primates. Along with estrogen, it is involved in inducing the endometrial synthesis of [[prostaglandin F2alpha|prostaglandin&nbsp;F<sub>2α</sub>]] to cause regression of the corpus luteum.<ref>http://www.journalofdairyscience.org/article/S0739-7240(02)00161-3/fulltext</ref>


===Evolution===
Virtually all [[vertebrate]]s have an oxytocin-like [[nonapeptide]] hormone that supports reproductive functions and a vasopressin-like nonapeptide hormone involved in water regulation. The two genes are usually located close to each other (less than 15,000 bases apart) on the same [[chromosome]], and are transcribed in opposite directions (however, in [[fugu]],<ref name="pmid9356472">{{cite journal | vauthors = Venkatesh B, Si-Hoe SL, Murphy D, Brenner S | title = Transgenic rats reveal functional conservation of regulatory controls between the Fugu isotocin and rat oxytocin genes | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 94 | issue = 23 | pages = 12462–6 | date = November 1997 | pmid = 9356472 | pmc = 25001 | doi = 10.1073/pnas.94.23.12462 | url = http://www.pnas.org/cgi/pmidlookup?view=long&pmid=9356472 | bibcode = 1997PNAS...9412462V }}</ref> the homologs are further apart and transcribed in the same direction).


The two genes are believed to result from a [[gene duplication]] event; the ancestral gene is estimated to be about 500 million years old and is found in [[cyclostomata]] (modern members of the [[Agnatha]]).<ref name="Gimpl">{{cite journal | vauthors = Gimpl G, Fahrenholz F | title = The oxytocin receptor system: structure, function, and regulation | journal = Physiological Reviews | volume = 81 | issue = 2 | pages = 629–83 | date = April 2001 | pmid = 11274341 | url = http://physrev.physiology.org/cgi/pmidlookup?view=long&pmid=11274341 | doi = 10.1152/physrev.2001.81.2.629 }}</ref>


=====Endocrine=====
==Biological function==
Oxytocin has peripheral (hormonal) actions, and also has actions in the brain. Its actions are mediated by specific, [[oxytocin receptor]]s. The oxytocin receptor is a [[G-protein-coupled receptor]] that requires [[magnesium]] and [[cholesterol]]. It belongs to the [[rhodopsin]]-type (class I) group of G-protein-coupled receptors.{{citation needed|date=November 2017}}


Studies have looked at oxytocin's role in various behaviors, including [[orgasm]], [[social recognition]], [[pair bond]]ing, [[anxiety]], and maternal behaviors.<ref name="pmid19482229">{{cite journal | vauthors = Lee HJ, Macbeth AH, Pagani JH, Young WS | title = Oxytocin: the great facilitator of life | journal = Progress in Neurobiology | volume = 88 | issue = 2 | pages = 127–51 | date = June 2009 | pmid = 19482229 | pmc = 2689929 | doi = 10.1016/j.pneurobio.2009.04.001 }}</ref>


===Physiological{{anchor|Actions within the brain}}===
The [[peripheral]] actions of oxytocin mainly reflect secretion from the [[pituitary gland]]. The behavioral effects of oxytocin are thought to reflect release from centrally projecting oxytocin neurons, different from those that project to the [[pituitary gland]], or that are collaterals from them.<ref name="Ross"/> Oxytocin receptors are expressed by neurons in many parts of the brain and spinal cord, including the [[amygdala]], [[ventromedial hypothalamus]], [[septum]], [[nucleus accumbens]], and [[brainstem]].{{citation needed|date=November 2017}}


=====Hematologic and Lymphatic=====
* [[Lactation#Milk ejection reflex|Milk ejection reflex]]/Letdown reflex: in [[lactation|lactating]] ([[breastfeeding]]) mothers, oxytocin acts at the [[mammary gland]]s, causing milk to be 'let down' into [[lactiferous duct]]s, from where it can be excreted via the [[nipple]].<ref>{{EMedicine|article|976504|Human Milk and Lactation}}</ref> Suckling by the [[infant]] at the [[nipple]] is relayed by [[spinal nerves]] to the [[hypothalamus]]. The [[stimulation]] causes [[neurons]] that make oxytocin to fire action potentials in intermittent bursts; these bursts result in the secretion of pulses of oxytocin from the neurosecretory [[axon terminal|nerve terminals]] of the pituitary gland.
* [[Uterine contraction]]: important for [[cervical dilation]] before birth, oxytocin causes contractions during the second and third stages of [[labor (childbirth)|labor]].<ref name="MacGill">{{cite web | last1 = MacGill | first1 = Markus | name-list-format = vanc | title=What is oxytocin, and what does it do?|url=http://www.medicalnewstoday.com/articles/275795.php|website=Medical News Today|publisher=Heath Line Media|accessdate=March 29, 2017}}</ref> Oxytocin release during [[breastfeeding]] causes mild but often painful [[Muscle contraction|contraction]]s during the first few weeks of lactation. This also serves to assist the uterus in clotting the placental attachment point postpartum. However, in [[knockout mouse|knockout mice]] lacking the oxytocin receptor, reproductive [[behavior]] and [[parturition]] are normal.<ref name="Takayanagi">{{cite journal | vauthors = Takayanagi Y, Yoshida M, Bielsky IF, Ross HE, Kawamata M, Onaka T, Yanagisawa T, Kimura T, Matzuk MM, Young LJ, Nishimori K | title = Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 102 | issue = 44 | pages = 16096–101 | date = November 2005 | pmid = 16249339 | pmc = 1276060 | doi = 10.1073/pnas.0505312102 | bibcode = 2005PNAS..10216096T }}</ref>
* Due to its similarity to [[vasopressin]], it can reduce the excretion of [[urine]] slightly. In several species, oxytocin can stimulate sodium excretion from the kidneys (natriuresis), and, in humans, high doses can result in low sodium levels ([[hyponatremia]]).
* Cardiac effects: oxytocin and oxytocin receptors are also found in the [[heart]] in some rodents, and the hormone may play a role in the embryonal development of the heart by promoting [[cardiomyocyte]] differentiation.<ref name="pmid12093924">{{cite journal | vauthors = Paquin J, Danalache BA, Jankowski M, McCann SM, Gutkowska J | title = Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 99 | issue = 14 | pages = 9550–5 | date = July 2002 | pmid = 12093924 | pmc = 123178 | doi = 10.1073/pnas.152302499 | bibcode = 2002PNAS...99.9550P }}</ref><ref name="pmid15316117">{{cite journal | vauthors = Jankowski M, Danalache B, Wang D, Bhat P, Hajjar F, Marcinkiewicz M, Paquin J, McCann SM, Gutkowska J | title = Oxytocin in cardiac ontogeny | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 101 | issue = 35 | pages = 13074–9 | date = August 2004 | pmid = 15316117 | pmc = 516519 | doi = 10.1073/pnas.0405324101 | bibcode = 2004PNAS..10113074J }}</ref> However, the absence of either oxytocin or its receptor in knockout mice has not been reported to produce cardiac insufficiencies.<ref name="Takayanagi" />
* Modulation of [[hypothalamic-pituitary-adrenal axis]] activity: oxytocin, under certain circumstances, indirectly inhibits release of [[adrenocorticotropic hormone]] and [[cortisol]] and, in those situations, may be considered an antagonist of vasopressin.<ref name="isbn83-200-1415-8">{{cite book | vauthors = Hartwig W | title = Endokrynologia praktyczna | publisher = Państwowy Zakład Wydawnictw Lekarskich  | location = [[Warsaw]] | year = 1989 | isbn = 83-200-1415-8 }}{{Page needed|date=September 2010}}</ref>
* Preparing fetal neurons for delivery: crossing the placenta, maternal oxytocin reaches the fetal brain and induces a switch in the action of neurotransmitter [[GABA]] from excitatory to inhibitory on fetal cortical neurons. This silences the fetal brain for the period of delivery and reduces its vulnerability to [[hypoxia (medical)|hypoxic damage]].<ref name="pmid17170309">{{cite journal | vauthors = Tyzio R, Cossart R, Khalilov I, Minlebaev M, Hübner CA, Represa A, Ben-Ari Y, Khazipov R | title = Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery | journal = Science | volume = 314 | issue = 5806 | pages = 1788–92 | date = December 2006 | pmid = 17170309 | doi = 10.1126/science.1133212 | bibcode = 2006Sci...314.1788T }}</ref>
*Feeding: a 2012 paper suggested that oxytocin neurons in the para-ventricular hypothalamus in the brain may play a key role in suppressing appetite under normal conditions and that other hypothalamic neurons may trigger eating via inhibition of these oxytocin neurons. This population of oxytocin neurons is absent in [[Prader-Willi syndrome]], a genetic disorder that leads to uncontrollable feeding and obesity, and may play a key role in its pathophysiology.<ref>{{cite journal | vauthors = Atasoy D, Betley JN, Su HH, Sternson SM | title = Deconstruction of a neural circuit for hunger | journal = Nature | volume = 488 | issue = 7410 | pages = 172–7 | date = August 2012 | pmid = 22801496 | doi = 10.1038/nature11270 | pmc=3416931| bibcode = 2012Natur.488..172A }}</ref>


===Psychological===
* Autism: Oxytocin has been implicated in the etiology of autism, with one report suggesting autism is correlated with genomic deletion of the chromosome containing the oxytocin receptor gene ([[Oxytocin receptor|''OXTR'']]). Studies involving Caucasian and Finnish samples and Chinese Han families provide support for the relationship of ''OXTR'' with autism.<ref name="Gregory2009">{{cite journal | vauthors = Jacob S, Brune CW, Carter CS, Leventhal BL, Lord C, Cook EH | title = Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism | journal = Neuroscience Letters | volume = 417 | issue = 1 | pages = 6–9 | date = April 2007 | pmid = 17383819 | pmc = 2705963 | doi = 10.1016/j.neulet.2007.02.001 }}</ref><ref name="Wermter2009">{{cite journal | vauthors = Wermter AK, Kamp-Becker I, Hesse P, Schulte-Körne G, Strauch K, Remschmidt H | title = Evidence for the involvement of genetic variation in the oxytocin receptor gene (OXTR) in the etiology of autistic disorders on high-functioning level | journal = American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics | volume = 153B | issue = 2 | pages = 629–39 | date = March 2010 | pmid = 19777562 | doi = 10.1002/ajmg.b.31032 }}</ref> Autism may also be associated with an aberrant methylation of ''OXTR''.<ref name="Gregory2009"/>


====Bonding====
In the [[prairie vole]], oxytocin released into the brain of the female during sexual activity is important for forming a pair bond with her sexual partner. [[Vasopressin]] appears to have a similar effect in males.<ref>{{cite web |url=http://www.americanscientist.org/issues/pub/high-on-fidelity |last=Vacek |first=Marla |year=2002 |title=High on Fidelity: What can voles teach us about monogamy? |archiveurl=https://web.archive.org/web/20061015201214/http://www.americanscientist.org/template/AssetDetail/assetid/14756 |archivedate=October 15, 2006 |work=American Scientist |deadurl=yes |df= }}</ref> Oxytocin has a role in social behaviors in many species, so it likely also does in humans. In a 2003 study, both humans and dog oxytocin levels in the blood rose after five to 24 minutes of a petting session. This possibly plays a role in the [[human-canine bond|emotional bonding between humans and dogs]].<ref name="pmid12672376">{{cite journal | vauthors = Odendaal JS, Meintjes RA | title = Neurophysiological correlates of affiliative behaviour between humans and dogs | journal = Veterinary Journal (London, England : 1997) | volume = 165 | issue = 3 | pages = 296–301 | year = 2003 | pmid = 12672376 | doi = 10.1016/S1090-0233(02)00237-X }}</ref>
* [[Maternal bond|Maternal behavior]]: Female rats given oxytocin [[Receptor antagonist|antagonists]] after giving birth do not exhibit typical maternal behavior.<ref name="pmid3819639">{{cite journal | vauthors = van Leengoed E, Kerker E, Swanson HH | title = Inhibition of post-partum maternal behaviour in the rat by injecting an oxytocin antagonist into the cerebral ventricles | journal = The Journal of Endocrinology | volume = 112 | issue = 2 | pages = 275–82 | date = February 1987 | pmid = 3819639 | doi = 10.1677/joe.0.1120275 }}</ref> By contrast, virgin female sheep show maternal behavior toward foreign lambs upon [[cerebrospinal fluid]] infusion of oxytocin, which they would not do otherwise.<ref name="urlBritish Society for Neuroendocrinology – 22. The Neurobiology of Social Bonds">{{Cite web |url=http://neuroendo.org.uk/index.php/content/view/34/11/ |title=The Neurobiology of Social Bonds |author=Kendrick KM |date=2004-01-01 |publisher=British Society for Neuroendocrinology |accessdate=2009-04-13 |deadurl=yes |archiveurl=https://web.archive.org/web/20090429021123/http://neuroendo.org.uk/index.php/content/view/34/11 |archivedate=2009-04-29 |df= }}</ref> Oxytocin is involved in the initiation of maternal behavior, not its maintenance; for example, it is higher in mothers after they interact with unfamiliar children rather than their own.<ref name="pmid20953313">{{cite journal | vauthors = Bick J, Dozier M | title = Mothers' and Children's Concentrations of Oxytocin Following Close, Physical Interactions with Biological and Non-biological Children | journal = Developmental Psychobiology | volume = 52 | issue = 1 | pages = 100–107 | date = January 2010 | pmid = 20953313 | pmc = 2953948 | doi = 10.1002/dev.20411 }}</ref>
* [[Ingroup]] bonding: Oxytocin can increase positive attitudes, such as bonding, toward individuals with similar characteristics, who then become classified as "in-group" members, whereas individuals who are dissimilar become classified as "out-group" members. Race can be used as an example of in-group and out-group tendencies because society often categorizes individuals into groups based on race (Caucasian, African American, Latino, etc.). One study that examined race and [[empathy]] found that participants receiving nasally administered oxytocin had stronger reactions to pictures of in-group members making pained faces than to pictures of out-group members with the same expression.<ref name="pmid23246533">{{cite journal | vauthors = Sheng F, Liu Y, Zhou B, Zhou W, Han S | title = Oxytocin modulates the racial bias in neural responses to others' suffering | journal = Biological Psychology | volume = 92 | issue = 2 | pages = 380–6 | date = February 2013 | pmid = 23246533 | doi = 10.1016/j.biopsycho.2012.11.018 }}</ref> This shows that oxytocin may be implicated in our ability to empathize with individuals of different races and could potentially translate into willingness to help individuals in pain or stressful situations. Moreover, individuals of one race may be more inclined to help individuals of the same race than individuals of another race when they are experiencing pain. Oxytocin has also been implicated in [[Lie|lying]] when lying would prove beneficial to other in-group members. In a study where such a relationship was examined, it was found that when individuals were administered oxytocin, rates of [[dishonesty]] in the participants' responses increased for their in-group members when a beneficial outcome for their group was expected.<ref>{{cite journal | vauthors = Shalvi S, De Dreu CK | title = Oxytocin promotes group-serving dishonesty | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 111 | issue = 15 | pages = 5503–7 | date = April 2014 | pmid = 24706799 | doi = 10.1073/pnas.1400724111 | pmc=3992689| bibcode = 2014PNAS..111.5503S }}</ref> Both of these examples show the tendency of individuals to act in ways that benefit those considered to be members of their social group, or in-group.


=====Metabolic and Nutritional=====
Oxytocin is not only correlated with the preferences of individuals to associate with members of their own group, but it is also evident during conflicts between members of different groups.  During conflict, individuals receiving nasally administered oxytocin demonstrate more frequent defense-motivated responses toward in-group members than out-group members. Further, oxytocin was correlated with participant desire to protect vulnerable in-group members, despite that individual's attachment to the conflict.<ref name="pmid23144787">{{cite journal | vauthors = De Dreu CK, Shalvi S, Greer LL, Van Kleef GA, Handgraaf MJ | title = Oxytocin motivates non-cooperation in intergroup conflict to protect vulnerable in-group members | journal = PLOS One | volume = 7 | issue = 11 | pages = e46751 | year = 2012 | pmid = 23144787 | pmc = 3492361 | doi = 10.1371/journal.pone.0046751 | bibcode = 2012PLoSO...746751D }}</ref> Similarly, it has been demonstrated that when oxytocin is administered, individuals alter their subjective preferences in order to align with in-group ideals over out-group ideals.<ref>{{cite journal | vauthors = Stallen M, De Dreu CK, Shalvi S, Smidts A, Sanfey AG | title = The herding hormone: oxytocin stimulates in-group conformity | journal = Psychological Science | volume = 23 | issue = 11 | pages = 1288–92 | year = 2012 | pmid = 22991128 | doi = 10.1177/0956797612446026 }}</ref> These studies demonstrate that oxytocin is associated with intergroup dynamics.  Further, oxytocin influences the responses of individuals in a particular group to those of another group. The in-group bias is evident in smaller groups; however, it can also be extended to groups as large as one's entire country leading toward a tendency of strong national zeal. A study done in the Netherlands showed that oxytocin increased the in-group favoritism of their nation while decreasing acceptance of members of other ethnicities and foreigners.<ref name="pmid21220339"/> People also show more affection for their country's flag while remaining indifferent to other cultural objects when exposed to oxytocin.<ref name="pmid25140135">{{cite journal | vauthors = Ma X, Luo L, Geng Y, Zhao W, Zhang Q, Kendrick KM | title = Oxytocin increases liking for a country's people and national flag but not for other cultural symbols or consumer products | journal = Frontiers in Behavioral Neuroscience | volume = 8 | issue = | pages = 266 | year = 2014 | pmid = 25140135 | pmc = 4122242 | doi = 10.3389/fnbeh.2014.00266 }}</ref> It has thus been hypothesized that this hormone may be a factor in [[xenophobic]] tendencies secondary to this effect.  Thus, oxytocin appears to affect individuals at an international level where the in-group becomes a specific "home" country and the out-group grows to include all other countries.


====Drugs====
* [[Drug interaction]]: Impact on effects of alcohol and other drugs: According to several studies in animals, oxytocin inhibits the development of tolerance to various addictive drugs ([[opiate]]s, [[cocaine]], [[ethanol|alcohol]]), and reduces [[Drug withdrawal|withdrawal]] symptoms.<ref name="pmid9924746">{{cite journal | vauthors = Kovács GL, Sarnyai Z, Szabó G | title = Oxytocin and addiction: a review | journal = Psychoneuroendocrinology | volume = 23 | issue = 8 | pages = 945–62 | date = November 1998 | pmid = 9924746 | doi = 10.1016/S0306-4530(98)00064-X }}</ref> [[MDMA]] (ecstasy) may increase feelings of love, empathy, and connection to others by stimulating oxytocin activity primarily via activation of [[serotonin]] [[5-HT1A receptor]]s, if initial studies in animals apply to humans.<ref name="pmid17383105">{{cite journal | vauthors = Thompson MR, Callaghan PD, Hunt GE, Cornish JL, McGregor IS | title = A role for oxytocin and 5-HT(1A) receptors in the prosocial effects of 3,4 methylenedioxymethamphetamine ("ecstasy") | journal = Neuroscience | volume = 146 | issue = 2 | pages = 509–14 | date = May 2007 | pmid = 17383105 | doi = 10.1016/j.neuroscience.2007.02.032 }}</ref> The [[anxiolytic]] [[Buspar]] (buspirone) may produce some of its effects via 5-HT1A receptor-induced oxytocin stimulation as well.<ref name="pmid9025112">{{cite journal | vauthors = Uvnäs-Moberg K, Hillegaart V, Alster P, Ahlenius S | title = Effects of 5-HT agonists, selective for different receptor subtypes, on oxytocin, CCK, gastrin and somatostatin plasma levels in the rat | journal = Neuropharmacology | volume = 35 | issue = 11 | pages = 1635–40 | year = 1996 | pmid = 9025112 | doi = 10.1016/S0028-3908(96)00078-0 }}</ref><ref name="pmid8771561">{{cite journal | vauthors = Chiodera P, Volpi R, Capretti L, Caffarri G, Magotti MG, Coiro V | title = Different effects of the serotonergic agonists buspirone and sumatriptan on the posterior pituitary hormonal responses to hypoglycemia in humans | journal = Neuropeptides | volume = 30 | issue = 2 | pages = 187–92 | date = April 1996 | pmid = 8771561 | doi = 10.1016/S0143-4179(96)90086-4 }}</ref>
* [[Addiction vulnerability]]: Concentrations of endogenous oxytocin can impact the effects of various drugs and one's susceptibility to [[substance use disorder]]s. Additionally, bilateral interactions with numerous systems, including the [[dopamine]] system, [[Hypothalamic–pituitary–adrenal axis]] and [[immune system]], can impact development of dependence. The status of the endogenous oxytocin system might enhance or reduce susceptibility to addiction through its interaction with these systems. Individual differences in the endogenous oxytocin system based on genetic predisposition, gender and environmental influences, may therefore affect [[addiction vulnerability]].<ref name="PBB">{{cite journal | vauthors = Buisman-Pijlman FT, Sumracki NM, Gordon JJ, Hull PR, Carter CS, Tops M | title = Individual differences underlying susceptibility to addiction: Role for the endogenous oxytocin system | journal = Pharmacology Biochemistry and Behavior | volume = 119 | pages = 22–38 | date = April 2014 | pmid = 24056025 | doi = 10.1016/j.pbb.2013.09.005 }}</ref> Oxytocin may be related to the [[Conditioned place preference|place conditioning behaviors]] observed in habitual drug abusers.


====Fear and anxiety====
Oxytocin is typically remembered for the effect it has on [[prosocial behavior]]s, such as its role in facilitating trust and attachment between individuals. Consequently, oxytocin is often referred to as the “love hormone".<ref name="Grillon 958–960">{{cite journal | vauthors = Grillon C, Krimsky M, Charney DR, Vytal K, Ernst M, Cornwell B | title = Oxytocin increases anxiety to unpredictable threat | journal = Molecular Psychiatry | volume = 18 | issue = 9 | pages = 958–60 | date = September 2013 | pmid = 23147382 | pmc = 3930442 | doi = 10.1038/mp.2012.156 }}</ref>{{qualify evidence}} However, oxytocin has a more complex role than solely enhancing prosocial behaviors. There is consensus that oxytocin modulates [[fear]] and [[anxiety]]; that is, it does not directly elicit fear or anxiety.<ref name="Guzmán 1185–1187">{{cite journal | vauthors = Guzmán YF, Tronson NC, Jovasevic V, Sato K, Guedea AL, Mizukami H, Nishimori K, Radulovic J | title = Fear-enhancing effects of septal oxytocin receptors | journal = Nature Neuroscience | volume = 16 | issue = 9 | pages = 1185–7 | date = September 2013 | pmid = 23872596 | pmc = 3758455 | doi = 10.1038/nn.3465 }}</ref> Two dominant theories explain the role of oxytocin in fear and anxiety. One theory states that oxytocin increases approach/avoidance to certain social stimuli and the second theory states that oxytocin increases the salience of certain social stimuli, causing the animal or human to pay closer attention to socially relevant stimuli.<ref name="Theodoridou e58113">{{cite journal | vauthors = Theodoridou A, Penton-Voak IS, Rowe AC | title = A direct examination of the effect of intranasal administration of oxytocin on approach-avoidance motor responses to emotional stimuli | journal = PLOS One | volume = 8 | issue = 2 | pages = e58113 | year = 2013 | pmid = 23469148 | pmc = 3585234 | doi = 10.1371/journal.pone.0058113 | bibcode = 2013PLoSO...858113T }}</ref>


=====Musculoskeletal=====
Nasally administered oxytocin has been reported to reduce [[fear]], possibly by inhibiting the [[amygdala]] (which is thought to be responsible for fear responses).<ref name="pmid16339042">{{cite journal | vauthors = Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, Siddhanti S, Gruppe H, Mattay VS, Gallhofer B, Meyer-Lindenberg A | title = Oxytocin modulates neural circuitry for social cognition and fear in humans | journal = The Journal of Neuroscience | volume = 25 | issue = 49 | pages = 11489–93 | date = December 2005 | pmid = 16339042 | doi = 10.1523/JNEUROSCI.3984-05.2005 }}</ref> Indeed, studies in rodents have shown oxytocin can efficiently inhibit fear responses by activating an inhibitory circuit within the amygdala.<ref name="pmid15821089">{{cite journal | vauthors = Huber D, Veinante P, Stoop R | title = Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala | journal = Science | volume = 308 | issue = 5719 | pages = 245–8 | date = April 2005 | pmid = 15821089 | doi = 10.1126/SCIENCE.1105636 | bibcode = 2005Sci...308..245H }}</ref><ref name="pmid21719680">{{cite journal | vauthors = Viviani D, Charlet A, van den Burg E, Robinet C, Hurni N, Abatis M, Magara F, Stoop R | title = Oxytocin selectively gates fear responses through distinct outputs from the central amygdala | journal = Science | volume = 333 | issue = 6038 | pages = 104–7 | date = July 2011 | pmid = 21719680 | doi = 10.1126/SCIENCE.1201043 | bibcode = 2011Sci...333..104V }}</ref> Some researchers have argued oxytocin has a general enhancing effect on all social emotions, since intranasal administration of oxytocin also increases [[envy]] and ''[[Schadenfreude]]''.<ref>{{cite journal | vauthors = Shamay-Tsoory SG, Fischer M, Dvash J, Harari H, Perach-Bloom N, Levkovitz Y | title = Intranasal administration of oxytocin increases envy and schadenfreude (gloating) | journal = Biological Psychiatry | volume = 66 | issue = 9 | pages = 864–70 | date = November 2009 | pmid = 19640508 | doi = 10.1016/j.biopsych.2009.06.009 }}</ref> Individuals who receive an intranasal dose of oxytocin identify facial expressions of disgust more quickly than individuals who do not receive oxytocin.<ref name="Theodoridou e58113"/>{{qualify evidence}} Facial expressions of disgust are evolutionarily linked to the idea of contagion. Thus, oxytocin increases the salience of cues that imply contamination, which leads to a faster response because these cues are especially relevant for survival. In another study, after administration of oxytocin, individuals displayed an enhanced ability to recognize expressions of fear compared to the individuals who received the placebo.<ref name="pmid19747930">{{cite journal | vauthors = Fischer-Shofty M, Shamay-Tsoory SG, Harari H, Levkovitz Y | title = The effect of intranasal administration of oxytocin on fear recognition | journal = Neuropsychologia | volume = 48 | issue = 1 | pages = 179–84 | date = January 2010 | pmid = 19747930 | doi = 10.1016/j.neuropsychologia.2009.09.003 }}</ref> Oxytocin modulates fear responses by enhancing the maintenance of social memories. Rats that are genetically modified to have a surplus of oxytocin receptors display a greater fear response to a previously conditioned stressor. Oxytocin enhances the aversive social memory, leading the rat to display a greater fear response when the aversive stimulus is encountered again.<ref name="Guzmán 1185–1187"/>


====Mood and depression====
Oxytocin produces [[antidepressant]]-like effects in [[animal model]]s of [[depression (mood)|depression]],<ref name="MatsuzakiMatsushita2012">{{cite journal | vauthors = Matsuzaki M, Matsushita H, Tomizawa K, Matsui H | title = Oxytocin: a therapeutic target for mental disorders | journal = The Journal of Physiological Sciences | volume = 62 | issue = 6 | pages = 441–4 | date = November 2012 | pmid = 23007624 | doi = 10.1007/s12576-012-0232-9 }}</ref> and a deficit of it may be involved in the [[pathophysiology]] of depression in humans.<ref name="McQuaidMcInnis2014">{{cite journal | vauthors = McQuaid RJ, McInnis OA, Abizaid A, Anisman H | title = Making room for oxytocin in understanding depression | journal = Neuroscience and Biobehavioral Reviews | volume = 45 | pages = 305–22 | date = September 2014 | pmid = 25025656 | doi = 10.1016/j.neubiorev.2014.07.005 }}</ref> The antidepressant-like effects of oxytocin are not blocked by a selective antagonist of the oxytocin receptor, suggesting that these effects are not mediated by the oxytocin receptor.<ref name="Acevedo-RodriguezMani2015">{{cite journal | vauthors = Acevedo-Rodriguez A, Mani SK, Handa RJ | title = Oxytocin and Estrogen Receptor β in the Brain: An Overview | journal = Frontiers in Endocrinology | volume = 6 | pages = 160 | year = 2015 | pmid = 26528239 | pmc = 4606117 | doi = 10.3389/fendo.2015.00160 }}</ref> In accordance, unlike oxytocin, the selective non-peptide oxytocin receptor agonist [[WAY-267,464]] does not produce antidepressant-like effects, at least in the [[tail suspension test]].<ref name="ShalevEbstein2015">{{cite book | first1 = Idan | last1 = Shalev | first2 = Richard Paul | last2 = Ebstein | name-list-format = vanc | title = Social Hormones and Human Behavior: What Do We Know and Where Do We Go from Here | url = https://books.google.com/books?id=QbA9CgAAQBAJ&pg=PA51 | date = 11 February 2015 | publisher = Frontiers Media SA | isbn = 978-2-88919-407-0 | pages = 51–}}</ref> In contrast to WAY-267,464, [[carbetocin]], a close [[structural analog|analogue]] of oxytocin and peptide oxytocin receptor agonist, notably does produce antidepressant-like effects in animals.<ref name="ShalevEbstein2015" /> As such, the antidepressant-like effects of oxytocin may be mediated by modulation of a different target, perhaps the [[arginine vasopressin receptor 1A|vasopressin V<sub>1A</sub> receptor]] where oxytocin is known to weakly bind as an agonist.<ref name="HicksRamos2014">{{cite journal | vauthors = Hicks C, Ramos L, Reekie T, Misagh GH, Narlawar R, Kassiou M, McGregor IS | title = Body temperature and cardiac changes induced by peripherally administered oxytocin, vasopressin and the non-peptide oxytocin receptor agonist WAY 267,464: a biotelemetry study in rats | journal = British Journal of Pharmacology | volume = 171 | issue = 11 | pages = 2868–87 | date = June 2014 | pmid = 24641248 | doi = 10.1111/bph.12613 | pmc=4243861}}</ref><ref name="ManningMisicka2012">{{cite journal | vauthors = Manning M, Misicka A, Olma A, Bankowski K, Stoev S, Chini B, Durroux T, Mouillac B, Corbani M, Guillon G | title = Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics | journal = Journal of Neuroendocrinology | volume = 24 | issue = 4 | pages = 609–28 | date = April 2012 | pmid = 22375852 | pmc = 3490377 | doi = 10.1111/j.1365-2826.2012.02303.x }}</ref>


[[Sildenafil]] has been found to enhance electrically evoked oxytocin release from the [[pituitary gland]].<ref name="MatsuzakiMatsushita2012"/>{{qualify evidence}} In accordance, the drug shows oxytocin-dependent antidepressant-like effects in animals, and it has proposed that sildenafil may hold promise as a potential antidepressant in humans.<ref name="MatsuzakiMatsushita2012" />


=====Neurologic=====
==== Sex differences====
It has been shown that oxytocin differentially affects males and females. Females who are administered oxytocin are overall faster in responding to socially relevant stimuli than males who received oxytocin.<ref name="Theodoridou e58113"/><ref name="Lischke 1431–1438">{{cite journal | vauthors = Lischke A, Gamer M, Berger C, Grossmann A, Hauenstein K, Heinrichs M, Herpertz SC, Domes G | title = Oxytocin increases amygdala reactivity to threatening scenes in females | journal = Psychoneuroendocrinology | volume = 37 | issue = 9 | pages = 1431–8 | date = September 2012 | pmid = 22365820 | doi = 10.1016/j.psyneuen.2012.01.011 }}</ref> Additionally, after the administration of oxytocin, females show increased [[amygdala]] activity in response to threatening scenes; however, males do not show increased amygdala activation. This phenomenon can be explained by looking at the role of [[gonadal hormones]], specifically [[estrogen]], which modulate the enhanced threat processing seen in females. Estrogen has been shown to stimulate the release of oxytocin from the [[hypothalamus]] and promote receptor binding in the amygdala.<ref name="Lischke 1431–1438"/>


It has also been shown that testosterone directly suppresses oxytocin in mice.<ref>{{cite journal | vauthors = Okabe S, Kitano K, Nagasawa M, Mogi K, Kikusui T | title = Testosterone inhibits facilitating effects of parenting experience on parental behavior and the oxytocin neural system in mice | journal = Physiology & Behavior | volume = 118 | pages = 159–64 | date = June 2013 | pmid = 23685236 | doi = 10.1016/j.physbeh.2013.05.017 }}</ref> This has been hypothesized to have evolutionary significance. With oxytocin suppressed, activities such as hunting and attacking invaders would be less mentally difficult as oxytocin is strongly associated with empathy.<ref name="pmid20371820"/>


====Social====
* Affecting [[generosity]] by increasing empathy during perspective taking: In a [[neuroeconomics]] experiment, [[intranasal]] oxytocin increased generosity in the [[Ultimatum Game]] by 80%, but had no effect in the [[Dictator Game]] that measures altruism. Perspective-taking is not required in the Dictator Game, but the researchers in this experiment explicitly induced perspective-taking in the Ultimatum Game by not identifying to participants into which role they would be placed.<ref name="pmid17987115">{{cite journal | vauthors = Zak PJ, Stanton AA, Ahmadi S | title = Oxytocin increases generosity in humans | journal = PLOS One | volume = 2 | issue = 11 | pages = e1128 | date = November 2007 | pmid = 17987115 | pmc = 2040517 | doi = 10.1371/journal.pone.0001128 | editor1-last = Brosnan | editor1-first = Sarah | bibcode = 2007PLoSO...2.1128Z }}</ref> Serious methodological questions have arisen, however, with regard to the role of oxytocin in trust and generosity.<ref>{{Cite journal|author=Conlisk J |title=Professor Zak's empirical studies on trust and oxytocin |journal=J Econ Behav Organizat |volume=78 |issue=1–2 |pages=160–166 |year=2011|doi=10.1016/j.jebo.2011.01.002}}</ref> Empathy in healthy males has been shown to be increased after intranasal oxytocin<ref name="pmid20371820">{{cite journal | vauthors = Hurlemann R, Patin A, Onur OA, Cohen MX, Baumgartner T, Metzler S, Dziobek I, Gallinat J, Wagner M, Maier W, Kendrick KM | title = Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans | journal = The Journal of Neuroscience | volume = 30 | issue = 14 | pages = 4999–5007 | date = April 2010 | pmid = 20371820 | doi = 10.1523/JNEUROSCI.5538-09.2010 }}</ref><ref name="pmid17137561">{{cite journal | vauthors = Domes G, Heinrichs M, Michel A, Berger C, Herpertz SC | title = Oxytocin improves "mind-reading" in humans | journal = Biological Psychiatry | volume = 61 | issue = 6 | pages = 731–3 | date = March 2007 | pmid = 17137561 | doi = 10.1016/j.biopsych.2006.07.015 }}</ref> This is most likely due to the effect of oxytocin in enhancing eye gaze.<ref name=" Guastellab2008">{{cite journal | vauthors = Guastella AJ, Mitchell PB, Dadds MR | title = Oxytocin increases gaze to the eye region of human faces | journal = Biological Psychiatry | volume = 63 | issue = 1 | pages = 3–5 | date = January 2008 | pmid = 17888410 | doi = 10.1016/j.biopsych.2007.06.026 }}</ref> There is some discussion about which aspect of empathy oxytocin might alter – for example, cognitive vs. emotional empathy.<ref name="pmid19102589">{{cite journal | vauthors = Singer T, Snozzi R, Bird G, Petrovic P, Silani G, Heinrichs M, Dolan RJ | title = Effects of oxytocin and prosocial behavior on brain responses to direct and vicariously experienced pain | journal = Emotion | volume = 8 | issue = 6 | pages = 781–91 | date = December 2008 | pmid = 19102589 | pmc = 2672051 | doi = 10.1037/a0014195 }}</ref> While studying wild chimpanzees, it was noted that after a chimpanzee shared food with a non-kin related chimpanzee,  the subjects' levels of oxytocin increased, as measured through their urine. In comparison to other cooperative activities between chimpanzees that were monitored including grooming, food sharing generated higher levels of oxytocin. This comparatively higher level of oxytocin after food sharing parallels the increased level of oxytocin in nursing mothers, sharing nutrients with their kin.<ref>{{cite journal | vauthors = Wittig RM, Crockford C, Deschner T, Langergraber KE, Ziegler TE, Zuberbühler K | title = Food sharing is linked to urinary oxytocin levels and bonding in related and unrelated wild chimpanzees | journal = Proceedings. Biological Sciences | volume = 281 | issue = 1778 | pages = 20133096 | date = March 2014 | pmid = 24430853 | pmc = 3906952 | doi = 10.1098/rspb.2013.3096 | url = http://rspb.royalsocietypublishing.org/content/281/1778/20133096 }}</ref>
* [[Trust (social sciences)|Trust]] is increased by oxytocin.<ref name="Theodoridou_2009">{{cite journal | vauthors = Theodoridou A, Rowe AC, Penton-Voak IS, Rogers PJ | title = Oxytocin and social perception: oxytocin increases perceived facial trustworthiness and attractiveness | journal = Hormones and Behavior | volume = 56 | issue = 1 | pages = 128–32 | date = June 2009 | pmid = 19344725 | doi = 10.1016/j.yhbeh.2009.03.019 }}</ref><ref name="Lane_2013">{{cite journal | vauthors = Lane A, Luminet O, Rimé B, Gross JJ, de Timary P, Mikolajczak M | title = Oxytocin increases willingness to socially share one's emotions | journal = International Journal of Psychology | volume = 48 | issue = 4 | pages = 676–81 | year = 2013 | pmid = 22554106 | doi = 10.1080/00207594.2012.677540 }}</ref><ref name="Cardoso_2013">{{cite journal | vauthors = Cardoso C, Ellenbogen MA, Serravalle L, Linnen AM | title = Stress-induced negative mood moderates the relation between oxytocin administration and trust: evidence for the tend-and-befriend response to stress? | journal = Psychoneuroendocrinology | volume = 38 | issue = 11 | pages = 2800–4 | date = November 2013 | pmid = 23768973 | doi = 10.1016/j.psyneuen.2013.05.006 }}</ref> Disclosure of emotional events is a sign of trust in humans. When recounting a negative event, humans who receive [[intranasal]] oxytocin share more emotional details and stories with more emotional significance.<ref name="Lane_2013" /> Humans also find faces more trustworthy after receiving intranasal oxytocin. In a study, participants who received intranasal oxytocin viewed photographs of human faces with neutral expressions and found them to be more trustworthy than those who did not receive oxytocin.<ref name="Theodoridou_2009" /> This may be because oxytocin reduces the fear of social betrayal in humans.<ref name="pmid18498743">{{cite journal | vauthors = Baumgartner T, Heinrichs M, Vonlanthen A, Fischbacher U, Fehr E | title = Oxytocin shapes the neural circuitry of trust and trust adaptation in humans | journal = Neuron | volume = 58 | issue = 4 | pages = 639–50 | date = May 2008 | pmid = 18498743 | doi = 10.1016/j.neuron.2008.04.009 }}</ref> Even after experiencing social alienation by being excluded from a conversation, humans who received oxytocin scored higher in trust on the [[Revised NEO Personality Inventory]].<ref name="Cardoso_2013" />  Moreover, in a risky investment game, experimental subjects given nasally administered oxytocin displayed "the highest level of trust" twice as often as the control group. Subjects who were told they were interacting with a computer showed no such reaction, leading to the conclusion that oxytocin was not merely affecting [[risk aversion]].<ref name="pmid15931222">{{cite journal | vauthors = Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E | title = Oxytocin increases trust in humans | journal = Nature | volume = 435 | issue = 7042 | pages = 673–6 | date = June 2005 | pmid = 15931222 | doi = 10.1038/nature03701 | bibcode = 2005Natur.435..673K }}</ref> When there is a reason to be distrustful, such as experiencing betrayal, differing reactions are associated with [[oxytocin receptor]] [[gene]] ([[OXTR]]) differences. Those with the CT [[haplotype]] experience a stronger reaction, in the form of anger, to betrayal.<ref name="pmid23547247">{{cite journal | vauthors = Tabak BA, McCullough ME, Carver CS, Pedersen EJ, Cuccaro ML | title = Variation in oxytocin receptor gene (OXTR) polymorphisms is associated with emotional and behavioral reactions to betrayal | journal = Social Cognitive and Affective Neuroscience | volume = 9 | issue = 6 | pages = 810–6 | date = June 2014 | pmid = 23547247 | doi = 10.1093/scan/nst042 | pmc=4040089}}</ref>
* Romantic attachment: In some studies, high levels of [[blood plasma|plasma]] oxytocin have been correlated with romantic attachment. For example, if a couple is separated for a long period of time, anxiety can increase due to the lack of physical affection. Oxytocin may aid romantically attached couples by decreasing their feelings of anxiety when they are separated.<ref name="pmid17034623"/>
*Group-serving dishonesty/deception: In a carefully controlled study exploring the biological roots of immoral behavior, oxytocin was shown to promote dishonesty when the outcome favored the group to which an individual belonged instead of just the individual.<ref>{{cite journal | vauthors = Shalvi S, De Dreu CK | title = Oxytocin promotes group-serving dishonesty | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 111 | issue = 15 | pages = 5503–7 | date = April 2014 | pmid = 24706799 | doi = 10.1073/pnas.1400724111 | laydate = 2 April 2014 | laysource = BBC News | layurl = https://www.bbc.com/news/science-environment-26771703 | pmc=3992689| bibcode = 2014PNAS..111.5503S }}</ref>
* Sexual activity: The relationship between oxytocin and human sexual response is unclear. At least two uncontrolled studies have found increases in [[blood plasma|plasma]] oxytocin at orgasm – in both men and women.<ref name="carm1987">{{cite journal | vauthors = Carmichael MS, Humbert R, Dixen J, Palmisano G, Greenleaf W, Davidson JM | title = Plasma oxytocin increases in the human sexual response | journal = The Journal of Clinical Endocrinology and Metabolism | volume = 64 | issue = 1 | pages = 27–31 | date = January 1987 | pmid = 3782434 | doi = 10.1210/jcem-64-1-27 | url = http://jcem.endojournals.org/cgi/pmidlookup?view=long&pmid=3782434 }}</ref><ref name="pmid8135652">{{cite journal | vauthors = Carmichael MS, Warburton VL, Dixen J, Davidson JM | title = Relationships among cardiovascular, muscular, and oxytocin responses during human sexual activity | journal = Archives of Sexual Behavior | volume = 23 | issue = 1 | pages = 59–79 | date = February 1994 | pmid = 8135652 | doi = 10.1007/BF01541618 }}</ref> Plasma oxytocin levels are notably increased around the time of self-stimulated orgasm and are still higher than baseline when measured five minutes after self arousal.<ref name="carm1987" /> The authors of one of these studies speculated that oxytocin's effects on muscle contractibility may facilitate sperm and egg transport.<ref name="carm1987" />
:In a study measuring oxytocin serum levels in women before and after [[sexual stimulation]], the author suggests it serves an important role in [[sexual arousal]]. This study found genital tract stimulation resulted in increased oxytocin immediately after orgasm.<ref name="Blaicher1999">{{cite journal | vauthors = Blaicher W, Gruber D, Bieglmayer C, Blaicher AM, Knogler W, Huber JC | title = The role of oxytocin in relation to female sexual arousal | journal = Gynecologic and Obstetric Investigation | volume = 47 | issue = 2 | pages = 125–6 | year = 1999 | pmid = 9949283 | doi = 10.1159/000010075 }}</ref> Another study reported increases of oxytocin during sexual arousal could be in response to nipple/areola, genital, and/or genital tract stimulation as confirmed in other mammals.<ref name="Andersonhunt1995">{{cite journal | vauthors = Anderson-Hunt M, Dennerstein L | title = Oxytocin and female sexuality | journal = Gynecologic and Obstetric Investigation | volume = 40 | issue = 4 | pages = 217–21 | year = 1995 | pmid = 8586300 | doi = 10.1159/000292340 }}</ref> Murphy et al. (1987), studying men, found oxytocin levels were raised throughout sexual arousal with no acute increase at orgasm.<ref name="pmid3654918">{{cite journal | vauthors = Murphy MR, Seckl JR, Burton S, Checkley SA, Lightman SL | title = Changes in oxytocin and vasopressin secretion during sexual activity in men | journal = The Journal of Clinical Endocrinology and Metabolism | volume = 65 | issue = 4 | pages = 738–41 | date = October 1987 | pmid = 3654918 | doi = 10.1210/jcem-65-4-738 | url = http://jcem.endojournals.org/cgi/pmidlookup?view=long&pmid=3654918 }}</ref> A more recent study of men found an increase in plasma oxytocin immediately after orgasm, but only in a portion of their sample that did not reach statistical significance. The authors noted these changes "may simply reflect contractile properties on reproductive tissue".<ref name="pmid12697037">{{cite journal | vauthors = Krüger TH, Haake P, Chereath D, Knapp W, Janssen OE, Exton MS, Schedlowski M, Hartmann U | title = Specificity of the neuroendocrine response to orgasm during sexual arousal in men | journal = The Journal of Endocrinology | volume = 177 | issue = 1 | pages = 57–64 | date = April 2003 | pmid = 12697037 | doi = 10.1677/joe.0.1770057 }}</ref>
* Oxytocin affects [[social behavior|social]] distance between adult males and females, and may be responsible at least in part for [[romance (love)|romantic attraction]] and subsequent [[monogamy|monogamous]] pair bonding. An oxytocin nasal spray caused men in a monogamous relationship, but not single men, to increase the distance between themselves and an attractive woman during a first encounter by 10 to 15 centimeters. The researchers suggested that oxytocin may help promote fidelity within monogamous relationships.<ref name="pmid23152592">{{cite journal | vauthors = Scheele D, Striepens N, Güntürkün O, Deutschländer S, Maier W, Kendrick KM, Hurlemann R | title = Oxytocin modulates social distance between males and females | journal = The Journal of Neuroscience | volume = 32 | issue = 46 | pages = 16074–9 | date = November 2012 | pmid = 23152592 | doi = 10.1523/JNEUROSCI.2755-12.2012 }}</ref> For this reason, it is sometimes referred to as the "bonding hormone". There is some evidence that oxytocin promotes [[ethnocentric]] behavior, incorporating the trust and empathy of [[Ingroups and outgroups|in-groups]] with their suspicion and rejection of outsiders.<ref name="pmid21220339">{{cite journal | vauthors = De Dreu CK, Greer LL, Van Kleef GA, Shalvi S, Handgraaf MJ | title = Oxytocin promotes human ethnocentrism | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 108 | issue = 4 | pages = 1262–6 | date = January 2011 | pmid = 21220339 | pmc = 3029708 | doi = 10.1073/pnas.1015316108 | bibcode = 2011PNAS..108.1262D }}</ref> Furthermore, genetic differences in the [[oxytocin receptor]] gene (OXTR) have been associated with maladaptive social traits such as aggressive behavior.<ref name="pmid22372486">{{cite journal | vauthors = Malik AI, Zai CC, Abu Z, Nowrouzi B, Beitchman JH | title = The role of oxytocin and oxytocin receptor gene variants in childhood-onset aggression | journal = Genes, Brain, and Behavior | volume = 11 | issue = 5 | pages = 545–51 | date = July 2012 | pmid = 22372486 | doi = 10.1111/j.1601-183X.2012.00776.x }}</ref>
* [[Social behavior]]<ref name="pmid21220339"/><ref name="pmid15677415">{{cite journal | vauthors = Zak PJ, Kurzban R, Matzner WT | title = The neurobiology of trust | journal = Annals of the New York Academy of Sciences | volume = 1032 | issue = 1 | pages = 224–7 | date = December 2004 | pmid = 15677415 | doi = 10.1196/annals.1314.025 | bibcode = 2004NYASA1032..224Z }}</ref> and [[wound healing]]: Oxytocin is also thought to modulate [[inflammation]] by decreasing certain [[cytokines]]. Thus, the increased release in oxytocin following positive social interactions has the potential to improve wound healing. A study by Marazziti and colleagues used heterosexual couples to investigate this possibility. They found increases in plasma oxytocin following a social interaction were correlated with faster wound healing. They hypothesized this was due to oxytocin reducing inflammation, thus allowing the wound to heal more quickly. This study provides preliminary evidence that positive social interactions may directly influence aspects of health.<ref>{{cite journal | vauthors = Gouin JP, Carter CS, Pournajafi-Nazarloo H, Glaser R, Malarkey WB, Loving TJ, Stowell J, Kiecolt-Glaser JK | title = Marital behavior, oxytocin, vasopressin, and wound healing | journal = Psychoneuroendocrinology | volume = 35 | issue = 7 | pages = 1082–90 | date = August 2010 | pmid = 20144509 | pmc = 2888874 | doi = 10.1016/j.psyneuen.2010.01.009 }}</ref> According to a study published in 2014, silencing of oxytocin receptor interneurons in the medial prefrontal cortex (mPFC) of female mice resulted in loss of social interest in male mice during the sexually receptive phase of the estrous cycle.<ref name="pmid25303526">{{cite journal | vauthors = Nakajima M, Görlich A, Heintz N | title = Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons | journal = Cell | volume = 159 | issue = 2 | pages = 295–305 | date = October 2014 | pmid = 25303526 | pmc = 4206218 | doi = 10.1016/j.cell.2014.09.020 | laysummary = http://www.sciguru.org/newsitem/17672/love-hormone-oxycotin-regulates-sociosexual-behavior-female-mice | laysource = SciGuru Science News }}</ref> Oxytocin evokes feelings of contentment, reductions in anxiety, and feelings of calmness and security when in the company of the mate.<ref name="pmid17034623">{{cite journal | vauthors = Marazziti D, Dell'Osso B, Baroni S, Mungai F, Catena M, Rucci P, Albanese F, Giannaccini G, Betti L, Fabbrini L, Italiani P, Del Debbio A, Lucacchini A, Dell'Osso L | title = A relationship between oxytocin and anxiety of romantic attachment | journal = Clinical Practice and Epidemiology in Mental Health | volume = 2 | issue = 1 | pages = 28 | date = October 2006 | pmid = 17034623 | pmc = 1621060 | doi = 10.1186/1745-0179-2-28 }}</ref> This suggests oxytocin may be important for the inhibition of the brain regions associated with behavioral control, fear, and anxiety, thus allowing orgasm to occur. Research has also demonstrated that oxytocin can decrease anxiety and protect against stress, particularly in combination with social support.<ref name="pmid14675803">{{cite journal | vauthors = Heinrichs M, Baumgartner T, Kirschbaum C, Ehlert U | title = Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress | journal = Biological Psychiatry | volume = 54 | issue = 12 | pages = 1389–98 | date = December 2003 | pmid = 14675803 | doi = 10.1016/S0006-3223(03)00465-7 }}</ref> It is found, that [[Endocannabinoid system|endocannabinoid]] signaling mediates oxytocin-driven social reward.<ref>{{cite journal | vauthors = Wei D, Lee D, Cox CD, Karsten CA, Peñagarikano O, Geschwind DH, Gall CM, Piomelli D | title = Endocannabinoid signaling mediates oxytocin-driven social reward | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 112 | issue = 45 | pages = 14084–9 | date = November 2015 | pmid = 26504214 | pmc = 4653148 | doi = 10.1073/pnas.1509795112 | bibcode = 2015PNAS..11214084W }}</ref>


=====Respiratory=====
==Chemistry==
[[File:Oxytocin-neurophysin.png|thumb|Oxytocin (ball-and-stick) bound to its carrier protein neurophysin (ribbons)]]
Oxytocin is a [[peptide]] of nine [[amino acid]]s (a [[nonapeptide]]) in the sequence cysteine-tyrosine-isoleucine-glutamine-asparagine-cysteine-proline-leucine-glycine-amide ([[cysteine|Cys]]&nbsp;–&nbsp;[[tyrosine|Tyr]]&nbsp;–&nbsp;[[isoleucine|Ile]]&nbsp;–&nbsp;[[glutamine|Gln]]&nbsp;–&nbsp;[[asparagine|Asn]]&nbsp;–&nbsp;Cys&nbsp;–&nbsp;[[proline|Pro]]&nbsp;–&nbsp;[[leucine|Leu]]&nbsp;–&nbsp;[[glycine|Gly]]&nbsp;–&nbsp;NH<sub>2</sub>, or CYIQNCPLG-NH<sub>2</sub>); its ''C''-terminus has been converted to a [[primary amide]] and a [[disulfide bridge]] joins the cysteine [[moiety (chemistry)|moieties]].<ref name = OxytocinVasopressinStructures>{{cite book | url = https://books.google.com/?id=BBLRUI4aHhkC&pg=PA1833&dq=vasopressin+oxytocin+amino+acid+sequence#v=onepage&q=vasopressin%20oxytocin%20amino%20acid%20sequence&f=false | page = 1833 | title = Tietz Textbook of Clinical Chemistry and Molecular Diagnostics|first1 = Carl A.|last1 = Burtis|first2 = Edward R.|last2 = Ashwood|first3 = David E.|last3 = Bruns | name-list-format = vanc |publisher = [[Elsevier Health Sciences]]|year = 2012|isbn = 9781455759422|edition = 5th}}</ref> Oxytocin has a [[molecular mass]] of 1007&nbsp;[[dalton (unit)|Da]], and one [[international unit]] (IU) of oxytocin is the equivalent of 1.68&nbsp;[[microgram|&mu;g]] of pure peptide.<ref>https://www.nibsc.org/documents/ifu/76-575.pdf</ref>


While the structure of oxytocin is highly conserved in placental mammals, a novel structure of oxytocin was recently reported in [[marmoset]]s, [[tamarin]]s, and other new world [[primates]]. Genomic sequencing of the gene for oxytocin revealed a single [[In-frame mutation#in-frame|in-frame mutation]] ([[thymine]] for [[cytosine]]) which results in a single amino acid substitution at the 8-position ([[proline]] for [[leucine]]).<ref name= "pmid21411453">{{cite journal | vauthors = Lee AG, Cool DR, Grunwald WC, Neal DE, Buckmaster CL, Cheng MY, Hyde SA, Lyons DM, Parker KJ | title = A novel form of oxytocin in New World monkeys | journal = Biology Letters | volume = 7 | issue = 4 | pages = 584–7 | date = August 2011 | pmid = 21411453 | pmc = 3130245 | doi = 10.1098/rsbl.2011.0107 }}</ref> Since this original Lee ''et al.'' paper, two other laboratories have confirmed Pro8-OT and documented additional oxytocin structural variants in this primate taxon. Vargas-Pinilla ''et al.'' sequenced the coding regions of the OXT gene in other genera in new world primates and identified the following variants in addition to Leu8- and Pro8-OT: Ala8-OT, Thr8-OT, and Val3/Pro8-OT.<ref>{{cite journal | vauthors = Vargas-Pinilla P, Paixão-Côrtes VR, Paré P, Tovo-Rodrigues L, Vieira CM, Xavier A, Comas D, Pissinatti A, Sinigaglia M, Rigo MM, Vieira GF, Lucion AB, Salzano FM, Bortolini MC | title = Evolutionary pattern in the OXT-OXTR system in primates: coevolution and positive selection footprints | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 112 | issue = 1 | pages = 88–93 | date = January 2015 | pmid = 25535371 | doi = 10.1073/pnas.1419399112 | pmc=4291646| bibcode = 2015PNAS..112...88V }}</ref> Ren ''et al.'' identified a  variant further, Phe2-OT in [[howler monkey]]s.<ref>{{cite journal | vauthors = Ren D, Lu G, Moriyama H, Mustoe AC, Harrison EB, French JA | title = Genetic diversity in oxytocin ligands and receptors in New World monkeys | journal = PLOS One | volume = 10 | issue = 5 | pages = e0125775 | date = 2015 | pmid = 25938568 | doi = 10.1371/journal.pone.0125775 | pmc=4418824| bibcode = 2015PLoSO..1025775R }}</ref>


The biologically active form of oxytocin, commonly measured by [[Radioimmunoassay|RIA]] and/or [[High-performance liquid chromatography|HPLC]] techniques, is also known as the octapeptide "oxytocin disulfide" (oxidized form), but oxytocin also exists as a reduced straight-chain (non-cyclic) [[dithiol]] nonapeptide called oxytoceine.<ref>{{cite journal |doi=10.1111/j.1749-6632.1960.tb20052.x |title=Experiences in the Polypeptide Field: Insulin to Oxytocin |journal=Annals of the New York Academy of Sciences |volume=88 |issue=3 |pages=537–48 |year=2006 |last1=Vigneaud |first1=Vincent | name-list-format = vanc | bibcode = 1960NYASA..88..537V }}</ref> It has been theorized that oxytoceine may act as a [[free radical]] scavenger, as donating an electron to a free radical allows oxytoceine to be re-oxidized to oxytocin via the [[dehydroascorbate]] / [[ascorbate]] redox couple.<ref name="DLA: Mechanisms by which hypoxia augments Leydig cell viability and differentiated cell function in vitro">{{Cite web| url=http://scholar.lib.vt.edu/theses/available/etd-06062008-170416 | title=Mechanisms by which hypoxia augments Leydig cell viability and differentiated cell function in vitro | author = Kukucka MA | date=1993-04-18 | publisher=Digital Library and Archives | accessdate=2010-02-21}}</ref>


=====Skin and Hypersensitivy Reactions=====
The structure of oxytocin is very similar to that of [[vasopressin]]Both are nonapeptides with a single disulfide bridge, differing only by two substitutions in the amino acid sequence (differences from oxytocin bolded for clarity): Cys&nbsp;–&nbsp;Tyr&nbsp;–&nbsp;'''[[phenylalanine|Phe]]'''&nbsp;–&nbsp;Gln&nbsp;–&nbsp;Asn&nbsp;–&nbsp;Cys&nbsp;–&nbsp;Pro&nbsp;–&nbsp;'''[[arginine|Arg]]'''&nbsp;–&nbsp;Gly&nbsp;–&nbsp;NH<sub>2</sub>.<ref name = OxytocinVasopressinStructures /> A table showing the sequences of members of the vasopressin/oxytocin superfamily and the species expressing them is present in the [[vasopressin]] article. Oxytocin and vasopressin were isolated and their [[total synthesis]] reported in 1954,<ref>{{cite journal|title = The Synthesis of Oxytocin|last1 = du Vigneaud|first1 = Vincent|authorlink1 = Vincent du Vigneaud|last2 = Ressler|first2 = Charlotte|last3 = Swan|first3 = John M.|last4 = Roberts|first4 = Carleton W.|last5 = Katsoyannis|first5 = Panayotis G. | name-list-format = vanc |journal = [[Journal of the American Chemical Society]]|volume = 76|issue = 12|pages = 3115–3121|year = 1954|doi = 10.1021/ja01641a004}}</ref> work for which [[Vincent du Vigneaud]] was awarded the 1955 [[Nobel Prize in Chemistry]] with the citation: "for his work on biochemically important sulphur compounds, especially for the first synthesis of a polypeptide hormone."<ref>{{cite web|title = The Nobel Prize in Chemistry 1955|website = Nobelprize.org|url = http://nobelprize.org/nobel_prizes/chemistry/laureates/1955/index.html|accessdate = 17 November 2016|publisher = [[Nobel Media AB]]}}</ref>
 
 
 
=====Special Senses=====
 
 
 
=====Urogenital=====
 
 
 
=====Miscellaneous=====
 
 
 
<!--Drug Interactions-->
|drugInteractions=Severe hypertension has been reported when oxytocin was given three to four hours following prophylactic administration of a vasoconstrictor in conjunction with caudal block anesthesiaCyclopropane anesthesia may modify oxytocin’s cardiovascular effects, so as to produce unexpected results such as hypotension.  Maternal sinus bradycardia with abnormal atrioventricular rhythms has also been noted when oxytocin was used concomitantly with cyclopropane anesthesia.
|FDAPregCat=C
|useInPregnancyFDA=Pregnancy Category C.
There are no known indications for use of oxytocin in the first and second trimester of pregnancy other than in relation to spontaneous or induced abortion.  Based on the wide experience with this drug and its chemical structure and pharmacological properties, it would not be expected to present a risk of fetal abnormalities when used as indicated.
 
Nonteratogenic Effects—See ADVERSE REACTIONS in the fetus or infant.
|useInPregnancyAUS=* '''Australian Drug Evaluation Committee (ADEC) Pregnancy Category'''
 
There is no Australian Drug Evaluation Committee (ADEC) guidance on usage of {{PAGENAME}} in women who are pregnant.
|useInLaborDelivery=Antepartum
Oxytocin injection (synthetic) is indicated for the initiation or improvement of uterine contractions, where this is desirable and considered suitable, in order to achieve early vaginal delivery for fetal or maternal reasons.  It is indicated for (1) induction of labor in patients with a medical indication for the initiation of labor, such as Rh problems, maternal diabetes, pre-eclampsia at or near term, when delivery is in the best interest of mother and fetus or when membranes are prematurely ruptured and delivery is indicated; (2) stimulation or reinforcement of labor, as in selected cases of uterine inertia; (3) adjunctive therapy in the management of incomplete or inevitable abortion.  In the first trimester, curettage is generally considered primary therapy.  In second trimester abortion, oxytocin infusion will often be successful in emptying the uterus. Other means of therapy, however, may be required in such cases.
 
Postpartum
Oxytocin injection (synthetic) is indicated to produce uterine contractions during the third stage of labor and to control postpartum bleeding or hemorrhage.
|useInNursing=It is not known whether this drug is excreted in human milk.  Because many drugs are excreted in human milk, caution should be exercised when oxytocin is administered to a nursing woman.
|useInPed=There is no FDA guidance on the use of {{PAGENAME}} with respect to pediatric patients.
|useInGeri=There is no FDA guidance on the use of {{PAGENAME}} with respect to geriatric patients.
|useInGender=There is no FDA guidance on the use of {{PAGENAME}} with respect to specific gender populations.
|useInRace=There is no FDA guidance on the use of {{PAGENAME}} with respect to specific racial populations.
|useInRenalImpair=There is no FDA guidance on the use of {{PAGENAME}} in patients with renal impairment.
|useInHepaticImpair=There is no FDA guidance on the use of {{PAGENAME}} in patients with hepatic impairment.
|useInReproPotential=There is no FDA guidance on the use of {{PAGENAME}} in women of reproductive potentials and males.
|useInImmunocomp=There is no FDA guidance one the use of {{PAGENAME}} in patients who are immunocompromised.
 
<!--Administration and Monitoring-->
|administration=Dosage of oxytocin is determined by uterine response.  The following dosage information is based upon the various regimens and indications in general use.
 
Induction or Stimulation of Labor
Intravenous infusion (drip method) is the only acceptable method of administration for the induction or stimulation of labor.
 
Accurate control of the rate of infusion flow is essential.  An infusion pump or other such device and frequent monitoring of strength of contractions and fetal heart rate are necessary for the safe administration of oxytocin for the induction or stimulation of labor.  If uterine contractions become too powerful, the infusion can be abruptly stopped, and oxytocic stimulation of the uterine musculature will soon wane.
 
An intravenous infusion of a non-oxytocin containing solution should be started.  Physiologic electrolyte solutions should be used except under unusual circumstances.
 
To prepare the usual solution for intravenous infusion–one mL (10 units) is combined aseptically with 1,000 mL of a non-hydrating diluent.
 
The combined solution, rotated in the infusion bottle to insure thorough mixing, contains 10 mU/mL.  Add the container with dilute oxytocic solution to the system through the use of a constant infusion pump or other such device to control accurately the rate of infusion.
 
The initial dose should be no more than 1 to 2 mU/min.  The dose may be gradually increased in increments of no more than 1 to 2 mU/min., until a contraction pattern has been established which is similar to normal labor.
 
The fetal heart rate, resting uterine tone, and the frequency, duration, and force of contractions should be monitored.
 
The oxytocin infusion should be discontinued immediately in the event of uterine hyperactivity or fetal distress.  Oxygen should be administered to the mother.  The mother and fetus must be evaluated by the responsible physician.
 
Control of Postpartum Uterine Bleeding
Intravenous Infusion (Drip Method)—To control postpartum bleeding, 10 to 40 units of oxytocin may be added to 1,000 mL of a nonhydrating diluent and run at a rate necessary to control uterine atony.
 
Intramuscular Administration—1 mL (10 units) of oxytocin can be given after delivery of the placenta.
 
Treatment of Incomplete or Inevitable Abortion
Intravenous infusion with physiologic saline solution, 500 mL, or 5% dextrose in physiologic saline solution to which 10 units of oxytocin have been added should be infused at a rate of 20 to 40 drops/minute.
 
Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit.
|monitoring=There is limited information regarding <i>Monitoring</i> of {{PAGENAME}} in the drug label.
 
* Description
 
<!--IV Compatibility-->
|IVCompat=There is limited information regarding <i>IV Compatibility</i> of {{PAGENAME}} in the drug label.
 
<!--Overdosage-->
|overdose=Overdosage with oxytocin injection (synthetic) depends essentially on uterine hyperactivity whether or not due to hypersensitivity to this agent.  Hyperstimulation with strong (hypertonic) or prolonged (tetanic) contractions, or a resting tone of 15 to 20 mm H2O or more between contractions can lead to tumultuous labor, uterine rupture, cervical and vaginal lacerations, postpartum hemorrhage, uteroplacental hypoperfusion and variable deceleration of fetal heart, fetal hypoxia, hypercapnia or death.  Water intoxication with convulsions, which is caused by the inherent antidiuretic effect of oxytocin, is a serious complication that may occur if large doses (40 to 50 milliunits/minute) are infused for long periods.  Management consists of immediate discontinuation of oxytocin, and symptomatic and supportive therapy.
|drugBox=[[File:Oxytocin wiki.png|600px|thumbnail|left]]
{{clear}}
|mechAction=Oxytocin injection (synthetic) acts on the smooth muscle of the uterus to stimulate contractions; response depends on the uterine threshold of excitability.  It exerts a selective action on the smooth musculature of the uterus, particularly toward the end of pregnancy, during labor and immediately following delivery.  Oxytocin stimulates rhythmic contractions of the uterus, increases the frequency of existing contractions and raises the tone of the uterine musculature.  Synthetic oxytocin does not possess the cardiovascular effects, such as elevation of blood pressure, as exhibited by vasopressin found in posterior pituitary injection.
|structure=Each mL of Oxytocin Injection, USP (synthetic), intended for intravenous infusion or intramuscular injection, possesses an oxytocic activity equivalent to 10 USP Oxytocin Units and contains chlorobutanol anhydrous (chloral derivative) 0.5%.  This product may contain up to 12.5% decomposition products/impurities.  Oxytocin injection (synthetic) is a sterile, clear, colorless solution of oxytocin in Water for Injection prepared by synthesis.  Acetic acid may have been added for pH adjustment (pH 3.0-5.0).  The structural formula is:
 
[[File:Oxytocin structure.jpg|600px|thumbnail|left]]
{{clear}}
|PD=There is limited information regarding <i>Pharmacodynamics</i> of {{PAGENAME}} in the drug label.
 
<!--Pharmacokinetics-->
|PK=There is limited information regarding <i>Pharmacokinetics</i> of {{PAGENAME}} in the drug label.
 
<!--Nonclinical Toxicology-->
|nonClinToxic=Carcinogenesis, Mutagenesis, Impairment of Fertility
There are no animal or human studies on the carcinogenicity and mutagenicity of this drug, nor is there any information on its effect on fertility.
|clinicalStudies=There is limited information regarding <i>Clinical Studies</i> of {{PAGENAME}} in the drug label.
 
<!--How Supplied-->
|howSupplied=[[File:Oxytocin how supplied.png|600px|thumbnail|left]]
{{clear}}
 
Discard unused portion.
 
Use only if solution is clear and seal intact.
|storage=Store at 20° to 25°C (68° to 77°F) [see USP Controlled Room Temperature].
 
Do not permit to freeze.
|packLabel=[[File:Oxytocin pdp 1.jpg|600px|thumbnail|left]]
{{clear}}
 
[[File:Oxytocin pdp 2.jpg|600px|thumbnail|left]]
{{clear}}
 
[[File:Oxytocin label.png|600px|thumbnail|left]]
{{clear}}
|fdaPatientInfo=There is limited information regarding <i>Patient Counseling Information</i> of {{PAGENAME}} in the drug label.
 
<!--Precautions with Alcohol-->
|alcohol=* Alcohol-{{PAGENAME}} interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.
 
<!--Brand Names-->
|brandNames=* ®<ref>{{Cite web | title = | url = }}</ref>
 
<!--Look-Alike Drug Names-->
|lookAlike=* A® — B®<ref name="www.ismp.org">{{Cite web  | last =  | first =  | title = http://www.ismp.org | url = http://www.ismp.org | publisher = | date = }}</ref>
 
<!--Drug Shortage Status-->
|drugShortage=
}}
{{PillImage
|fileName=No image.jpg
}}
{{LabelImage
|fileName={{PAGENAME}}11.png
}}
{{LabelImage
|fileName={{PAGENAME}}11.png
}}
<!--Pill Image-->
 
 


<!--Label Display Image-->
Oxytocin and vasopressin are the only known hormones released by the human [[posterior pituitary gland]] to act at a distance. However, oxytocin neurons make other peptides, including [[corticotropin-releasing hormone]] and [[dynorphin]], for example, that act locally. The [[magnocellular neurosecretory cell]]s that make oxytocin are adjacent to magnocellular neurosecretory cells that make vasopressin. These are large neuroendocrine neurons which are excitable and can generate action potentials.<ref name="pmid10221785">{{cite journal | vauthors = Leng G, Brown CH, Russell JA | title = Physiological pathways regulating the activity of magnocellular neurosecretory cells | journal = Progress in Neurobiology | volume = 57 | issue = 6 | pages = 625–55 | year = 1999 | pmid = 10221785 | doi = 10.1016/s0301-0082(98)00072-0 }}</ref>


== History ==
The uterine-contracting properties of the principle that would later be named oxytocin were discovered by British pharmacologist Sir [[Henry Hallett Dale]] in 1906,<ref name= "pmid16992821">{{cite journal | vauthors = Dale HH | title = On some physiological actions of ergot | journal = The Journal of Physiology | volume = 34 | issue = 3 | pages = 163–206 | date = May 1906 | pmid = 16992821 | pmc = 1465771 | doi = 10.1113/jphysiol.1906.sp001148 }}</ref><ref name="pmid19482229"/> and its milk ejection property was described by Ott and Scott in 1910<ref>{{cite journal | doi = 10.3181/00379727-8-27 | title = The action of infundibulin upon the mammary secretion |journal=Experimental Biology and Medicine |volume=8 |issue=2 |pages=48–9 |year=1910 | vauthors = Ott I, Scott JC }}</ref> and by Schafer and Mackenzie in 1911.<ref name=Schafer_Mackenzie_1911>{{cite journal | vauthors = Schafer EA, Mackenzie K | title = The Action of Animal Extracts on Milk Secretion |journal = Proceedings of the Royal Society B |date=July 1911 | volume = 84 | issue = 568 |pages = 16–22 | doi = 10.1098/rspb.1911.0042 }}</ref> In the 1920s, oxytocin and [[vasopressin]] were isolated from pituitary tissue and given their current names. The word ''oxytocin'' was coined from the term ''oxytocic'', [[Greek language|Greek]] ὀξύς, ''oxys'', and τοκετός , ''toketos'', meaning "quick birth".


Oxytocin became the first polypeptide hormone to be sequenced<ref name="pmid13129273">{{cite journal | vauthors = Du Vigneaud V, Ressler C, Trippett S | title = The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin | journal = The Journal of Biological Chemistry | volume = 205 | issue = 2 | pages = 949–57 | date = December 1953 | pmid = 13129273 | doi =  }}</ref> or synthesized.<ref>{{Cite journal|vauthors=du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG, Gordon S | title = The synthesis of an octapeptide amide with the hormonal activity of oxytocin | journal = J. Am. Chem. Soc. | volume = 75 | issue = 19 | pages = 4879–80 | year = 1953 | pmid = | doi = 10.1021/ja01115a553 }}</ref><ref name=Ressler_1954>{{cite journal | vauthors = du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG | title = The synthesis of oxytocin | journal = J. Am. Chem. Soc. |date=June 1954 | volume = 76 | issue = 12 | pages = 3115–3121 | doi = 10.1021/ja01641a004}}</ref><ref name = "du_Vigneaud_1954">{{cite journal | vauthors = du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG | journal = Journal of the American Chemical Society | year = 1954 | volume = 76 | issue = 12 | pages = 3115–21 | doi = 10.1021/ja01641a004 | title = The Synthesis of Oxytocin1}}</ref> Du Vigneaud was awarded the Nobel Prize in 1955 for his work.<ref name="pmid13324123">{{cite journal | vauthors = Du Vigneaud V | title = Trail of sulfur research: from insulin to oxytocin | journal = Science | volume = 123 | issue = 3205 | pages = 967–74 | date = June 1956 | pmid = 13324123 | doi = 10.1126/science.123.3205.967 | bibcode = 1956Sci...123..967D }}</ref>


== References ==
{{Reflist|colwidth=32em}}


== Further reading ==
{{Refbegin}}
* {{cite book| url = http://refworks.springer.com/mrw/fileadmin/pdf/Neurochemistry/0387303480C25.PDF | title = Handbook of neurochemistry and molecular neurobiology | publisher = Springer | year = 2006 | isbn = 0-387-30348-0 | location = Berlin | pages = 573–607 | chapter = Oxytocin and Vasopressin: Genetics and Behavioral Implications | doi = | oclc = | quote = | vauthors = Caldwell HK, Young WS | veditors = Abel L, Lim R | origyear = | accessdate = }}
* {{citation | last = Fillod | first = Odile | contribution = Oxytocin as proximal cause of 'maternal instinct': weak science, post-feminism, and the hormones of mystique | editor-last1 = Schmitz | editor-first1 = Sigrid | editor-last2 = Höppner | editor-first2 = Grit | name-list-format = vanc | title = Gendered neurocultures: feminist and queer perspectives on current brain discourses| publisher = Zaglossus | location = Wien | year = 2014 | isbn = 9783902902122 | series = challenge GENDER, 2 | ref = harv | postscript = .}}
* {{citation | title= The weak science behind the wrongly named moral molecule |  date= 13 November 2015 | url= https://www.theatlantic.com/science/archive/2015/11/the-weak-science-of-the-wrongly-named-moral-molecule/415581/| last1= Yong | first1= Ed | name-list-format = vanc | author1-link= Ed Yong | magazine= [[The Atlantic]] }}.
{{Refend}}


<!--Category-->
{{Hormones}}
{{Neuropeptides}}
{{Neurotransmitters}}
{{Authority control}}


[[Category:Drug]]
[[Category:Breastfeeding]]
[[Category:Human female endocrine system]]
[[Category:Interpersonal attraction]]
[[Category:Neuropeptides]]
[[Category:Neurotransmitters]]
[[Category:Orgasm]]
[[Category:Oxytocin receptor agonists]]
[[Category:Posterior pituitary hormones]]
[[Category:Vasopressin receptor agonists]]
[[Category:Hormones of the hypothalamus]]
[[Category:Hormones of the pregnant female]]

Latest revision as of 16:04, 15 January 2019

Oxytocin
File:Oxytocin with labels.png
File:OxitocinaCPK3D.png
Pronunciation/ˌɒksɪˈtsɪn/
Physiological data
Source tissuespituitary gland
Target tissueswide spread
Receptorsoxytocin receptor
Antagonistsatosiban
Precursoroxytocin/neurophysin I prepropeptide
Metabolismliver and other oxytocinases
Pharmacokinetic data
Protein binding30%
Metabolismliver and other oxytocinases
Elimination half-life1–6 min (IV)
~2 h (intranasal)[1][2]
ExcretionBiliary and kidney
Identifiers
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
E number{{#property:P628}}
ECHA InfoCard{{#property:P2566}}Lua error in Module:EditAtWikidata at line 36: attempt to index field 'wikibase' (a nil value).
Chemical and physical data
FormulaC43H66N12O12S2
Molar mass1007.19 g/mol
3D model (JSmol)
  (verify)

Oxytocin (Oxt) is a peptide hormone and neuropeptide. Oxytocin is normally produced by the paraventricular nucleus of the hypothalamus and released by the posterior pituitary.[3] It plays a role in social bonding, sexual reproduction, childbirth, and the period after childbirth.[4] Oxytocin is released into the bloodstream as a hormone in response to stretching of the cervix and uterus during labor and with stimulation of the nipples from breastfeeding.[5] This helps with birth, bonding with the baby, and milk production.[5][6] Oxytocin was discovered by Henry Dale in 1906.[7] Its molecular structure was determined in 1952.[8] Oxytocin is also used as a medication to facilitate childbirth.[9][10][11]

Biochemistry

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Estrogen has been found to increase the secretion of oxytocin and to increase the expression of its receptor, the oxytocin receptor, in the brain.[12] In women, a single dose of estradiol has been found to be sufficient to increase circulating oxytocin concentrations.[13]

Biosynthesis

The biosynthesis of the different forms of OT
The biosynthesis of the different forms of OT

The oxytocin peptide is synthesized as an inactive precursor protein from the OXT gene.[14][15][16] This precursor protein also includes the oxytocin carrier protein neurophysin I.[17] The inactive precursor protein is progressively hydrolyzed into smaller fragments (one of which is neurophysin I) via a series of enzymes. The last hydrolysis that releases the active oxytocin nonapeptide is catalyzed by peptidylglycine alpha-amidating monooxygenase (PAM).[18]

The activity of the PAM enzyme system is dependent upon vitamin C (ascorbate), which is a necessary vitamin cofactor. By chance, sodium ascorbate by itself was found to stimulate the production of oxytocin from ovarian tissue over a range of concentrations in a dose-dependent manner.[19] Many of the same tissues (e.g. ovaries, testes, eyes, adrenals, placenta, thymus, pancreas) where PAM (and oxytocin by default) is found are also known to store higher concentrations of vitamin C.[20]

Oxytocin is known to be metabolized by the oxytocinase, leucyl/cystinyl aminopeptidase.[21][22] Other oxytocinases are also known to exist.[21][23] Amastatin, bestatin (ubenimex), leupeptin, and puromycin have been found to inhibit the enzymatic degradation of oxytocin, though they also inhibit the degradation of various other peptides, such as vasopressin, met-enkephalin, and dynorphin A.[23][24][25][26]

Neural sources

In the hypothalamus, oxytocin is made in magnocellular neurosecretory cells of the supraoptic and paraventricular nuclei, and is stored in Herring bodies at the axon terminals in the posterior pituitary. It is then released into the blood from the posterior lobe (neurohypophysis) of the pituitary gland. These axons (likely, but dendrites have not been ruled out) have collaterals that innervate neurons in the nucleus accumbens, a brain structure where oxytocin receptors are expressed.[27] The endocrine effects of hormonal oxytocin and the cognitive or behavioral effects of oxytocin neuropeptides are thought to be coordinated through its common release through these collaterals.[27] Oxytocin is also produced by some neurons in the paraventricular nucleus that project to other parts of the brain and to the spinal cord.[28] Depending on the species, oxytocin receptor-expressing cells are located in other areas, including the amygdala and bed nucleus of the stria terminalis.

In the pituitary gland, oxytocin is packaged in large, dense-core vesicles, where it is bound to neurophysin I as shown in the inset of the figure; neurophysin is a large peptide fragment of the larger precursor protein molecule from which oxytocin is derived by enzymatic cleavage.

Secretion of oxytocin from the neurosecretory nerve endings is regulated by the electrical activity of the oxytocin cells in the hypothalamus. These cells generate action potentials that propagate down axons to the nerve endings in the pituitary; the endings contain large numbers of oxytocin-containing vesicles, which are released by exocytosis when the nerve terminals are depolarised.

Non-neural sources

Endogenous oxytocin concentrations in the brain have been found to be as much as 1000-fold higher than peripheral levels.[29]

Outside the brain, oxytocin-containing cells have been identified in several diverse tissues, including in females in the corpus luteum[30][31] and the placenta;[32] in males in the testicles' interstitial cells of Leydig;[33] and in both sexes in the retina,[34] the adrenal medulla,[35] the thymus[36] and the pancreas.[37] The finding of significant amounts of this classically "neurohypophysial" hormone outside the central nervous system raises many questions regarding its possible importance in these different tissues.

Male

The Leydig cells in some species have been shown to possess the biosynthetic machinery to manufacture testicular oxytocin de novo, to be specific, in rats (which can synthesize vitamin C endogenously), and in guinea pigs, which, like humans, require an exogenous source of vitamin C (ascorbate) in their diets.[38]

Female

Oxytocin is synthesized by corpora lutea of several species, including ruminants and primates. Along with estrogen, it is involved in inducing the endometrial synthesis of prostaglandin F to cause regression of the corpus luteum.[39]

Evolution

Virtually all vertebrates have an oxytocin-like nonapeptide hormone that supports reproductive functions and a vasopressin-like nonapeptide hormone involved in water regulation. The two genes are usually located close to each other (less than 15,000 bases apart) on the same chromosome, and are transcribed in opposite directions (however, in fugu,[40] the homologs are further apart and transcribed in the same direction).

The two genes are believed to result from a gene duplication event; the ancestral gene is estimated to be about 500 million years old and is found in cyclostomata (modern members of the Agnatha).[41]

Biological function

Oxytocin has peripheral (hormonal) actions, and also has actions in the brain. Its actions are mediated by specific, oxytocin receptors. The oxytocin receptor is a G-protein-coupled receptor that requires magnesium and cholesterol. It belongs to the rhodopsin-type (class I) group of G-protein-coupled receptors.[citation needed]

Studies have looked at oxytocin's role in various behaviors, including orgasm, social recognition, pair bonding, anxiety, and maternal behaviors.[42]

Physiological

The peripheral actions of oxytocin mainly reflect secretion from the pituitary gland. The behavioral effects of oxytocin are thought to reflect release from centrally projecting oxytocin neurons, different from those that project to the pituitary gland, or that are collaterals from them.[27] Oxytocin receptors are expressed by neurons in many parts of the brain and spinal cord, including the amygdala, ventromedial hypothalamus, septum, nucleus accumbens, and brainstem.[citation needed]

  • Milk ejection reflex/Letdown reflex: in lactating (breastfeeding) mothers, oxytocin acts at the mammary glands, causing milk to be 'let down' into lactiferous ducts, from where it can be excreted via the nipple.[43] Suckling by the infant at the nipple is relayed by spinal nerves to the hypothalamus. The stimulation causes neurons that make oxytocin to fire action potentials in intermittent bursts; these bursts result in the secretion of pulses of oxytocin from the neurosecretory nerve terminals of the pituitary gland.
  • Uterine contraction: important for cervical dilation before birth, oxytocin causes contractions during the second and third stages of labor.[44] Oxytocin release during breastfeeding causes mild but often painful contractions during the first few weeks of lactation. This also serves to assist the uterus in clotting the placental attachment point postpartum. However, in knockout mice lacking the oxytocin receptor, reproductive behavior and parturition are normal.[45]
  • Due to its similarity to vasopressin, it can reduce the excretion of urine slightly. In several species, oxytocin can stimulate sodium excretion from the kidneys (natriuresis), and, in humans, high doses can result in low sodium levels (hyponatremia).
  • Cardiac effects: oxytocin and oxytocin receptors are also found in the heart in some rodents, and the hormone may play a role in the embryonal development of the heart by promoting cardiomyocyte differentiation.[46][47] However, the absence of either oxytocin or its receptor in knockout mice has not been reported to produce cardiac insufficiencies.[45]
  • Modulation of hypothalamic-pituitary-adrenal axis activity: oxytocin, under certain circumstances, indirectly inhibits release of adrenocorticotropic hormone and cortisol and, in those situations, may be considered an antagonist of vasopressin.[48]
  • Preparing fetal neurons for delivery: crossing the placenta, maternal oxytocin reaches the fetal brain and induces a switch in the action of neurotransmitter GABA from excitatory to inhibitory on fetal cortical neurons. This silences the fetal brain for the period of delivery and reduces its vulnerability to hypoxic damage.[49]
  • Feeding: a 2012 paper suggested that oxytocin neurons in the para-ventricular hypothalamus in the brain may play a key role in suppressing appetite under normal conditions and that other hypothalamic neurons may trigger eating via inhibition of these oxytocin neurons. This population of oxytocin neurons is absent in Prader-Willi syndrome, a genetic disorder that leads to uncontrollable feeding and obesity, and may play a key role in its pathophysiology.[50]

Psychological

  • Autism: Oxytocin has been implicated in the etiology of autism, with one report suggesting autism is correlated with genomic deletion of the chromosome containing the oxytocin receptor gene (OXTR). Studies involving Caucasian and Finnish samples and Chinese Han families provide support for the relationship of OXTR with autism.[51][52] Autism may also be associated with an aberrant methylation of OXTR.[51]

Bonding

In the prairie vole, oxytocin released into the brain of the female during sexual activity is important for forming a pair bond with her sexual partner. Vasopressin appears to have a similar effect in males.[53] Oxytocin has a role in social behaviors in many species, so it likely also does in humans. In a 2003 study, both humans and dog oxytocin levels in the blood rose after five to 24 minutes of a petting session. This possibly plays a role in the emotional bonding between humans and dogs.[54]

  • Maternal behavior: Female rats given oxytocin antagonists after giving birth do not exhibit typical maternal behavior.[55] By contrast, virgin female sheep show maternal behavior toward foreign lambs upon cerebrospinal fluid infusion of oxytocin, which they would not do otherwise.[56] Oxytocin is involved in the initiation of maternal behavior, not its maintenance; for example, it is higher in mothers after they interact with unfamiliar children rather than their own.[57]
  • Ingroup bonding: Oxytocin can increase positive attitudes, such as bonding, toward individuals with similar characteristics, who then become classified as "in-group" members, whereas individuals who are dissimilar become classified as "out-group" members. Race can be used as an example of in-group and out-group tendencies because society often categorizes individuals into groups based on race (Caucasian, African American, Latino, etc.). One study that examined race and empathy found that participants receiving nasally administered oxytocin had stronger reactions to pictures of in-group members making pained faces than to pictures of out-group members with the same expression.[58] This shows that oxytocin may be implicated in our ability to empathize with individuals of different races and could potentially translate into willingness to help individuals in pain or stressful situations. Moreover, individuals of one race may be more inclined to help individuals of the same race than individuals of another race when they are experiencing pain. Oxytocin has also been implicated in lying when lying would prove beneficial to other in-group members. In a study where such a relationship was examined, it was found that when individuals were administered oxytocin, rates of dishonesty in the participants' responses increased for their in-group members when a beneficial outcome for their group was expected.[59] Both of these examples show the tendency of individuals to act in ways that benefit those considered to be members of their social group, or in-group.

Oxytocin is not only correlated with the preferences of individuals to associate with members of their own group, but it is also evident during conflicts between members of different groups. During conflict, individuals receiving nasally administered oxytocin demonstrate more frequent defense-motivated responses toward in-group members than out-group members. Further, oxytocin was correlated with participant desire to protect vulnerable in-group members, despite that individual's attachment to the conflict.[60] Similarly, it has been demonstrated that when oxytocin is administered, individuals alter their subjective preferences in order to align with in-group ideals over out-group ideals.[61] These studies demonstrate that oxytocin is associated with intergroup dynamics. Further, oxytocin influences the responses of individuals in a particular group to those of another group. The in-group bias is evident in smaller groups; however, it can also be extended to groups as large as one's entire country leading toward a tendency of strong national zeal. A study done in the Netherlands showed that oxytocin increased the in-group favoritism of their nation while decreasing acceptance of members of other ethnicities and foreigners.[62] People also show more affection for their country's flag while remaining indifferent to other cultural objects when exposed to oxytocin.[63] It has thus been hypothesized that this hormone may be a factor in xenophobic tendencies secondary to this effect. Thus, oxytocin appears to affect individuals at an international level where the in-group becomes a specific "home" country and the out-group grows to include all other countries.

Drugs

  • Drug interaction: Impact on effects of alcohol and other drugs: According to several studies in animals, oxytocin inhibits the development of tolerance to various addictive drugs (opiates, cocaine, alcohol), and reduces withdrawal symptoms.[64] MDMA (ecstasy) may increase feelings of love, empathy, and connection to others by stimulating oxytocin activity primarily via activation of serotonin 5-HT1A receptors, if initial studies in animals apply to humans.[65] The anxiolytic Buspar (buspirone) may produce some of its effects via 5-HT1A receptor-induced oxytocin stimulation as well.[66][67]
  • Addiction vulnerability: Concentrations of endogenous oxytocin can impact the effects of various drugs and one's susceptibility to substance use disorders. Additionally, bilateral interactions with numerous systems, including the dopamine system, Hypothalamic–pituitary–adrenal axis and immune system, can impact development of dependence. The status of the endogenous oxytocin system might enhance or reduce susceptibility to addiction through its interaction with these systems. Individual differences in the endogenous oxytocin system based on genetic predisposition, gender and environmental influences, may therefore affect addiction vulnerability.[68] Oxytocin may be related to the place conditioning behaviors observed in habitual drug abusers.

Fear and anxiety

Oxytocin is typically remembered for the effect it has on prosocial behaviors, such as its role in facilitating trust and attachment between individuals. Consequently, oxytocin is often referred to as the “love hormone".[69][qualify evidence] However, oxytocin has a more complex role than solely enhancing prosocial behaviors. There is consensus that oxytocin modulates fear and anxiety; that is, it does not directly elicit fear or anxiety.[70] Two dominant theories explain the role of oxytocin in fear and anxiety. One theory states that oxytocin increases approach/avoidance to certain social stimuli and the second theory states that oxytocin increases the salience of certain social stimuli, causing the animal or human to pay closer attention to socially relevant stimuli.[71]

Nasally administered oxytocin has been reported to reduce fear, possibly by inhibiting the amygdala (which is thought to be responsible for fear responses).[72] Indeed, studies in rodents have shown oxytocin can efficiently inhibit fear responses by activating an inhibitory circuit within the amygdala.[73][74] Some researchers have argued oxytocin has a general enhancing effect on all social emotions, since intranasal administration of oxytocin also increases envy and Schadenfreude.[75] Individuals who receive an intranasal dose of oxytocin identify facial expressions of disgust more quickly than individuals who do not receive oxytocin.[71][qualify evidence] Facial expressions of disgust are evolutionarily linked to the idea of contagion. Thus, oxytocin increases the salience of cues that imply contamination, which leads to a faster response because these cues are especially relevant for survival. In another study, after administration of oxytocin, individuals displayed an enhanced ability to recognize expressions of fear compared to the individuals who received the placebo.[76] Oxytocin modulates fear responses by enhancing the maintenance of social memories. Rats that are genetically modified to have a surplus of oxytocin receptors display a greater fear response to a previously conditioned stressor. Oxytocin enhances the aversive social memory, leading the rat to display a greater fear response when the aversive stimulus is encountered again.[70]

Mood and depression

Oxytocin produces antidepressant-like effects in animal models of depression,[77] and a deficit of it may be involved in the pathophysiology of depression in humans.[78] The antidepressant-like effects of oxytocin are not blocked by a selective antagonist of the oxytocin receptor, suggesting that these effects are not mediated by the oxytocin receptor.[13] In accordance, unlike oxytocin, the selective non-peptide oxytocin receptor agonist WAY-267,464 does not produce antidepressant-like effects, at least in the tail suspension test.[79] In contrast to WAY-267,464, carbetocin, a close analogue of oxytocin and peptide oxytocin receptor agonist, notably does produce antidepressant-like effects in animals.[79] As such, the antidepressant-like effects of oxytocin may be mediated by modulation of a different target, perhaps the vasopressin V1A receptor where oxytocin is known to weakly bind as an agonist.[80][81]

Sildenafil has been found to enhance electrically evoked oxytocin release from the pituitary gland.[77][qualify evidence] In accordance, the drug shows oxytocin-dependent antidepressant-like effects in animals, and it has proposed that sildenafil may hold promise as a potential antidepressant in humans.[77]

Sex differences

It has been shown that oxytocin differentially affects males and females. Females who are administered oxytocin are overall faster in responding to socially relevant stimuli than males who received oxytocin.[71][82] Additionally, after the administration of oxytocin, females show increased amygdala activity in response to threatening scenes; however, males do not show increased amygdala activation. This phenomenon can be explained by looking at the role of gonadal hormones, specifically estrogen, which modulate the enhanced threat processing seen in females. Estrogen has been shown to stimulate the release of oxytocin from the hypothalamus and promote receptor binding in the amygdala.[82]

It has also been shown that testosterone directly suppresses oxytocin in mice.[83] This has been hypothesized to have evolutionary significance. With oxytocin suppressed, activities such as hunting and attacking invaders would be less mentally difficult as oxytocin is strongly associated with empathy.[84]

Social

  • Affecting generosity by increasing empathy during perspective taking: In a neuroeconomics experiment, intranasal oxytocin increased generosity in the Ultimatum Game by 80%, but had no effect in the Dictator Game that measures altruism. Perspective-taking is not required in the Dictator Game, but the researchers in this experiment explicitly induced perspective-taking in the Ultimatum Game by not identifying to participants into which role they would be placed.[85] Serious methodological questions have arisen, however, with regard to the role of oxytocin in trust and generosity.[86] Empathy in healthy males has been shown to be increased after intranasal oxytocin[84][87] This is most likely due to the effect of oxytocin in enhancing eye gaze.[88] There is some discussion about which aspect of empathy oxytocin might alter – for example, cognitive vs. emotional empathy.[89] While studying wild chimpanzees, it was noted that after a chimpanzee shared food with a non-kin related chimpanzee, the subjects' levels of oxytocin increased, as measured through their urine. In comparison to other cooperative activities between chimpanzees that were monitored including grooming, food sharing generated higher levels of oxytocin. This comparatively higher level of oxytocin after food sharing parallels the increased level of oxytocin in nursing mothers, sharing nutrients with their kin.[90]
  • Trust is increased by oxytocin.[91][92][93] Disclosure of emotional events is a sign of trust in humans. When recounting a negative event, humans who receive intranasal oxytocin share more emotional details and stories with more emotional significance.[92] Humans also find faces more trustworthy after receiving intranasal oxytocin. In a study, participants who received intranasal oxytocin viewed photographs of human faces with neutral expressions and found them to be more trustworthy than those who did not receive oxytocin.[91] This may be because oxytocin reduces the fear of social betrayal in humans.[94] Even after experiencing social alienation by being excluded from a conversation, humans who received oxytocin scored higher in trust on the Revised NEO Personality Inventory.[93] Moreover, in a risky investment game, experimental subjects given nasally administered oxytocin displayed "the highest level of trust" twice as often as the control group. Subjects who were told they were interacting with a computer showed no such reaction, leading to the conclusion that oxytocin was not merely affecting risk aversion.[95] When there is a reason to be distrustful, such as experiencing betrayal, differing reactions are associated with oxytocin receptor gene (OXTR) differences. Those with the CT haplotype experience a stronger reaction, in the form of anger, to betrayal.[96]
  • Romantic attachment: In some studies, high levels of plasma oxytocin have been correlated with romantic attachment. For example, if a couple is separated for a long period of time, anxiety can increase due to the lack of physical affection. Oxytocin may aid romantically attached couples by decreasing their feelings of anxiety when they are separated.[97]
  • Group-serving dishonesty/deception: In a carefully controlled study exploring the biological roots of immoral behavior, oxytocin was shown to promote dishonesty when the outcome favored the group to which an individual belonged instead of just the individual.[98]
  • Sexual activity: The relationship between oxytocin and human sexual response is unclear. At least two uncontrolled studies have found increases in plasma oxytocin at orgasm – in both men and women.[99][100] Plasma oxytocin levels are notably increased around the time of self-stimulated orgasm and are still higher than baseline when measured five minutes after self arousal.[99] The authors of one of these studies speculated that oxytocin's effects on muscle contractibility may facilitate sperm and egg transport.[99]
In a study measuring oxytocin serum levels in women before and after sexual stimulation, the author suggests it serves an important role in sexual arousal. This study found genital tract stimulation resulted in increased oxytocin immediately after orgasm.[101] Another study reported increases of oxytocin during sexual arousal could be in response to nipple/areola, genital, and/or genital tract stimulation as confirmed in other mammals.[102] Murphy et al. (1987), studying men, found oxytocin levels were raised throughout sexual arousal with no acute increase at orgasm.[103] A more recent study of men found an increase in plasma oxytocin immediately after orgasm, but only in a portion of their sample that did not reach statistical significance. The authors noted these changes "may simply reflect contractile properties on reproductive tissue".[104]
  • Oxytocin affects social distance between adult males and females, and may be responsible at least in part for romantic attraction and subsequent monogamous pair bonding. An oxytocin nasal spray caused men in a monogamous relationship, but not single men, to increase the distance between themselves and an attractive woman during a first encounter by 10 to 15 centimeters. The researchers suggested that oxytocin may help promote fidelity within monogamous relationships.[105] For this reason, it is sometimes referred to as the "bonding hormone". There is some evidence that oxytocin promotes ethnocentric behavior, incorporating the trust and empathy of in-groups with their suspicion and rejection of outsiders.[62] Furthermore, genetic differences in the oxytocin receptor gene (OXTR) have been associated with maladaptive social traits such as aggressive behavior.[106]
  • Social behavior[62][107] and wound healing: Oxytocin is also thought to modulate inflammation by decreasing certain cytokines. Thus, the increased release in oxytocin following positive social interactions has the potential to improve wound healing. A study by Marazziti and colleagues used heterosexual couples to investigate this possibility. They found increases in plasma oxytocin following a social interaction were correlated with faster wound healing. They hypothesized this was due to oxytocin reducing inflammation, thus allowing the wound to heal more quickly. This study provides preliminary evidence that positive social interactions may directly influence aspects of health.[108] According to a study published in 2014, silencing of oxytocin receptor interneurons in the medial prefrontal cortex (mPFC) of female mice resulted in loss of social interest in male mice during the sexually receptive phase of the estrous cycle.[109] Oxytocin evokes feelings of contentment, reductions in anxiety, and feelings of calmness and security when in the company of the mate.[97] This suggests oxytocin may be important for the inhibition of the brain regions associated with behavioral control, fear, and anxiety, thus allowing orgasm to occur. Research has also demonstrated that oxytocin can decrease anxiety and protect against stress, particularly in combination with social support.[110] It is found, that endocannabinoid signaling mediates oxytocin-driven social reward.[111]

Chemistry

File:Oxytocin-neurophysin.png
Oxytocin (ball-and-stick) bound to its carrier protein neurophysin (ribbons)

Oxytocin is a peptide of nine amino acids (a nonapeptide) in the sequence cysteine-tyrosine-isoleucine-glutamine-asparagine-cysteine-proline-leucine-glycine-amide (Cys – Tyr – Ile – Gln – Asn – Cys – Pro – Leu – Gly – NH2, or CYIQNCPLG-NH2); its C-terminus has been converted to a primary amide and a disulfide bridge joins the cysteine moieties.[112] Oxytocin has a molecular mass of 1007 Da, and one international unit (IU) of oxytocin is the equivalent of 1.68 μg of pure peptide.[113]

While the structure of oxytocin is highly conserved in placental mammals, a novel structure of oxytocin was recently reported in marmosets, tamarins, and other new world primates. Genomic sequencing of the gene for oxytocin revealed a single in-frame mutation (thymine for cytosine) which results in a single amino acid substitution at the 8-position (proline for leucine).[114] Since this original Lee et al. paper, two other laboratories have confirmed Pro8-OT and documented additional oxytocin structural variants in this primate taxon. Vargas-Pinilla et al. sequenced the coding regions of the OXT gene in other genera in new world primates and identified the following variants in addition to Leu8- and Pro8-OT: Ala8-OT, Thr8-OT, and Val3/Pro8-OT.[115] Ren et al. identified a variant further, Phe2-OT in howler monkeys.[116]

The biologically active form of oxytocin, commonly measured by RIA and/or HPLC techniques, is also known as the octapeptide "oxytocin disulfide" (oxidized form), but oxytocin also exists as a reduced straight-chain (non-cyclic) dithiol nonapeptide called oxytoceine.[117] It has been theorized that oxytoceine may act as a free radical scavenger, as donating an electron to a free radical allows oxytoceine to be re-oxidized to oxytocin via the dehydroascorbate / ascorbate redox couple.[118]

The structure of oxytocin is very similar to that of vasopressin. Both are nonapeptides with a single disulfide bridge, differing only by two substitutions in the amino acid sequence (differences from oxytocin bolded for clarity): Cys – Tyr – Phe – Gln – Asn – Cys – Pro – Arg – Gly – NH2.[112] A table showing the sequences of members of the vasopressin/oxytocin superfamily and the species expressing them is present in the vasopressin article. Oxytocin and vasopressin were isolated and their total synthesis reported in 1954,[119] work for which Vincent du Vigneaud was awarded the 1955 Nobel Prize in Chemistry with the citation: "for his work on biochemically important sulphur compounds, especially for the first synthesis of a polypeptide hormone."[120]

Oxytocin and vasopressin are the only known hormones released by the human posterior pituitary gland to act at a distance. However, oxytocin neurons make other peptides, including corticotropin-releasing hormone and dynorphin, for example, that act locally. The magnocellular neurosecretory cells that make oxytocin are adjacent to magnocellular neurosecretory cells that make vasopressin. These are large neuroendocrine neurons which are excitable and can generate action potentials.[121]

History

The uterine-contracting properties of the principle that would later be named oxytocin were discovered by British pharmacologist Sir Henry Hallett Dale in 1906,[122][42] and its milk ejection property was described by Ott and Scott in 1910[123] and by Schafer and Mackenzie in 1911.[124] In the 1920s, oxytocin and vasopressin were isolated from pituitary tissue and given their current names. The word oxytocin was coined from the term oxytocic, Greek ὀξύς, oxys, and τοκετός , toketos, meaning "quick birth".

Oxytocin became the first polypeptide hormone to be sequenced[125] or synthesized.[126][127][128] Du Vigneaud was awarded the Nobel Prize in 1955 for his work.[129]

References

  1. Weisman O, Zagoory-Sharon O, Feldman R (2012). "Intranasal oxytocin administration is reflected in human saliva". Psychoneuroendocrinology. 37 (9): 1582–6. doi:10.1016/j.psyneuen.2012.02.014. PMID 22436536.
  2. Huffmeijer R, Alink LR, Tops M, Grewen KM, Light KC, Bakermans-Kranenburg MJ, Ijzendoorn MH (2012). "Salivary levels of oxytocin remain elevated for more than two hours after intranasal oxytocin administration". Neuro Endocrinology Letters. 33 (1): 21–5. PMID 22467107.
  3. Gray's Anatomy: The Anatomical Basis of Clinical Practice (41 ed.). Elsevier Health Sciences. 2015. p. 358. ISBN 978-0-7020-6851-5.
  4. Yang HP, Wang L, Han L, Wang SC (2013). "Nonsocial functions of hypothalamic oxytocin". ISRN Neuroscience. 2013: 179272. doi:10.1155/2013/179272. PMC 4045544. PMID 24967304.
  5. 5.0 5.1 Chiras DD (2012). Human Biology (7th ed.). Sudbury, MA: Jones & Bartlett Learning. p. 262. ISBN 978-0-7637-8345-7.
  6. Human Evolutionary Biology. Cambridge University Press. 2010. p. 282. ISBN 978-1-139-78900-4.
  7. Dale, H. H (1906). "On some physiological actions of ergot". The Journal of Physiology. 34 (3): 163–206. doi:10.1113/jphysiol.1906.sp001148. PMC 1465771. PMID 16992821.
  8. Corey E (2012). "Oxytocin". Molecules and Medicine. John Wiley & Sons. ISBN 978-1-118-36173-3.
  9. "Oxytocin: Summary". IUPHAR/BPS guide to pharmacology. International Union of Basic and Clinical Pharmacology. Retrieved 14 December 2016. Endogenous oxytocin is a hormone and neuropeptide, which plays a role in social bonding, sexual reproduction and is required during and after childbirth. Purified oxytocin is used clinically.
  10. "Oxytocin". The American Society of Health-System Pharmacists. Retrieved 1 June 2015.
  11. The Oxford Handbook of Prosocial Behavior. Oxford University Press. 2015. p. 354. ISBN 978-0-19-539981-3.
  12. Goldstein I, Meston CM, Davis S, Traish A (17 November 2005). Women's Sexual Function and Dysfunction: Study, Diagnosis and Treatment. CRC Press. pp. 205–. ISBN 978-1-84214-263-9.
  13. 13.0 13.1 Acevedo-Rodriguez A, Mani SK, Handa RJ (2015). "Oxytocin and Estrogen Receptor β in the Brain: An Overview". Frontiers in Endocrinology. 6: 160. doi:10.3389/fendo.2015.00160. PMC 4606117. PMID 26528239.
  14. Sausville E, Carney D, Battey J (August 1985). "The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line". The Journal of Biological Chemistry. 260 (18): 10236–41. PMID 2991279.
  15. Repaske DR, Phillips JA, Kirby LT, Tze WJ, D'Ercole AJ, Battey J (March 1990). "Molecular analysis of autosomal dominant neurohypophyseal diabetes insipidus". The Journal of Clinical Endocrinology and Metabolism. 70 (3): 752–7. doi:10.1210/jcem-70-3-752. PMID 1968469.
  16. Summar ML, Phillips JA, Battey J, Castiglione CM, Kidd KK, Maness KJ, Weiffenbach B, Gravius TC (June 1990). "Linkage relationships of human arginine vasopressin-neurophysin-II and oxytocin-neurophysin-I to prodynorphin and other loci on chromosome 20". Molecular Endocrinology. 4 (6): 947–50. doi:10.1210/mend-4-6-947. PMID 1978246.
  17. Brownstein MJ, Russell JT, Gainer H (January 1980). "Synthesis, transport, and release of posterior pituitary hormones". Science. 207 (4429): 373–8. Bibcode:1980Sci...207..373B. doi:10.1126/science.6153132. PMID 6153132.
  18. Sheldrick EL, Flint AP (July 1989). "Post-translational processing of oxytocin-neurophysin prohormone in the ovine corpus luteum: activity of peptidyl glycine alpha-amidating mono-oxygenase and concentrations of its cofactor, ascorbic acid". The Journal of Endocrinology. 122 (1): 313–22. doi:10.1677/joe.0.1220313. PMID 2769155.
  19. Luck MR, Jungclas B (September 1987). "Catecholamines and ascorbic acid as stimulators of bovine ovarian oxytocin secretion". The Journal of Endocrinology. 114 (3): 423–30. doi:10.1677/joe.0.1140423. PMID 3668432.
  20. Hornig D (September 1975). "Distribution of ascorbic acid, metabolites and analogues in man and animals". Annals of the New York Academy of Sciences. 258: 103–18. Bibcode:1975NYASA.258..103H. doi:10.1111/j.1749-6632.1975.tb29271.x. PMID 1106295.
  21. 21.0 21.1 Tsujimoto M, Hattori A (August 2005). "The oxytocinase subfamily of M1 aminopeptidases". Biochimica et Biophysica Acta. 1751 (1): 9–18. doi:10.1016/j.bbapap.2004.09.011. PMID 16054015.
  22. Nomura S, Ito T, Yamamoto E, Sumigama S, Iwase A, Okada M, Shibata K, Ando H, Ino K, Kikkawa F, Mizutani S (August 2005). "Gene regulation and physiological function of placental leucine aminopeptidase/oxytocinase during pregnancy". Biochimica et Biophysica Acta. 1751 (1): 19–25. doi:10.1016/j.bbapap.2005.04.006. PMID 15894523.
  23. 23.0 23.1 Mizutani S, Yokosawa H, Tomoda Y (July 1992). "Degradation of oxytocin by the human placenta: effect of selective inhibitors". Acta Endocrinologica. 127 (1): 76–80. doi:10.1530/acta.0.1270076. PMID 1355623.
  24. Meisenberg G, Simmons WH (1984). "Amastatin potentiates the behavioral effects of vasopressin and oxytocin in mice". Peptides. 5 (3): 535–9. doi:10.1016/0196-9781(84)90083-4. PMID 6540873.
  25. Stancampiano R, Melis MR, Argiolas A (1991). "Proteolytic conversion of oxytocin by brain synaptic membranes: role of aminopeptidases and endopeptidases". Peptides. 12 (5): 1119–25. doi:10.1016/0196-9781(91)90068-z. PMID 1800950.
  26. Itoh C, Watanabe M, Nagamatsu A, Soeda S, Kawarabayashi T, Shimeno H (January 1997). "Two molecular species of oxytocinase (L-cystine aminopeptidase) in human placenta: purification and characterization". Biological & Pharmaceutical Bulletin. 20 (1): 20–4. doi:10.1248/bpb.20.20. PMID 9013800.
  27. 27.0 27.1 27.2 Ross HE, Cole CD, Smith Y, Neumann ID, Landgraf R, Murphy AZ, Young LJ (September 2009). "Characterization of the oxytocin system regulating affiliative behavior in female prairie voles". Neuroscience. 162 (4): 892–903. doi:10.1016/j.neuroscience.2009.05.055. PMC 2744157. PMID 19482070.
  28. Landgraf R, Neumann ID (2004). "Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication". Frontiers in Neuroendocrinology. 25 (3–4): 150–76. doi:10.1016/j.yfrne.2004.05.001. PMID 15589267.
  29. Baribeau DA, Anagnostou E (2015). "Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neurocircuits". Frontiers in Neuroscience. 9: 335. doi:10.3389/fnins.2015.00335. PMC 4585313. PMID 26441508.
  30. Wathes DC, Swann RW (May 1982). "Is oxytocin an ovarian hormone?". Nature. 297 (5863): 225–7. Bibcode:1982Natur.297..225W. doi:10.1038/297225a0. PMID 7078636.
  31. Wathes DC, Swann RW, Pickering BT, Porter DG, Hull MG, Drife JO (August 1982). "Neurohypophysial hormones in the human ovary". Lancet. 2 (8295): 410–2. doi:10.1016/S0140-6736(82)90441-X. PMID 6124806.
  32. Fields PA, Eldridge RK, Fuchs AR, Roberts RF, Fields MJ (April 1983). "Human placental and bovine corpora luteal oxytocin". Endocrinology. 112 (4): 1544–6. doi:10.1210/endo-112-4-1544. PMID 6832059.
  33. Guldenaar SE, Pickering BT (1985). "Immunocytochemical evidence for the presence of oxytocin in rat testis". Cell and Tissue Research. 240 (2): 485–7. doi:10.1007/BF00222364. PMID 3995564.
  34. Gauquelin G, Geelen G, Louis F, Allevard AM, Meunier C, Cuisinaud G, Benjanet S, Seidah NG, Chretien M, Legros JJ (1983). "Presence of vasopressin, oxytocin and neurophysin in the retina of mammals, effect of light and darkness, comparison with the neuropeptide content of the neurohypophysis and the pineal gland". Peptides. 4 (4): 509–15. doi:10.1016/0196-9781(83)90056-6. PMID 6647119.
  35. Ang VT, Jenkins JS (April 1984). "Neurohypophysial hormones in the adrenal medulla". The Journal of Clinical Endocrinology and Metabolism. 58 (4): 688–91. doi:10.1210/jcem-58-4-688. PMID 6699132.
  36. Geenen V, Legros JJ, Franchimont P, Baudrihaye M, Defresne MP, Boniver J (April 1986). "The neuroendocrine thymus: coexistence of oxytocin and neurophysin in the human thymus". Science. 232 (4749): 508–11. Bibcode:1986Sci...232..508G. doi:10.1126/science.3961493. PMID 3961493.
  37. Amico JA, Finn FM, Haldar J (November 1988). "Oxytocin and vasopressin are present in human and rat pancreas". The American Journal of the Medical Sciences. 296 (5): 303–7. doi:10.1097/00000441-198811000-00003. PMID 3195625.
  38. Kukucka MA, Misra HP (1992). "HPLC determination of an oxytocin-like peptide produced by isolated guinea pig Leydig cells: stimulation by ascorbate". Archives of Andrology. 29 (2): 185–90. doi:10.3109/01485019208987723. PMID 1456839.
  39. http://www.journalofdairyscience.org/article/S0739-7240(02)00161-3/fulltext
  40. Venkatesh B, Si-Hoe SL, Murphy D, Brenner S (November 1997). "Transgenic rats reveal functional conservation of regulatory controls between the Fugu isotocin and rat oxytocin genes". Proceedings of the National Academy of Sciences of the United States of America. 94 (23): 12462–6. Bibcode:1997PNAS...9412462V. doi:10.1073/pnas.94.23.12462. PMC 25001. PMID 9356472.
  41. Gimpl G, Fahrenholz F (April 2001). "The oxytocin receptor system: structure, function, and regulation". Physiological Reviews. 81 (2): 629–83. doi:10.1152/physrev.2001.81.2.629. PMID 11274341.
  42. 42.0 42.1 Lee HJ, Macbeth AH, Pagani JH, Young WS (June 2009). "Oxytocin: the great facilitator of life". Progress in Neurobiology. 88 (2): 127–51. doi:10.1016/j.pneurobio.2009.04.001. PMC 2689929. PMID 19482229.
  43. Human Milk and Lactation at eMedicine
  44. MacGill M. "What is oxytocin, and what does it do?". Medical News Today. Heath Line Media. Retrieved March 29, 2017.
  45. 45.0 45.1 Takayanagi Y, Yoshida M, Bielsky IF, Ross HE, Kawamata M, Onaka T, Yanagisawa T, Kimura T, Matzuk MM, Young LJ, Nishimori K (November 2005). "Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice". Proceedings of the National Academy of Sciences of the United States of America. 102 (44): 16096–101. Bibcode:2005PNAS..10216096T. doi:10.1073/pnas.0505312102. PMC 1276060. PMID 16249339.
  46. Paquin J, Danalache BA, Jankowski M, McCann SM, Gutkowska J (July 2002). "Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes". Proceedings of the National Academy of Sciences of the United States of America. 99 (14): 9550–5. Bibcode:2002PNAS...99.9550P. doi:10.1073/pnas.152302499. PMC 123178. PMID 12093924.
  47. Jankowski M, Danalache B, Wang D, Bhat P, Hajjar F, Marcinkiewicz M, Paquin J, McCann SM, Gutkowska J (August 2004). "Oxytocin in cardiac ontogeny". Proceedings of the National Academy of Sciences of the United States of America. 101 (35): 13074–9. Bibcode:2004PNAS..10113074J. doi:10.1073/pnas.0405324101. PMC 516519. PMID 15316117.
  48. Hartwig W (1989). Endokrynologia praktyczna. Warsaw: Państwowy Zakład Wydawnictw Lekarskich. ISBN 83-200-1415-8.[page needed]
  49. Tyzio R, Cossart R, Khalilov I, Minlebaev M, Hübner CA, Represa A, Ben-Ari Y, Khazipov R (December 2006). "Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery". Science. 314 (5806): 1788–92. Bibcode:2006Sci...314.1788T. doi:10.1126/science.1133212. PMID 17170309.
  50. Atasoy D, Betley JN, Su HH, Sternson SM (August 2012). "Deconstruction of a neural circuit for hunger". Nature. 488 (7410): 172–7. Bibcode:2012Natur.488..172A. doi:10.1038/nature11270. PMC 3416931. PMID 22801496.
  51. 51.0 51.1 Jacob S, Brune CW, Carter CS, Leventhal BL, Lord C, Cook EH (April 2007). "Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism". Neuroscience Letters. 417 (1): 6–9. doi:10.1016/j.neulet.2007.02.001. PMC 2705963. PMID 17383819.
  52. Wermter AK, Kamp-Becker I, Hesse P, Schulte-Körne G, Strauch K, Remschmidt H (March 2010). "Evidence for the involvement of genetic variation in the oxytocin receptor gene (OXTR) in the etiology of autistic disorders on high-functioning level". American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics. 153B (2): 629–39. doi:10.1002/ajmg.b.31032. PMID 19777562.
  53. Vacek, Marla (2002). "High on Fidelity: What can voles teach us about monogamy?". American Scientist. Archived from the original on October 15, 2006.
  54. Odendaal JS, Meintjes RA (2003). "Neurophysiological correlates of affiliative behaviour between humans and dogs". Veterinary Journal (London, England : 1997). 165 (3): 296–301. doi:10.1016/S1090-0233(02)00237-X. PMID 12672376.
  55. van Leengoed E, Kerker E, Swanson HH (February 1987). "Inhibition of post-partum maternal behaviour in the rat by injecting an oxytocin antagonist into the cerebral ventricles". The Journal of Endocrinology. 112 (2): 275–82. doi:10.1677/joe.0.1120275. PMID 3819639.
  56. Kendrick KM (2004-01-01). "The Neurobiology of Social Bonds". British Society for Neuroendocrinology. Archived from the original on 2009-04-29. Retrieved 2009-04-13.
  57. Bick J, Dozier M (January 2010). "Mothers' and Children's Concentrations of Oxytocin Following Close, Physical Interactions with Biological and Non-biological Children". Developmental Psychobiology. 52 (1): 100–107. doi:10.1002/dev.20411. PMC 2953948. PMID 20953313.
  58. Sheng F, Liu Y, Zhou B, Zhou W, Han S (February 2013). "Oxytocin modulates the racial bias in neural responses to others' suffering". Biological Psychology. 92 (2): 380–6. doi:10.1016/j.biopsycho.2012.11.018. PMID 23246533.
  59. Shalvi S, De Dreu CK (April 2014). "Oxytocin promotes group-serving dishonesty". Proceedings of the National Academy of Sciences of the United States of America. 111 (15): 5503–7. Bibcode:2014PNAS..111.5503S. doi:10.1073/pnas.1400724111. PMC 3992689. PMID 24706799.
  60. De Dreu CK, Shalvi S, Greer LL, Van Kleef GA, Handgraaf MJ (2012). "Oxytocin motivates non-cooperation in intergroup conflict to protect vulnerable in-group members". PLOS One. 7 (11): e46751. Bibcode:2012PLoSO...746751D. doi:10.1371/journal.pone.0046751. PMC 3492361. PMID 23144787.
  61. Stallen M, De Dreu CK, Shalvi S, Smidts A, Sanfey AG (2012). "The herding hormone: oxytocin stimulates in-group conformity". Psychological Science. 23 (11): 1288–92. doi:10.1177/0956797612446026. PMID 22991128.
  62. 62.0 62.1 62.2 De Dreu CK, Greer LL, Van Kleef GA, Shalvi S, Handgraaf MJ (January 2011). "Oxytocin promotes human ethnocentrism". Proceedings of the National Academy of Sciences of the United States of America. 108 (4): 1262–6. Bibcode:2011PNAS..108.1262D. doi:10.1073/pnas.1015316108. PMC 3029708. PMID 21220339.
  63. Ma X, Luo L, Geng Y, Zhao W, Zhang Q, Kendrick KM (2014). "Oxytocin increases liking for a country's people and national flag but not for other cultural symbols or consumer products". Frontiers in Behavioral Neuroscience. 8: 266. doi:10.3389/fnbeh.2014.00266. PMC 4122242. PMID 25140135.
  64. Kovács GL, Sarnyai Z, Szabó G (November 1998). "Oxytocin and addiction: a review". Psychoneuroendocrinology. 23 (8): 945–62. doi:10.1016/S0306-4530(98)00064-X. PMID 9924746.
  65. Thompson MR, Callaghan PD, Hunt GE, Cornish JL, McGregor IS (May 2007). "A role for oxytocin and 5-HT(1A) receptors in the prosocial effects of 3,4 methylenedioxymethamphetamine ("ecstasy")". Neuroscience. 146 (2): 509–14. doi:10.1016/j.neuroscience.2007.02.032. PMID 17383105.
  66. Uvnäs-Moberg K, Hillegaart V, Alster P, Ahlenius S (1996). "Effects of 5-HT agonists, selective for different receptor subtypes, on oxytocin, CCK, gastrin and somatostatin plasma levels in the rat". Neuropharmacology. 35 (11): 1635–40. doi:10.1016/S0028-3908(96)00078-0. PMID 9025112.
  67. Chiodera P, Volpi R, Capretti L, Caffarri G, Magotti MG, Coiro V (April 1996). "Different effects of the serotonergic agonists buspirone and sumatriptan on the posterior pituitary hormonal responses to hypoglycemia in humans". Neuropeptides. 30 (2): 187–92. doi:10.1016/S0143-4179(96)90086-4. PMID 8771561.
  68. Buisman-Pijlman FT, Sumracki NM, Gordon JJ, Hull PR, Carter CS, Tops M (April 2014). "Individual differences underlying susceptibility to addiction: Role for the endogenous oxytocin system". Pharmacology Biochemistry and Behavior. 119: 22–38. doi:10.1016/j.pbb.2013.09.005. PMID 24056025.
  69. Grillon C, Krimsky M, Charney DR, Vytal K, Ernst M, Cornwell B (September 2013). "Oxytocin increases anxiety to unpredictable threat". Molecular Psychiatry. 18 (9): 958–60. doi:10.1038/mp.2012.156. PMC 3930442. PMID 23147382.
  70. 70.0 70.1 Guzmán YF, Tronson NC, Jovasevic V, Sato K, Guedea AL, Mizukami H, Nishimori K, Radulovic J (September 2013). "Fear-enhancing effects of septal oxytocin receptors". Nature Neuroscience. 16 (9): 1185–7. doi:10.1038/nn.3465. PMC 3758455. PMID 23872596.
  71. 71.0 71.1 71.2 Theodoridou A, Penton-Voak IS, Rowe AC (2013). "A direct examination of the effect of intranasal administration of oxytocin on approach-avoidance motor responses to emotional stimuli". PLOS One. 8 (2): e58113. Bibcode:2013PLoSO...858113T. doi:10.1371/journal.pone.0058113. PMC 3585234. PMID 23469148.
  72. Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, Siddhanti S, Gruppe H, Mattay VS, Gallhofer B, Meyer-Lindenberg A (December 2005). "Oxytocin modulates neural circuitry for social cognition and fear in humans". The Journal of Neuroscience. 25 (49): 11489–93. doi:10.1523/JNEUROSCI.3984-05.2005. PMID 16339042.
  73. Huber D, Veinante P, Stoop R (April 2005). "Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala". Science. 308 (5719): 245–8. Bibcode:2005Sci...308..245H. doi:10.1126/SCIENCE.1105636. PMID 15821089.
  74. Viviani D, Charlet A, van den Burg E, Robinet C, Hurni N, Abatis M, Magara F, Stoop R (July 2011). "Oxytocin selectively gates fear responses through distinct outputs from the central amygdala". Science. 333 (6038): 104–7. Bibcode:2011Sci...333..104V. doi:10.1126/SCIENCE.1201043. PMID 21719680.
  75. Shamay-Tsoory SG, Fischer M, Dvash J, Harari H, Perach-Bloom N, Levkovitz Y (November 2009). "Intranasal administration of oxytocin increases envy and schadenfreude (gloating)". Biological Psychiatry. 66 (9): 864–70. doi:10.1016/j.biopsych.2009.06.009. PMID 19640508.
  76. Fischer-Shofty M, Shamay-Tsoory SG, Harari H, Levkovitz Y (January 2010). "The effect of intranasal administration of oxytocin on fear recognition". Neuropsychologia. 48 (1): 179–84. doi:10.1016/j.neuropsychologia.2009.09.003. PMID 19747930.
  77. 77.0 77.1 77.2 Matsuzaki M, Matsushita H, Tomizawa K, Matsui H (November 2012). "Oxytocin: a therapeutic target for mental disorders". The Journal of Physiological Sciences. 62 (6): 441–4. doi:10.1007/s12576-012-0232-9. PMID 23007624.
  78. McQuaid RJ, McInnis OA, Abizaid A, Anisman H (September 2014). "Making room for oxytocin in understanding depression". Neuroscience and Biobehavioral Reviews. 45: 305–22. doi:10.1016/j.neubiorev.2014.07.005. PMID 25025656.
  79. 79.0 79.1 Shalev I, Ebstein RP (11 February 2015). Social Hormones and Human Behavior: What Do We Know and Where Do We Go from Here. Frontiers Media SA. pp. 51–. ISBN 978-2-88919-407-0.
  80. Hicks C, Ramos L, Reekie T, Misagh GH, Narlawar R, Kassiou M, McGregor IS (June 2014). "Body temperature and cardiac changes induced by peripherally administered oxytocin, vasopressin and the non-peptide oxytocin receptor agonist WAY 267,464: a biotelemetry study in rats". British Journal of Pharmacology. 171 (11): 2868–87. doi:10.1111/bph.12613. PMC 4243861. PMID 24641248.
  81. Manning M, Misicka A, Olma A, Bankowski K, Stoev S, Chini B, Durroux T, Mouillac B, Corbani M, Guillon G (April 2012). "Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics". Journal of Neuroendocrinology. 24 (4): 609–28. doi:10.1111/j.1365-2826.2012.02303.x. PMC 3490377. PMID 22375852.
  82. 82.0 82.1 Lischke A, Gamer M, Berger C, Grossmann A, Hauenstein K, Heinrichs M, Herpertz SC, Domes G (September 2012). "Oxytocin increases amygdala reactivity to threatening scenes in females". Psychoneuroendocrinology. 37 (9): 1431–8. doi:10.1016/j.psyneuen.2012.01.011. PMID 22365820.
  83. Okabe S, Kitano K, Nagasawa M, Mogi K, Kikusui T (June 2013). "Testosterone inhibits facilitating effects of parenting experience on parental behavior and the oxytocin neural system in mice". Physiology & Behavior. 118: 159–64. doi:10.1016/j.physbeh.2013.05.017. PMID 23685236.
  84. 84.0 84.1 Hurlemann R, Patin A, Onur OA, Cohen MX, Baumgartner T, Metzler S, Dziobek I, Gallinat J, Wagner M, Maier W, Kendrick KM (April 2010). "Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans". The Journal of Neuroscience. 30 (14): 4999–5007. doi:10.1523/JNEUROSCI.5538-09.2010. PMID 20371820.
  85. Zak PJ, Stanton AA, Ahmadi S (November 2007). Brosnan S, ed. "Oxytocin increases generosity in humans". PLOS One. 2 (11): e1128. Bibcode:2007PLoSO...2.1128Z. doi:10.1371/journal.pone.0001128. PMC 2040517. PMID 17987115.
  86. Conlisk J (2011). "Professor Zak's empirical studies on trust and oxytocin". J Econ Behav Organizat. 78 (1–2): 160–166. doi:10.1016/j.jebo.2011.01.002.
  87. Domes G, Heinrichs M, Michel A, Berger C, Herpertz SC (March 2007). "Oxytocin improves "mind-reading" in humans". Biological Psychiatry. 61 (6): 731–3. doi:10.1016/j.biopsych.2006.07.015. PMID 17137561.
  88. Guastella AJ, Mitchell PB, Dadds MR (January 2008). "Oxytocin increases gaze to the eye region of human faces". Biological Psychiatry. 63 (1): 3–5. doi:10.1016/j.biopsych.2007.06.026. PMID 17888410.
  89. Singer T, Snozzi R, Bird G, Petrovic P, Silani G, Heinrichs M, Dolan RJ (December 2008). "Effects of oxytocin and prosocial behavior on brain responses to direct and vicariously experienced pain". Emotion. 8 (6): 781–91. doi:10.1037/a0014195. PMC 2672051. PMID 19102589.
  90. Wittig RM, Crockford C, Deschner T, Langergraber KE, Ziegler TE, Zuberbühler K (March 2014). "Food sharing is linked to urinary oxytocin levels and bonding in related and unrelated wild chimpanzees". Proceedings. Biological Sciences. 281 (1778): 20133096. doi:10.1098/rspb.2013.3096. PMC 3906952. PMID 24430853.
  91. 91.0 91.1 Theodoridou A, Rowe AC, Penton-Voak IS, Rogers PJ (June 2009). "Oxytocin and social perception: oxytocin increases perceived facial trustworthiness and attractiveness". Hormones and Behavior. 56 (1): 128–32. doi:10.1016/j.yhbeh.2009.03.019. PMID 19344725.
  92. 92.0 92.1 Lane A, Luminet O, Rimé B, Gross JJ, de Timary P, Mikolajczak M (2013). "Oxytocin increases willingness to socially share one's emotions". International Journal of Psychology. 48 (4): 676–81. doi:10.1080/00207594.2012.677540. PMID 22554106.
  93. 93.0 93.1 Cardoso C, Ellenbogen MA, Serravalle L, Linnen AM (November 2013). "Stress-induced negative mood moderates the relation between oxytocin administration and trust: evidence for the tend-and-befriend response to stress?". Psychoneuroendocrinology. 38 (11): 2800–4. doi:10.1016/j.psyneuen.2013.05.006. PMID 23768973.
  94. Baumgartner T, Heinrichs M, Vonlanthen A, Fischbacher U, Fehr E (May 2008). "Oxytocin shapes the neural circuitry of trust and trust adaptation in humans". Neuron. 58 (4): 639–50. doi:10.1016/j.neuron.2008.04.009. PMID 18498743.
  95. Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E (June 2005). "Oxytocin increases trust in humans". Nature. 435 (7042): 673–6. Bibcode:2005Natur.435..673K. doi:10.1038/nature03701. PMID 15931222.
  96. Tabak BA, McCullough ME, Carver CS, Pedersen EJ, Cuccaro ML (June 2014). "Variation in oxytocin receptor gene (OXTR) polymorphisms is associated with emotional and behavioral reactions to betrayal". Social Cognitive and Affective Neuroscience. 9 (6): 810–6. doi:10.1093/scan/nst042. PMC 4040089. PMID 23547247.
  97. 97.0 97.1 Marazziti D, Dell'Osso B, Baroni S, Mungai F, Catena M, Rucci P, Albanese F, Giannaccini G, Betti L, Fabbrini L, Italiani P, Del Debbio A, Lucacchini A, Dell'Osso L (October 2006). "A relationship between oxytocin and anxiety of romantic attachment". Clinical Practice and Epidemiology in Mental Health. 2 (1): 28. doi:10.1186/1745-0179-2-28. PMC 1621060. PMID 17034623.
  98. Shalvi S, De Dreu CK (April 2014). "Oxytocin promotes group-serving dishonesty". Proceedings of the National Academy of Sciences of the United States of America. 111 (15): 5503–7. Bibcode:2014PNAS..111.5503S. doi:10.1073/pnas.1400724111. PMC 3992689. PMID 24706799. Lay summaryBBC News (2 April 2014).
  99. 99.0 99.1 99.2 Carmichael MS, Humbert R, Dixen J, Palmisano G, Greenleaf W, Davidson JM (January 1987). "Plasma oxytocin increases in the human sexual response". The Journal of Clinical Endocrinology and Metabolism. 64 (1): 27–31. doi:10.1210/jcem-64-1-27. PMID 3782434.
  100. Carmichael MS, Warburton VL, Dixen J, Davidson JM (February 1994). "Relationships among cardiovascular, muscular, and oxytocin responses during human sexual activity". Archives of Sexual Behavior. 23 (1): 59–79. doi:10.1007/BF01541618. PMID 8135652.
  101. Blaicher W, Gruber D, Bieglmayer C, Blaicher AM, Knogler W, Huber JC (1999). "The role of oxytocin in relation to female sexual arousal". Gynecologic and Obstetric Investigation. 47 (2): 125–6. doi:10.1159/000010075. PMID 9949283.
  102. Anderson-Hunt M, Dennerstein L (1995). "Oxytocin and female sexuality". Gynecologic and Obstetric Investigation. 40 (4): 217–21. doi:10.1159/000292340. PMID 8586300.
  103. Murphy MR, Seckl JR, Burton S, Checkley SA, Lightman SL (October 1987). "Changes in oxytocin and vasopressin secretion during sexual activity in men". The Journal of Clinical Endocrinology and Metabolism. 65 (4): 738–41. doi:10.1210/jcem-65-4-738. PMID 3654918.
  104. Krüger TH, Haake P, Chereath D, Knapp W, Janssen OE, Exton MS, Schedlowski M, Hartmann U (April 2003). "Specificity of the neuroendocrine response to orgasm during sexual arousal in men". The Journal of Endocrinology. 177 (1): 57–64. doi:10.1677/joe.0.1770057. PMID 12697037.
  105. Scheele D, Striepens N, Güntürkün O, Deutschländer S, Maier W, Kendrick KM, Hurlemann R (November 2012). "Oxytocin modulates social distance between males and females". The Journal of Neuroscience. 32 (46): 16074–9. doi:10.1523/JNEUROSCI.2755-12.2012. PMID 23152592.
  106. Malik AI, Zai CC, Abu Z, Nowrouzi B, Beitchman JH (July 2012). "The role of oxytocin and oxytocin receptor gene variants in childhood-onset aggression". Genes, Brain, and Behavior. 11 (5): 545–51. doi:10.1111/j.1601-183X.2012.00776.x. PMID 22372486.
  107. Zak PJ, Kurzban R, Matzner WT (December 2004). "The neurobiology of trust". Annals of the New York Academy of Sciences. 1032 (1): 224–7. Bibcode:2004NYASA1032..224Z. doi:10.1196/annals.1314.025. PMID 15677415.
  108. Gouin JP, Carter CS, Pournajafi-Nazarloo H, Glaser R, Malarkey WB, Loving TJ, Stowell J, Kiecolt-Glaser JK (August 2010). "Marital behavior, oxytocin, vasopressin, and wound healing". Psychoneuroendocrinology. 35 (7): 1082–90. doi:10.1016/j.psyneuen.2010.01.009. PMC 2888874. PMID 20144509.
  109. Nakajima M, Görlich A, Heintz N (October 2014). "Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons". Cell. 159 (2): 295–305. doi:10.1016/j.cell.2014.09.020. PMC 4206218. PMID 25303526. Lay summarySciGuru Science News.
  110. Heinrichs M, Baumgartner T, Kirschbaum C, Ehlert U (December 2003). "Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress". Biological Psychiatry. 54 (12): 1389–98. doi:10.1016/S0006-3223(03)00465-7. PMID 14675803.
  111. Wei D, Lee D, Cox CD, Karsten CA, Peñagarikano O, Geschwind DH, Gall CM, Piomelli D (November 2015). "Endocannabinoid signaling mediates oxytocin-driven social reward". Proceedings of the National Academy of Sciences of the United States of America. 112 (45): 14084–9. Bibcode:2015PNAS..11214084W. doi:10.1073/pnas.1509795112. PMC 4653148. PMID 26504214.
  112. 112.0 112.1 Burtis CA, Ashwood ER, Bruns DE (2012). Tietz Textbook of Clinical Chemistry and Molecular Diagnostics (5th ed.). Elsevier Health Sciences. p. 1833. ISBN 9781455759422.
  113. https://www.nibsc.org/documents/ifu/76-575.pdf
  114. Lee AG, Cool DR, Grunwald WC, Neal DE, Buckmaster CL, Cheng MY, Hyde SA, Lyons DM, Parker KJ (August 2011). "A novel form of oxytocin in New World monkeys". Biology Letters. 7 (4): 584–7. doi:10.1098/rsbl.2011.0107. PMC 3130245. PMID 21411453.
  115. Vargas-Pinilla P, Paixão-Côrtes VR, Paré P, Tovo-Rodrigues L, Vieira CM, Xavier A, Comas D, Pissinatti A, Sinigaglia M, Rigo MM, Vieira GF, Lucion AB, Salzano FM, Bortolini MC (January 2015). "Evolutionary pattern in the OXT-OXTR system in primates: coevolution and positive selection footprints". Proceedings of the National Academy of Sciences of the United States of America. 112 (1): 88–93. Bibcode:2015PNAS..112...88V. doi:10.1073/pnas.1419399112. PMC 4291646. PMID 25535371.
  116. Ren D, Lu G, Moriyama H, Mustoe AC, Harrison EB, French JA (2015). "Genetic diversity in oxytocin ligands and receptors in New World monkeys". PLOS One. 10 (5): e0125775. Bibcode:2015PLoSO..1025775R. doi:10.1371/journal.pone.0125775. PMC 4418824. PMID 25938568.
  117. Vigneaud V (2006). "Experiences in the Polypeptide Field: Insulin to Oxytocin". Annals of the New York Academy of Sciences. 88 (3): 537–48. Bibcode:1960NYASA..88..537V. doi:10.1111/j.1749-6632.1960.tb20052.x.
  118. Kukucka MA (1993-04-18). "Mechanisms by which hypoxia augments Leydig cell viability and differentiated cell function in vitro". Digital Library and Archives. Retrieved 2010-02-21.
  119. du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG (1954). "The Synthesis of Oxytocin". Journal of the American Chemical Society. 76 (12): 3115–3121. doi:10.1021/ja01641a004.
  120. "The Nobel Prize in Chemistry 1955". Nobelprize.org. Nobel Media AB. Retrieved 17 November 2016.
  121. Leng G, Brown CH, Russell JA (1999). "Physiological pathways regulating the activity of magnocellular neurosecretory cells". Progress in Neurobiology. 57 (6): 625–55. doi:10.1016/s0301-0082(98)00072-0. PMID 10221785.
  122. Dale HH (May 1906). "On some physiological actions of ergot". The Journal of Physiology. 34 (3): 163–206. doi:10.1113/jphysiol.1906.sp001148. PMC 1465771. PMID 16992821.
  123. Ott I, Scott JC (1910). "The action of infundibulin upon the mammary secretion". Experimental Biology and Medicine. 8 (2): 48–9. doi:10.3181/00379727-8-27.
  124. Schafer EA, Mackenzie K (July 1911). "The Action of Animal Extracts on Milk Secretion". Proceedings of the Royal Society B. 84 (568): 16–22. doi:10.1098/rspb.1911.0042.
  125. Du Vigneaud V, Ressler C, Trippett S (December 1953). "The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin". The Journal of Biological Chemistry. 205 (2): 949–57. PMID 13129273.
  126. du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG, Gordon S (1953). "The synthesis of an octapeptide amide with the hormonal activity of oxytocin". J. Am. Chem. Soc. 75 (19): 4879–80. doi:10.1021/ja01115a553.
  127. du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG (June 1954). "The synthesis of oxytocin". J. Am. Chem. Soc. 76 (12): 3115–3121. doi:10.1021/ja01641a004.
  128. du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG (1954). "The Synthesis of Oxytocin1". Journal of the American Chemical Society. 76 (12): 3115–21. doi:10.1021/ja01641a004.
  129. Du Vigneaud V (June 1956). "Trail of sulfur research: from insulin to oxytocin". Science. 123 (3205): 967–74. Bibcode:1956Sci...123..967D. doi:10.1126/science.123.3205.967. PMID 13324123.

Further reading

Lua error in Module:Authority_control at line 788: attempt to index field 'wikibase' (a nil value).