Staphylococcus aureus: Difference between revisions

Jump to navigation Jump to search
Gerald Chi- (talk | contribs)
mNo edit summary
Usama Talib (talk | contribs)
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
<div style="float: right;">{{Staphylococcus aureus infection}}</div>
'''To review the wikidoc page on [[staphylococcus aureus infection]] page, click [[staphylococcus aureus infection|here]].'''
<div style="float: right;">
<small><small>
{{Taxobox
{{Taxobox
  | color = lightgrey
  | color = lightgrey
  | name = ''Staphylococcus aureus''
  | name = ''Staphylococcus aureus''
  | image = Staphylococcus_aureus,_50,000x,_USDA,_ARS,_EMU.jpg
  | image = Staphylococcus_aureus,_50,000x,_USDA,_ARS,_EMU.jpg
  | image_width = 270px
  | image_width = 100px
  | domain = [[Bacteria]]
  | domain = [[Bacteria]]
  | regnum = [[Bacterium|Eubacteria]]
  | regnum = [[Bacterium|Eubacteria]]
Line 17: Line 17:
  | binomial = ''Staphylococcus aureus''
  | binomial = ''Staphylococcus aureus''
  | binomial_authority = Rosenbach 1884
  | binomial_authority = Rosenbach 1884
  }}</div>
  }}</small></small>
{{About0|Staphylococcus aureus infection}}
{{Staphylococcus aureus infection}}
{{CMG}}
{{CMG}}


Line 27: Line 27:


==Microbiology==
==Microbiology==
<div style="float: right;">[[Image:Staphylococcus aureus Gram.jpg|left|thumb|150px|Gram stain of ''S. aureus''.]]</div>
''S. aureus'' is a [[Gram-positive]] [[coccus]], which appears as grape-like clusters when viewed through a microscope and has large, round, golden-yellow colonies, often with [[Hemolysis (microbiology)|hemolysis]], when grown on [[Agar plate|blood agar plate]]s.<ref name=Sherris>{{cite book | author = Ryan KJ; Ray CG (editors) | title = Sherris Medical Microbiology | edition = 4th ed. | publisher = McGraw Hill | year = 2004 | id = ISBN 0-8385-8529-9 }}</ref> The golden appearance is the [[etymology|etymological]] root of the bacteria's name: ''aureus'' means "golden" in [[Latin]].
''S. aureus'' is a [[Gram-positive]] [[coccus]], which appears as grape-like clusters when viewed through a microscope and has large, round, golden-yellow colonies, often with [[Hemolysis (microbiology)|hemolysis]], when grown on [[Agar plate|blood agar plate]]s.<ref name=Sherris>{{cite book | author = Ryan KJ; Ray CG (editors) | title = Sherris Medical Microbiology | edition = 4th ed. | publisher = McGraw Hill | year = 2004 | id = ISBN 0-8385-8529-9 }}</ref> The golden appearance is the [[etymology|etymological]] root of the bacteria's name: ''aureus'' means "golden" in [[Latin]].


Line 33: Line 32:


''S. aureus'' is [[catalase]] positive (meaning that it can produce the enzyme "catalase") and able to convert [[hydrogen peroxide]] (H<sub>2</sub>O<sub>2</sub>) to water and oxygen, which makes the catalase test useful to distinguish staphylococci from [[Enterococcus|enterococci]] and [[Streptococcus|streptococci]].  A large percentage of ''S. aureus'' can be differentiated from most other staphylococci by the [[coagulase|coagulase test]]: ''S. aureus'' is primarily coagulase-positive (meaning that it can produce the enzyme "coagulase" that causes clot formation) while most other ''Staphylococcus'' species are coagulase-negative.<ref name=Sherris />  However, while the majority of ''S. aureus'' are coagulase-positive, some may be atypical in that they do not produce coagulase. Incorrect identification of an isolate can impact implementation of effective treatment and/or control measures.<ref name="CNSA">{{cite journal | author=Matthews KR, Roberson J, Gillespie BE, Luther DA, Oliver SP | title=Identification and Differentiation of Coagulase-Negative Staphylococcus aureus by Polymerase Chain Reaction | journal=Journal of Food Protection | year=1997 | pages=686-8 | volume=60 | issue=6 |url = http://www.ingentaconnect.com/content/iafp/jfp/1997/00000060/00000006/art00015 }}</ref> It is medically important to identify ''S.aureus'' correctly as ''S.aureus'' is much more aggressive and likely to be antibiotic-resistant.
''S. aureus'' is [[catalase]] positive (meaning that it can produce the enzyme "catalase") and able to convert [[hydrogen peroxide]] (H<sub>2</sub>O<sub>2</sub>) to water and oxygen, which makes the catalase test useful to distinguish staphylococci from [[Enterococcus|enterococci]] and [[Streptococcus|streptococci]].  A large percentage of ''S. aureus'' can be differentiated from most other staphylococci by the [[coagulase|coagulase test]]: ''S. aureus'' is primarily coagulase-positive (meaning that it can produce the enzyme "coagulase" that causes clot formation) while most other ''Staphylococcus'' species are coagulase-negative.<ref name=Sherris />  However, while the majority of ''S. aureus'' are coagulase-positive, some may be atypical in that they do not produce coagulase. Incorrect identification of an isolate can impact implementation of effective treatment and/or control measures.<ref name="CNSA">{{cite journal | author=Matthews KR, Roberson J, Gillespie BE, Luther DA, Oliver SP | title=Identification and Differentiation of Coagulase-Negative Staphylococcus aureus by Polymerase Chain Reaction | journal=Journal of Food Protection | year=1997 | pages=686-8 | volume=60 | issue=6 |url = http://www.ingentaconnect.com/content/iafp/jfp/1997/00000060/00000006/art00015 }}</ref> It is medically important to identify ''S.aureus'' correctly as ''S.aureus'' is much more aggressive and likely to be antibiotic-resistant.
 
<br>
[[Image:Staphylococcus aureus Gram.jpg|left|150px|Gram stain of S. aureus]]
<br><br><br><br><br>
==Role in disease==
==Role in disease==
''S. aureus'' may occur as a [[commensal]] on human [[skin]]; it also occurs in the nose frequently (in about a third of the population)<ref name="third">{{cite book |last=Whitt |first=Dixie D. |coauthors=Salyers, Abigail A. |title= Bacterial Pathogenesis: A Molecular Approach |origyear=2002 |edition=2nd edition |publisher=ASM Press |location=USA |isbn=1-55581-171-X |chapter=14 }}</ref> and throat less commonly.  The occurrence of ''S. aureus'' under these circumstances does not always indicate infection and therefore does not always require treatment (indeed, treatment may be ineffective and re-colonisation may occur).  It can survive on domesticated animals such as dogs, cats and horses, and can cause [[bumblefoot (infection)|bumblefoot]] in chickens.  It can survive for some hours on dry environmental surfaces, but the importance of the environment in spread of ''S. aureus'' is currently debated.  It can host [[phage]]s, such as the [[Panton-Valentine leukocidin]], that increase its virulence.
''S. aureus'' may occur as a [[commensal]] on human [[skin]]; it also occurs in the nose frequently (in about a third of the population)<ref name="third">{{cite book |last=Whitt |first=Dixie D. |coauthors=Salyers, Abigail A. |title= Bacterial Pathogenesis: A Molecular Approach |origyear=2002 |edition=2nd edition |publisher=ASM Press |location=USA |isbn=1-55581-171-X |chapter=14 }}</ref> and throat less commonly.  The occurrence of ''S. aureus'' under these circumstances does not always indicate infection and therefore does not always require treatment (indeed, treatment may be ineffective and re-colonisation may occur).  It can survive on domesticated animals such as dogs, cats and horses, and can cause [[bumblefoot (infection)|bumblefoot]] in chickens.  It can survive for some hours on dry environmental surfaces, but the importance of the environment in spread of ''S. aureus'' is currently debated.  It can host [[phage]]s, such as the [[Panton-Valentine leukocidin]], that increase its virulence.
Line 70: Line 71:
These tests suggest that the yellow pigment may be key to the ability of ''S. aureus'' to survive immune system attacks.  Drugs that inhibit the bacterium's production of the [[carotenoid]]s responsible for the yellow coloration may weaken it and renew its susceptibility to antibiotics.<!--
These tests suggest that the yellow pigment may be key to the ability of ''S. aureus'' to survive immune system attacks.  Drugs that inhibit the bacterium's production of the [[carotenoid]]s responsible for the yellow coloration may weaken it and renew its susceptibility to antibiotics.<!--
   --><ref name="JExpMed2005-Liu">{{cite journal | author=Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, Fierer J, Nizet V | title=Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity | journal=J Exp Med | year=2005 | pages=209–15 | volume=202 | issue=2 | id=PMID 16009720 | url=http://www.jem.org/cgi/content/full/202/2/209}}</ref>
   --><ref name="JExpMed2005-Liu">{{cite journal | author=Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, Fierer J, Nizet V | title=Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity | journal=J Exp Med | year=2005 | pages=209–15 | volume=202 | issue=2 | id=PMID 16009720 | url=http://www.jem.org/cgi/content/full/202/2/209}}</ref>
==Diagnosis==
Depending upon the type of infection present, an appropriate specimen is obtained accordingly and sent to the laboratory for definitive identification by using biochemical or enzyme-based tests. A [[Gram stain]] is first performed to guide the way, which should show typical gram-positive bacteria, cocci, in clusters. Secondly, culture the organism in [[Mannitol Salt Agar]], which is a selective medium with 7–9% [[Sodium chloride|NaCl]] that allows ''S. aureus'' to grow producing yellow-colored colonies as a result of salt utilization and subsequent drop in the medium's [[pH]]. Furthermore, for differentiation on the species level, [[catalase]] (positive for all species), [[coagulase]] (fibrin clot formation), [[DNAse]] (zone of clearance on nutrient agar), [[lipase]] (a yellow color and rancid odor smell), and [[phosphatase]] (a pink color) tests are all done. For staphylococcal food poisoning, phage typing can be performed to determine if the staphylococci recovered from the food to determine the source of infection.
===Rapid Diagnosis and Typing===
Diagnostic microbiology laboratories and reference laboratories are key for identifying outbreaks and new strains of ''S. aureus''. Recent genetic advances have enabled reliable and rapid techniques for the identification and characterization of clinical isolates of ''S. aureus'' in real-time. These tools support infection control strategies to limit bacterial spread and ensure the appropriate use of antibiotics. These techniques include [[Real-time PCR]] and [[Quantitative PCR]] and are increasingly being employed in clinical laboratories.<ref name= FrancoisP >{{cite book |chapterurl=http://www.horizonpress.com/staph|author= Francois P and Schrenzel J|year=2008|chapter=Rapid Diagnosis and Typing of Staphylococcus aureus|title=Staphylococcus: Molecular Genetics|publisher=Caister Academic Press|id=[http://www.horizonpress.com/staph ISBN 978-1-904455-29-5]}}</ref><ref name=Mackay>{{cite book | author = Mackay IM (editor). | title = Real-Time PCR in Microbiology: From Diagnosis to Characterization | publisher = Caister Academic Press | year = 2007 | url=http://www.horizonpress.com/rtmic | id = [http://www.horizonpress.com/rtmic ISBN 978-1-904455-18-9 ]}}</ref>
==Prophylaxis==
===Antimicrobial Regimen===
* Staphylococcus aureus
:* '''CABG-associated acute mediastinitis'''<ref name="pmid22070836">{{cite journal| author=Hillis LD, Smith PK, Anderson JL, Bittl JA, Bridges CR, Byrne JG et al.| title=2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons. | journal=J Am Coll Cardiol | year= 2011 | volume= 58 | issue= 24 | pages= e123-210 | pmid=22070836 | doi=10.1016/j.jacc.2011.08.009 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22070836  }} </ref>
::* '''Methicillin susceptible staphylococcus aureus (MSSA)'''
:::* Preferred regimen: A first- or second-generation [[Cephalosporin]] is recommended for prophylaxis in patients without methicillin-resistant Staphylococcus aureus colonization.
::* '''Methicillin resistant staphylococcus aureus (MRSA)'''
:::* Preferred regimen: [[Vancomycin]] alone or in combination with other antibiotics to achieve broader coverage is recommended for prophylaxis in patients with proven or suspected methicillin-resistant S. aureus colonization
:::: Note (1): Preoperative antibiotics should be administered to all patients to reduce the risk of mediastinitis in cardiac surgery.
:::: Note (2): The use of intranasal [[Mupirocin]] is reasonable in nasal carriers of Staphylococcus aureus.
==Infection control==
Spread of ''S. aureus'' (including [[methicillin-resistant Staphylococcus aureus|MRSA]]) is through human-to-human contact, although recently some vets have discovered that the infection can be spread through pets, with environmental contamination thought to play a relatively unimportant part.  Emphasis on basic [[hand washing]] techniques are therefore effective in preventing the transmission of ''S. aureus''. The use of disposable aprons and gloves by staff reduces skin-to-skin contact and therefore further reduces the risk of transmission.  Please refer to the article on [[infection control]] for further details.
Recently, there have been a myriad of reported cases of S. aureus in hospitals across America. The incredibly hardy pathogen has had facilitated transportation in medical facilities mainly because of poor doctor hygiene. S. aureus is an incredibly hardy bacterium, as was shown in a study where it survived on a piece of polyester for just under three months,polyester being the main material used in hospital privacy curtains.
The bacterium is able to transport itself on the hands of doctors who, for instance, get the bacteria from a seemingly healthy patient carrying a "benign" or commensal strain of the pathogen, and then going into surgery and infecting the open incision with staphylococcus. Such introduction of the bacterium into the bloodstream can lead to various complications including, but not limited to, endocarditis, meningitis, and, if it is widespread, sepsis - toxins infecting the entire body.
Because of these infections in hospitals, as of February 14th, 2008, all California medical facilities must now report S. aureus infections that are checked into the hospitals, in the hope of starting a trend to aid disease trackers and pathologists in their search for a cure.
<nowiki>
</nowiki>
[[Alcohol]] has proven to be an effective topical sanitizer against MRSA. [[Quaternary ammonium]] can be used in conjunction with alcohol to increase the duration of the sanitizing action. The prevention of [[nosocomial infection]]s involve routine and [[terminal cleaning]]. Nonflammable alcohol vapor in [[carbon dioxide|CO<sub>2</sub>]] [[NAV-CO2]] systems have an advantage as they do not attack metals or plastics used in medical environments, and do not contribute to antibacterial resistance.
An important and previously unrecognized means of community-associated methicillin-resistant S. aureus colonization and transmission is during sexual contact.<!--
  --><ref name="CDI2007">{{cite journal |author=Cook H, Furuya E, Larson E, Vasquez G, Lowy F |title=Heterosexual transmission of community-associated methicillin-resistant Staphylococcus aureus |journal=Clin Infect Dis |volume=44 |issue=3 |pages=410–3 |year=2007 |id=PMID 17205449 | url=http://www.journals.uchicago.edu/cgi-bin/resolve?CID40836}}</ref>
Staff or patients who are found to carry resistant strains of ''S. aureus'' may be required to undergo "eradication therapy" which may include antiseptic washes and shampoos (such as [[chlorhexidine]]) and application of topical antibiotic ointments (such as [[mupirocin]] or [[neomycin]]) to the anterior [[nares]] of the nose.
In March 2007, BBC reported that a vaporizer spraying some essential oils into the atmosphere reduced airborne bacterial counts by 90% and kept MRSA infections at bay and may hold promise in MRSA infection control.<ref>{{cite news |author= |title=Essential oils 'combat superbug' |url=http://news.bbc.co.uk/2/hi/uk_news/england/manchester/6471475.stm |publisher=BBC News |date=20 March 2007 |accessdate=2008-04-15}}</ref>


==References==
==References==
Line 121: Line 76:


[[Category:Staphylococcaceae]]
[[Category:Staphylococcaceae]]
[[Category:Infectious Disease Project]]

Latest revision as of 20:22, 16 October 2017

To review the wikidoc page on staphylococcus aureus infection page, click here.

Staphylococcus aureus

Scientific classification
Domain: Bacteria
Kingdom: Eubacteria
Phylum: Firmicutes
Class: Bacilli
Order: Bacillales
Family: Staphylococcaceae
Genus: Staphylococcus
Species: S. aureus
Binomial name
Staphylococcus aureus
Rosenbach 1884

Staphylococcus aureus infection Main page

Overview

Classification

Pathophysiology

Causes

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Staphylococcus aureus (Template:PronEng, literally "Golden Cluster Seed" and also known as golden staph, is the most common cause of staph infections. It is a spherical bacterium, frequently living on the skin or in the nose of a person. Approximately 20–30% of the general population are "staph carriers".[1] Staphylococcus aureus can cause a range of illnesses from minor skin infections, such as pimples, impetigo (may also be caused by Streptococcus pyogenes), boils, cellulitis folliculitis, furuncles, carbuncles, scalded skin syndrome and abscesses, to life-threatening diseases, such as pneumonia, meningitis, osteomyelitis endocarditis, Toxic shock syndrome (TSS), and septicemia. Its incidence is from skin, soft tissue, respiratory, bone, joint, endovascular to wound infections. It is still one of the four most common causes of nosocomial infections, often causing postsurgical wound infections. Abbreviated to S. aureus or Staph aureus in medical literature, S. aureus should not be confused with the similarly named (and also medically relevant) species of the genus Streptococcus.

S. aureus was discovered in Aberdeen, Scotland in 1880 by the surgeon Sir Alexander Ogston in pus from surgical abscesses.[2] Each year some 500,000 patients in American hospitals contract a staphylococcal infection.[3]

Microbiology

S. aureus is a Gram-positive coccus, which appears as grape-like clusters when viewed through a microscope and has large, round, golden-yellow colonies, often with hemolysis, when grown on blood agar plates.[4] The golden appearance is the etymological root of the bacteria's name: aureus means "golden" in Latin.

S. aureus is a facultative anaerobe and opportunistic pathogen.

S. aureus is catalase positive (meaning that it can produce the enzyme "catalase") and able to convert hydrogen peroxide (H2O2) to water and oxygen, which makes the catalase test useful to distinguish staphylococci from enterococci and streptococci. A large percentage of S. aureus can be differentiated from most other staphylococci by the coagulase test: S. aureus is primarily coagulase-positive (meaning that it can produce the enzyme "coagulase" that causes clot formation) while most other Staphylococcus species are coagulase-negative.[4] However, while the majority of S. aureus are coagulase-positive, some may be atypical in that they do not produce coagulase. Incorrect identification of an isolate can impact implementation of effective treatment and/or control measures.[5] It is medically important to identify S.aureus correctly as S.aureus is much more aggressive and likely to be antibiotic-resistant.

Gram stain of S. aureus
Gram stain of S. aureus






Role in disease

S. aureus may occur as a commensal on human skin; it also occurs in the nose frequently (in about a third of the population)[6] and throat less commonly. The occurrence of S. aureus under these circumstances does not always indicate infection and therefore does not always require treatment (indeed, treatment may be ineffective and re-colonisation may occur). It can survive on domesticated animals such as dogs, cats and horses, and can cause bumblefoot in chickens. It can survive for some hours on dry environmental surfaces, but the importance of the environment in spread of S. aureus is currently debated. It can host phages, such as the Panton-Valentine leukocidin, that increase its virulence.

S. aureus can infect other tissues when normal barriers have been breached (e.g., skin or mucosal lining). This leads to furuncles (boils) and carbuncles (a collection of furuncles). In infants S. aureus infection can cause a severe disease Staphylococcal scalded skin syndrome (SSSS).[7]

S. aureus infections can be spread through contact with pus from an infected wound, skin-to-skin contact with an infected person by producing hyaluronidase that destroy tissues, and contact with objects such as towels, sheets, clothing, or athletic equipment used by an infected person.

Deeply situated S. aureus infections can be very severe. Prosthetic joints put a person at particular risk for septic arthritis, and staphylococcal endocarditis (infection of the heart valves) and pneumonia, which may be rapidly spread.

Atopic dermatitis

S. aureus is extremely prevalent in atopic dermatitis patients, who are less resistant to it than other people. It often causes complications. The disease is most likely found in fertile active places including, the armpits, hair and scalp. Large pimples in those areas, when popped will cause the worst of the infection.

Toxic shock syndrome

Some strains of S. aureus produce toxic shock syndrome toxin, which are the causative agent for toxic shock syndrome. Some strains that produce an enterotoxin are the cause of staphylococcal food poisoning.

Mastitis in cows

S. aureus is one of the causal agents of mastitis in dairy cows. Its large capsule protects the organism from attack by the cow's immunological defenses.[8]

Virulence factors

Toxins

Depending on the strain, S. aureus is capable of secreting several toxins, which can be categorized into three groups. Many of these toxins are associated with specific diseases.

Pyrogenic toxin superantigens (PTSAgs) have superantigen activities that induce toxic shock syndrome (TSS). This group includes the toxin TSST-1, which causes TSS associated with tampon use. The staphylococcal enterotoxins, which cause a form of food poisoning, are included in this group.

Exfoliative toxins are implicated in the disease staphylococcal scalded-skin syndrome (SSSS), which occurs most commonly in infants and young children. It also may occur as epidemics in hospital nuseries. The protease activity of the exfoliative toxins causes peeling of the skin observed with SSSS.

Staphylococccal toxins that act on cell membranes include alpha-toxin, beta-toxin, delta-toxin, and several bicomponent toxins. The bicomponent toxin Panton-Valentine leukocidin (PVL) is associated with severe necrotizing pneumonia in children. The genes encoding the components of PVL are encoded on a bacteriophage found in community-associated MRSA strains.

Role of pigment in virulence

The vivid yellow pigmentation of S. aureus may be a factor in its virulence. When comparing a normal strain of S. aureus with a strain modified to lack the yellow coloration, the pigmented strain was more likely to survive dousing with an oxidizing chemical such as hydrogen peroxide than the mutant strain was.

Colonies of the two strains were also exposed to human neutrophils. The mutant colonies quickly succumbed while many of the pigmented colonies survived. Wounds on mice were swiped with the two strains. The pigmented strains created lingering abscesses. Wounds with the unpigmented strains healed quickly.

These tests suggest that the yellow pigment may be key to the ability of S. aureus to survive immune system attacks. Drugs that inhibit the bacterium's production of the carotenoids responsible for the yellow coloration may weaken it and renew its susceptibility to antibiotics.[9]

References

  1. Heyman, D. Control of Communicable Diseases Manual (2004) 18th Edition. Washington DC: American Public Health Assocation.
  2. Ogston A (1984). ""On Abscesses". Classics in Infectious Diseases". Rev Infect Dis. 6 (1): 122–28. PMID 6369479.
  3. Bowersox, John (1999-05-27). "Experimental Staph Vaccine Broadly Protective in Animal Studies". NIH. Retrieved 2007-07-28. Check date values in: |date= (help)
  4. 4.0 4.1 Ryan KJ; Ray CG (editors) (2004). Sherris Medical Microbiology (4th ed. ed.). McGraw Hill. ISBN 0-8385-8529-9.
  5. Matthews KR, Roberson J, Gillespie BE, Luther DA, Oliver SP (1997). "Identification and Differentiation of Coagulase-Negative Staphylococcus aureus by Polymerase Chain Reaction". Journal of Food Protection. 60 (6): 686–8.
  6. Whitt, Dixie D. "14". Bacterial Pathogenesis: A Molecular Approach (2nd edition ed.). USA: ASM Press. ISBN 1-55581-171-X. Unknown parameter |coauthors= ignored (help)
  7. Curran JP, Al-Salihi FL (1980). "Neonatal staphylococcal scalded skin syndrome: massive outbreak due to an unusual phage type". Pediatrics. 66 (2): 285–90. PMID 6447271.
  8. Staphylococcus aureus. Electron Microscopy Unit, Beltsville Agricultural Research Center. U.S. Department of Agriculture. URL accessed 2006-07-22.M
  9. Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, Fierer J, Nizet V (2005). "Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity". J Exp Med. 202 (2): 209–15. PMID 16009720.