Apolipoprotein A deficiency: Difference between revisions

Jump to navigation Jump to search
Aravind Kuchkuntla (talk | contribs)
Usama Talib (talk | contribs)
 
(10 intermediate revisions by one other user not shown)
Line 77: Line 77:


==Pathogenesis==
==Pathogenesis==
Apolipoprotein A1 deficiency is caused by mutation in the APOA1 gene encoding ApoA1 protein, a major transport protein of reverse cholesterol transport.
[[Apolipoprotein A1]] deficiency is caused by [[mutation]] in the [[APOA1]] [[gene]] encoding [[ApoA1]] [[protein]], a major transport [[protein]] of [[reverse cholesterol transport]].


===Pathophysiology===
===Pathophysiology===
*HDL C is synthesized and secreted from the liver and intestine as nascent very small discoid pre-β-1 HDL, conformed predominantly by apolipoprotein A-I.
*Apo-A1 is a predominant lipoprotein of HDL and plays an important role in maturation of HDL and reverse cholesterol transport by<ref name="pmid20213545">{{cite journal| author=Lund-Katz S, Phillips MC| title=High density lipoprotein structure-function and role in reverse cholesterol transport. | journal=Subcell Biochem | year= 2010 | volume= 51 | issue=  | pages= 183-227 | pmid=20213545 | doi=10.1007/978-90-481-8622-8_7 | pmc=3215094 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20213545  }}</ref>:
**Apo-AI is important for mediating the efflux of cholesterol from peripheral tissues.<ref name="pmid24362356">{{cite journal| author=Hellerstein M, Turner S| title=Reverse cholesterol transport fluxes. | journal=Curr Opin Lipidol | year= 2014 | volume= 25 | issue= 1 | pages= 40-7 | pmid=24362356 | doi=10.1097/MOL.0000000000000050 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24362356  }} </ref>
**ApoA-I interacts with ABCA1 and accepts free cholesterol.<ref name="pmid12151852">{{cite journal| author=Oram JF| title=ATP-binding cassette transporter A1 and cholesterol trafficking. | journal=Curr Opin Lipidol | year= 2002 | volume= 13 | issue= 4 | pages= 373-81 | pmid=12151852 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12151852  }} </ref><ref name="pmid21846716">{{cite journal| author=Iatan I, Bailey D, Ruel I, Hafiane A, Campbell S, Krimbou L et al.| title=Membrane microdomains modulate oligomeric ABCA1 function: impact on apoAI-mediated lipid removal and phosphatidylcholine biosynthesis. | journal=J Lipid Res | year= 2011 | volume= 52 | issue= 11 | pages= 2043-55 | pmid=21846716 | doi=10.1194/jlr.M016196 | pmc=3196236 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21846716  }} </ref>
**Apo-A1 is a potent activator of LCAT, enzyme helpful in the formation of cholesterol esters.<ref name="pmid11111093">{{cite journal| author=Jonas A| title=Lecithin cholesterol acyltransferase. | journal=Biochim Biophys Acta | year= 2000 | volume= 1529 | issue= 1-3 | pages= 245-56 | pmid=11111093 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11111093  }} </ref>
**Delivery of cholesterol esters to the liver mediated by scavenger receptor class B type I (SR-B1).<ref name="pmid10872459">{{cite journal| author=Krieger M| title=Charting the fate of the "good cholesterol": identification and characterization of the high-density lipoprotein receptor SR-BI. | journal=Annu Rev Biochem | year= 1999 | volume= 68 | issue=  | pages= 523-58 | pmid=10872459 | doi=10.1146/annurev.biochem.68.1.523 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10872459  }} </ref>
*Genetic factors regulate the circulating levels of HDL and its functionality, mutations in the Apo A1 gene affect the total plasma levels of Apo A1 leading to low undetectable HDL C.<ref name="pmid12007737">{{cite journal| author=Sorci-Thomas MG, Thomas MJ| title=The effects of altered apolipoprotein A-I structure on plasma HDL concentration. | journal=Trends Cardiovasc Med | year= 2002 | volume= 12 | issue= 3 | pages= 121-8 | pmid=12007737 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12007737  }} </ref>
*Majority of clinical and epidemiological studies like the Framingham Heart Study, Emerging Risk Factor Collaboration, Munster Heart Study, INTERHEART Study have proved an inverse relationship between HDL-C concentration and cardiovascular risk.<ref name="pmid3196218">{{cite journal| author=Wilson PW, Abbott RD, Castelli WP| title=High density lipoprotein cholesterol and mortality. The Framingham Heart Study. | journal=Arteriosclerosis | year= 1988 | volume= 8 | issue= 6 | pages= 737-41 | pmid=3196218 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3196218  }} </ref><ref name="pmid19903920">{{cite journal| author=Emerging Risk Factors Collaboration. Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK et al.| title=Major lipids, apolipoproteins, and risk of vascular disease. | journal=JAMA | year= 2009 | volume= 302 | issue= 18 | pages= 1993-2000 | pmid=19903920 | doi=10.1001/jama.2009.1619 | pmc=3284229 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19903920  }}  [https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20157124 Review in: Ann Intern Med. 2010 Feb 16;152(4):JC-212] </ref><ref name="pmid8831911">{{cite journal| author=Assmann G, Schulte H, von Eckardstein A, Huang Y| title=High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport. | journal=Atherosclerosis | year= 1996 | volume= 124 Suppl | issue=  | pages= S11-20 | pmid=8831911 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8831911  }} </ref><ref name="pmid15364185">{{cite journal| author=Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F et al.| title=Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. | journal=Lancet | year= 2004 | volume= 364 | issue= 9438 | pages= 937-52 | pmid=15364185 | doi=10.1016/S0140-6736(04)17018-9 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15364185  }} </ref>
*The atheroprotective function of HDL C is determined by measuring the cholesterol efflux from the cells and its anti-oxidative ability.<ref name="pmid25404125">{{cite journal| author=Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE et al.| title=HDL cholesterol efflux capacity and incident cardiovascular events. | journal=N Engl J Med | year= 2014 | volume= 371 | issue= 25 | pages= 2383-93 | pmid=25404125 | doi=10.1056/NEJMoa1409065 | pmc=4308988 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25404125  }} </ref>
===Reverse Cholesterol Transport<ref name="pmid21537175">{{cite journal| author=Asztalos BF, Tani M, Schaefer EJ| title=Metabolic and functional relevance of HDL subspecies. | journal=Curr Opin Lipidol | year= 2011 | volume= 22 | issue= 3 | pages= 176-85 | pmid=21537175 | doi=10.1097/MOL.0b013e3283468061 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21537175  }} </ref>===
===Reverse Cholesterol Transport<ref name="pmid21537175">{{cite journal| author=Asztalos BF, Tani M, Schaefer EJ| title=Metabolic and functional relevance of HDL subspecies. | journal=Curr Opin Lipidol | year= 2011 | volume= 22 | issue= 3 | pages= 176-85 | pmid=21537175 | doi=10.1097/MOL.0b013e3283468061 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21537175  }} </ref>===
{{Family tree/start}}
{{Family tree/start}}
{{Family tree | | | | A01 | | | |A01= Very small discoidal pre beta-1 HDL picks up free cholesterol from cells via ABCA1 transporter<ref name="pmid19839639">{{cite journal| author=Favari E, Calabresi L, Adorni MP, Jessup W, Simonelli S, Franceschini G et al.| title=Small discoidal pre-beta1 HDL particles are efficient acceptors of cell cholesterol via ABCA1 and ABCG1. | journal=Biochemistry | year= 2009 | volume= 48 | issue= 46 | pages= 11067-74 | pmid=19839639 | doi=10.1021/bi901564g | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19839639  }} </ref> to become small discoidal alpha-4 HDL, this intitial step is disrupted in Tangier disease resulting in only pre beta HDL on 2D electrophoresis.}}
{{Family tree | | | | A01 | | | |A01= Very small discoidal pre beta-1 [[HDL]] picks up free [[cholesterol]] from [[cells]] via [[ABCA1 transporter]]<ref name="pmid19839639">{{cite journal| author=Favari E, Calabresi L, Adorni MP, Jessup W, Simonelli S, Franceschini G et al.| title=Small discoidal pre-beta1 HDL particles are efficient acceptors of cell cholesterol via ABCA1 and ABCG1. | journal=Biochemistry | year= 2009 | volume= 48 | issue= 46 | pages= 11067-74 | pmid=19839639 | doi=10.1021/bi901564g | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19839639  }} </ref> to become small discoidal alpha-4 HDL, this intitial step is disrupted in Tangier disease resulting in only pre beta HDL on 2D electrophoresis.}}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | B01 | | | |B01= Discoidal HDL particles are converted to medium spherical α-3 HDL and larger particles by the esterification of free cholesterol via the enzyme lecithin:cholesterol acyltransferase (LCAT) and the addition of apoA-II. }}
{{Family tree | | | | B01 | | | |B01= Discoidal [[HDL]] particles are converted to medium spherical α-3 [[HDL]] and larger particles by the [[esterification]] of free [[cholesterol]] via the [[enzyme]] [[lecithin cholesterol acyltransferase]] ([[LCAT]]) and the addition of [[ApoA II]]}}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | C01 | | | |C01= These particles are further converted to large and very large spherical α-2 and α-1 HDL by the actions of cholesteryl ester transfer protein (CETP). CETP transfers cholesteryl ester from HDL to triglyceride-rich lipoproteins in exchange for triglyceride}}
{{Family tree | | | | C01 | | | |C01= These particles are further converted to large and very large spherical α-2 and α-1 [[HDL]] by the actions of [[cholesteryl ester transfer protein]] ([[CETP]]). [[CETP]] transfers [[cholesteryl ester]] from [[HDL]] to [[triglyceride]] rich [[lipoproteins]] in exchange for [[triglyceride]]}}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | D01 | | | |D01= Very large α-1 HDL particles are donors of cholesterol to the liver, and the constituents of these particles can recycle back to form very small discoidal particles and can re-enter the HDL cycle, or be catabolized directly by the kidney or liver}}
{{Family tree | | | | D01 | | | |D01= Very large α-1 [[HDL]] particles are donors of [[cholesterol]] to the [[liver]], and the constituents of these particles can recycle back to form very small discoidal particles and re-enter the [[HDL]] cycle, or be [[catabolized]] directly by the [[kidney]] or [[liver]]}}
{{Family tree/end}}
{{Family tree/end}}
*In Apo A1 deficiency there is complete absence of Apo A1 and HDL C in homozygotes and less than 50% normal in heterozygotes, this disrupts the reverse cholesterol transport by :
*[[HDL]] C is synthesized and secreted from the [[liver]] as nascent very small discoid pre-β-1 [[HDL]], predominantly composed of [[apolipoprotein A1]].
**Change of chemical compositon in sub-populations of HDL C.<ref name="pmid21537175">{{cite journal| author=Asztalos BF, Tani M, Schaefer EJ| title=Metabolic and functional relevance of HDL subspecies. | journal=Curr Opin Lipidol | year= 2011 | volume= 22 | issue= 3 | pages= 176-85 | pmid=21537175 | doi=10.1097/MOL.0b013e3283468061 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21537175  }} </ref>
*[[Apo A1]] is a predominant [[lipoprotein]] of [[HDL]] and plays an important role in [[maturation]] of [[HDL]] and [[reverse cholesterol transport]] by<ref name="pmid20213545">{{cite journal| author=Lund-Katz S, Phillips MC| title=High density lipoprotein structure-function and role in reverse cholesterol transport. | journal=Subcell Biochem | year= 2010 | volume= 51 | issue=  | pages= 183-227 | pmid=20213545 | doi=10.1007/978-90-481-8622-8_7 | pmc=3215094 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20213545  }}</ref>:
**Decrease in the cholesterol efflux.
**[[Apo A1]] is important for mediating the [[efflux]] of [[cholesterol]] from peripheral tissues.<ref name="pmid24362356">{{cite journal| author=Hellerstein M, Turner S| title=Reverse cholesterol transport fluxes. | journal=Curr Opin Lipidol | year= 2014 | volume= 25 | issue= 1 | pages= 40-7 | pmid=24362356 | doi=10.1097/MOL.0000000000000050 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24362356  }} </ref>
**Failure of cholesterol ester formation as LCAT function is compromised in few mutations.
**[[Apo A1]] interacts with ABCA1 and accepts free [[cholesterol]].<ref name="pmid12151852">{{cite journal| author=Oram JF| title=ATP-binding cassette transporter A1 and cholesterol trafficking. | journal=Curr Opin Lipidol | year= 2002 | volume= 13 | issue= 4 | pages= 373-81 | pmid=12151852 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12151852  }} </ref><ref name="pmid21846716">{{cite journal| author=Iatan I, Bailey D, Ruel I, Hafiane A, Campbell S, Krimbou L et al.| title=Membrane microdomains modulate oligomeric ABCA1 function: impact on apoAI-mediated lipid removal and phosphatidylcholine biosynthesis. | journal=J Lipid Res | year= 2011 | volume= 52 | issue= 11 | pages= 2043-55 | pmid=21846716 | doi=10.1194/jlr.M016196 | pmc=3196236 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21846716  }} </ref>
*The changes in the reverse cholesterol transport predispose the patients to premature heart disease.
**[[Apo A1]] is a potent activator of [[LCAT]], [[enzyme]] helpful in the formation of [[cholesterol esters]].<ref name="pmid11111093">{{cite journal| author=Jonas A| title=Lecithin cholesterol acyltransferase. | journal=Biochim Biophys Acta | year= 2000 | volume= 1529 | issue= 1-3 | pages= 245-56 | pmid=11111093 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11111093  }} </ref>
**Delivery of [[cholesterol esters]] to the [[liver]] is mediated by [[scavenger receptor class B type I]] ([[SR-B1]]).<ref name="pmid10872459">{{cite journal| author=Krieger M| title=Charting the fate of the "good cholesterol": identification and characterization of the high-density lipoprotein receptor SR-BI. | journal=Annu Rev Biochem | year= 1999 | volume= 68 | issue=  | pages= 523-58 | pmid=10872459 | doi=10.1146/annurev.biochem.68.1.523 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10872459  }} </ref>
*Genetic factors regulate the circulating levels of [[HDL]] and its [[functionality]], [[mutations]] in the [[Apo A1]] [[gene]] affect the total [[plasma ]]levels of [[Apo A1]] leading to low undetectable levels of [[HDL]] C.<ref name="pmid12007737">{{cite journal| author=Sorci-Thomas MG, Thomas MJ| title=The effects of altered apolipoprotein A-I structure on plasma HDL concentration. | journal=Trends Cardiovasc Med | year= 2002 | volume= 12 | issue= 3 | pages= 121-8 | pmid=12007737 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12007737  }} </ref>
*Majority of clinical and epidemiological studies like the [[Framingham Heart Study]], [[Emerging Risk Factor Collaboration]], [[Munster Heart Study]], [[INTERHEART Study]] have proved an inverse relationship between [[HDL]] C concentration and [[cardiovascular risk]].<ref name="pmid3196218">{{cite journal| author=Wilson PW, Abbott RD, Castelli WP| title=High density lipoprotein cholesterol and mortality. The Framingham Heart Study. | journal=Arteriosclerosis | year= 1988 | volume= 8 | issue= 6 | pages= 737-41 | pmid=3196218 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3196218  }} </ref><ref name="pmid19903920">{{cite journal| author=Emerging Risk Factors Collaboration. Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK et al.| title=Major lipids, apolipoproteins, and risk of vascular disease. | journal=JAMA | year= 2009 | volume= 302 | issue= 18 | pages= 1993-2000 | pmid=19903920 | doi=10.1001/jama.2009.1619 | pmc=3284229 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19903920  }}  [https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20157124 Review in: Ann Intern Med. 2010 Feb 16;152(4):JC-212] </ref><ref name="pmid8831911">{{cite journal| author=Assmann G, Schulte H, von Eckardstein A, Huang Y| title=High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport. | journal=Atherosclerosis | year= 1996 | volume= 124 Suppl | issue=  | pages= S11-20 | pmid=8831911 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8831911  }} </ref><ref name="pmid15364185">{{cite journal| author=Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F et al.| title=Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. | journal=Lancet | year= 2004 | volume= 364 | issue= 9438 | pages= 937-52 | pmid=15364185 | doi=10.1016/S0140-6736(04)17018-9 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15364185  }} </ref>
*The atheroprotective function of [[HDL]] C is determined by measuring the cholesterol [[efflux]] from the cells and its [[anti-oxidative]] ability.<ref name="pmid25404125">{{cite journal| author=Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE et al.| title=HDL cholesterol efflux capacity and incident cardiovascular events. | journal=N Engl J Med | year= 2014 | volume= 371 | issue= 25 | pages= 2383-93 | pmid=25404125 | doi=10.1056/NEJMoa1409065 | pmc=4308988 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25404125  }} </ref>
*In [[Apo A1]] deficiency there is complete absence of [[Apo A1]] and [[HDL]] C in [[homozygotes]] and less than 50% normal in [[heterozygotes]], this disrupts the [[reverse cholesterol transport]] by :
**Change of chemical compositon in sub-populations of [[HDL]] C.<ref name="pmid21537175">{{cite journal| author=Asztalos BF, Tani M, Schaefer EJ| title=Metabolic and functional relevance of HDL subspecies. | journal=Curr Opin Lipidol | year= 2011 | volume= 22 | issue= 3 | pages= 176-85 | pmid=21537175 | doi=10.1097/MOL.0b013e3283468061 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21537175  }} </ref>
**Decrease in the [[cholesterol efflux]].
**Failure of cholesterol ester formation as [[LCAT]] function is compromised.
*The changes in the [[reverse cholesterol transport]] predispose the patients to premature heart disease.


==== Genetics ====
==== Genetics ====
*Apolipoprotein deficiency is caused by mutation in the Apo A1 gene (11q23-q24) which codes for the apolipoprotein A1.
*[[Apolipoprotein A1]] deficiency is caused by [[mutation]] in the [[Apo A1]] [[gene]] (11q23-q24) which encodes for the [[apolipoprotein A1]].
*Mutations in the gene lead to decreased production, impaired function or increased Apo A1 catabolism.
*Mutations in the [[gene]] result in decreased production, impaired function or increased [[Apo A1]] [[catabolism]].
*Clinical phenotype varies with individual mutation and the type.
*[[Clinical phenotype]] varies with individual [[mutation]] and the [[type]].
*Frameshift mutations, nonsense mutations, genomic rearrangements, deletions are more commonly associated with premature heart disease and undetectable Apo A1 levels.
*[[Frameshift mutations]], [[nonsense]] mutations, [[genomic rearrangements]], [[deletions]] are more commonly associated with [[premature]] [[CVD]] and undetectable [[Apo A1]] levels.
*Patients with missense mutations usually have detectable plasma Apo A1 and low HDL C can present with cardiovascular symptoms, amyloidosis or are healthy patients with no signs of atherosclerosis.
*Patients with [[missense]] [[mutations]] usually have detectable plasma [[Apo A1]], low [[HDL]] C and can present with cardiovascular symptoms, [[amyloidosis]] or are healthy patients with no signs of [[atherosclerosis]].
 
==Natural History, Prognosis, Complications==
*The age of symptom onset in patients with [[Apo A1]] deficiency and the clinical presentation varies with different [[mutations]].
*Few patients remain asymptomatic into adulthood and few individuals may present from adolescence with symptoms of [[blurred vision]] due to [[corneal opacities]] or [[cataract]], tubero-eruptive, tendinous, palmar and/or planar [[xanthomas]], [[xanthelasmas]] and [[premature CVD]] and [[carotid atherosclerosis]].
*Individuals with certain mutations present with signs such as [[cerebellar ataxia]], [[hearing loss]], proliferative [[retinopathy]] or manifestations of secondary [[amyloidosis]] such as [[hepatomegaly]], [[nephropathy]] and [[cardiomyopathy]].
*If left untreated the major complication is development of [[premature CVD]].
*Prognosis depends on occurrence of [[premature CVD]] and end-stage organ failure in individuals with [[amyloidosis]].


==History and Symptoms==
==History and Symptoms==
*Age of of symptom onset and age of clinical presentation varies as many patients can remain asymptomatic into adulthood. Majority of  patients are diagnosed for the first time with a cardiovascular event at a young age.
*Age of of symptom onset and age of clinical presentation varies as many patients can remain asymptomatic into adulthood. Majority of  patients are diagnosed for the first time with a [[cardiovascular event]] at a young age.
*Patients who are symptomatic usually present with:
*Patients who are symptomatic usually present with:
**Blurry vision due to corneal opacities
**Blurry vision due to [[corneal opacities]]
**Yellowish orange lumps in the skin, palms and feet
**Yellowish orange lumps in the skin, palms and feet
**[[Coronary heart disease]] - History of [[angina]] or [[MI]] when younger than 60 years, history of premature [[heart disease]] in siblings and first-degree relatives.
**[[Coronary heart disease]] - History of [[angina]] or [[MI]] when younger than 60 years, history of premature [[heart disease]] in siblings and first-degree relatives.
Line 126: Line 131:
***History of [[transient ischemic attack]]
***History of [[transient ischemic attack]]
***History of [[carotid endarterectomy]]
***History of [[carotid endarterectomy]]
*Less common findings in Apo A1 deficiency include:
*Less common symptoms in [[Apo A1 deficiency]] include:
**Ataxia
**[[Ataxia]]
**Hearing loss
**[[Hearing loss]]
**Manifestions of amyloidosis:  
**Manifestions of [[amyloidosis]]:  
***Nephropathy presents with hematuria, generalized body swelling, shortness of breath on exertion.
***[[Nephropathy]] presents with [[hematuria]], generalized body swelling, [[shortness of breath]] on [[exertion]].
***Cardiomyopathy can present with chest pain, shortness of breath on exertion, syncope, pedal edema.
***[[Cardiomyopathy]] can present with [[chest pain]], [[shortness of breath]] on [[exertion]], [[syncope]], [[pedal edema]].


==Physical Examination==
==Physical Examination==
*Corneal opacities, corneal arcus
Physical examination findings in [[Apo A1]] deficiency include:
*Tubero-eruptive,  palmar or planar xanthomas
*[[Corneal]] opacities, [[Arcus senilis cornea|corneal arcus]]
*Cerebellar ataxia
*Tubero-eruptive,  palmar or planar [[xanthomas]]
*Neuro-sensory hearing loss
*[[Cerebellar ataxia]]
*Hepatomegaly
*[[Sensorineural]] [[hearing loss]]
*[[Hepatomegaly]]


==Diagnosis==
==Diagnosis==
*Apo A1 deficiency is diagnosed by combination undectectable Apo A1 and HDL C levels.
*[[Apo A1]] deficiency is diagnosed by combination undectectable [[Apo A1]] and [[HDL]] C levels.
===Lipid Analysis===
===Lipid Analysis===
*Laboratory features consistent with the diagnosis of Apo A1 deficiency include:
*Laboratory features consistent with the diagnosis of [[Apo A1]] deficiency include:
**Undetectable Apo A1
**Undetectable [[Apo A1]]
**HDL C less than 10mg/dl
**[[HDL C]] less than 10mg/dl
**Normal or elevated triglyceride
**Normal or elevated [[triglyceride]]
**Normal or elevated LDL C
**Normal or elevated [[LDL]] C


===2D Electrophoresis===
===2D Electrophoresis===
*2D gel electrophoresis with anti-apo A1 immunoblotting is very useful in differentiating the diseases with low HDL C. It is based on the distribution of Apo A1 in different sub-populations of HDL C.
*[[2D gel electrophoresis]] with anti-apo A1 [[immunoblotting]] is very useful in differentiating the diseases with low [[HDL]] C. It is based on the distribution of [[Apo A1]] in different sub-populations of [[HDL]] C.
*The normal values and distribution of Apo A1 in HDL C are as follows:
*The normal values and distribution of [[Apo A1]] in [[HDL]] C are as follows:
**Normal Plasma Apo A1 is 140mg/dl
**Normal [[plasma]] [[Apo A1]] is 140mg/dl
**10% is found in small discoidal pre beta HDL and alpha-1 HDL C.
**10% is found in small discoidal pre beta [[HDL]] and alpha-1 [[HDL]] C.
**90% is found in alpha-2 and alpha-3 HDL C.
**90% is found in alpha-2 and alpha-3 [[HDL]] C.
*In Apo A1 deficiency, a total absence of Apo A1 containing HDL C is demonstrated on 2D electrophoresis.
*In Apo A1 deficiency, a total absence of [[Apo A1]] containing HDL C is demonstrated on 2D [[electrophoresis]].


===Molecular Gene Sequencing===
===Molecular Gene Sequencing===
*The gold standard for diagnosis of Apo A1 deficiency is molecular gene sequencing for identification of the mutation.
*The gold standard for diagnosis of [[Apo A1]] deficiency is molecular [[gene sequencing]] for identification of the [[mutation]].


==Differential Diagnosis==
==Differential Diagnosis==
Line 271: Line 277:
!Apo A Deficiency
!Apo A Deficiency
|-
|-
|Planar Xanthomas
|Planar [[Xanthomas]]
|Absent  
|Absent  
|Present  
|Present  
|Present
|Present
|-
|-
|Tubo-Eruptive Xanthomas  
|Tubo-Eruptive [[Xanthomas]]
|Absent  
|Absent  
|Absent  
|Absent  
Line 286: Line 292:
|Present
|Present
|-
|-
|Triglyceride  
|[[Triglyceride]]
|Decreased due to the absence  
|Decreased due to the absence of [[Apo C III]](lipolysis inhibitor)
of Apo C III- a lipolysis inhibitor  
|Decreased  
|Decreased  
|Normal
|Normal
|-
|-
|LDL C  
|[[LDL]] C  
|Normal  
|Normal  
|Normal  
|Normal  
|Normal
|Normal
|-
|-
|HDL C  
|[[HDL]] C  
|Less than 5mg/dl
|Less than 5mg/dl
|Less than 5mg/dl
|Less than 5mg/dl
|Less than 5mg/dl
|Less than 5mg/dl
|-
|-
|Apo A1
|[[Apo A1]]
|Undetectable
|Undetectable
|Undetectable
|Undetectable
|Undetectable
|Undetectable
|-
|-
|Apo C III  
|[[Apo C III]]
|Undetectable
|Undetectable
|Undetectable
|Undetectable
|Normal
|Normal
|-
|-
|Apo A IV
|[[Apo AIV]]
|Undetectable  
|Undetectable  
|Normal  
|Normal  
Line 321: Line 326:
<small>
<small>
{{Family tree/start}}
{{Family tree/start}}
{{Family tree | | | | | | A01 | | | |A01= HDL <20mg/dl in the absence of severe hypertriglyceridemia}}
{{Family tree | | | | | | A01 | | | |A01= HDL <20mg/dl in the absence of severe [[hypertriglyceridemia]]}}
{{Family tree | | | | | | |!| | | | | }}
{{Family tree | | | | | | |!| | | | | }}
{{Family tree | | | | | | |!| | | | | }}
{{Family tree | | | | | | |!| | | | | }}
{{Family tree | | | | | | C01 | | | |C01= Rule out secondary causes of low HDL C<br>Paraproteinemia from multiple myeloma<br>Anabolic steriod use<br>Fibrate use<br>Thiazolidinedione use}}
{{Family tree | | | | | | C01 | | | |C01= Rule out secondary causes of low [[HDL]] C<br>[[Paraproteinemia]] from [[multiple myeloma]]<br>[[Anabolic steriod]] use<br>[[Fibrate]] use<br>[[Thiazolidinedione]] use}}
{{Family tree | | | | | | |!| | | | | }}
{{Family tree | | | | | | |!| | | | | }}
{{Family tree | | | | | | |!| | | | | }}
{{Family tree | | | | | | |!| | | | | }}
{{Family tree | | | | | | E01 | | | |E01= Consider Monogenic primary disorders<br>Order ApoA1}}
{{Family tree | | | | | | E01 | | | |E01= Consider Monogenic primary disorders<br>Order [[Apo A1]]}}
{{Family tree | | | | | | |!| | | | | }}
{{Family tree | | | | | | |!| | | | | }}
{{Family tree | | |,|-|-|-|^|-|-|.|}}
{{Family tree | | |,|-|-|-|^|-|-|.|}}
{{Family tree | |F01| | | | |F02| |F01= >5mg/dl| F02= Undetectable or <5mg/dl}}
{{Family tree | |F01| | | | |F02| |F01= >5mg/dl| F02= Undetectable or <5mg/dl}}
{{Family tree | | |!| | | | | | |!| | | | | | }}
{{Family tree | | |!| | | | | | |!| | | | | | }}
{{Family tree | |G01| | | | |G02| | | |G01=Familial LCAT deficiency <br>High plasma FC:CE ratio<br>2D electrophoresis: Prebeta and Alpha-4, Beta mobility of LDL|G02= Do 2D Gel Electrophoresis with Apo A1 Immunoassay}}
{{Family tree | |G01| | | | |G02| | | |G01=Familial [[LCAT]] deficiency <br>High [[plasma]] FC:CE ratio<br>[[2D electrophoresis]]: Prebeta and Alpha-4, Beta mobility of [[LDL]]|G02= Do [[2D Gel Electrophoresis]] with [[Apo A1]] Immunoassay}}
{{Family tree | | | | | | | | | |!| | | | }}
{{Family tree | | | | | | | | | |!| | | | }}
{{Family tree | | | | | | | |,|-|^|-|-|.| }}
{{Family tree | | | | | | | |,|-|^|-|-|.| }}
{{Family tree | | | | | | | H01| | |H02|H01= Complete absence of Apo A1 containing HDL C|H02= Only Pre-Beta HDL C}}
{{Family tree | | | | | | | H01| | |H02|H01= Complete absence of [[Apo A1]] containing [[HDL]] C|H02= Only Pre-Beta [[HDL]] C}}
{{Family tree | | | | | | | |!| | | | |!| }}
{{Family tree | | | | | | | |!| | | | |!| }}
{{Family tree | | | | | | |I01| | |I02|I01=Apo A1 Deficiency<br><SMALL>(Confirm with gene sequencing)</SMALL>|I02=Homozygous Tangier Disease<br><SMALL>(Confirm with gene sequencing)</SMALL>}}
{{Family tree | | | | | | |I01| | |I02|I01=[[Apo A1]] Deficiency<br><SMALL>(Confirm with [[gene sequencing]])</SMALL>|I02=[[Homozygous]] [[Tangier Disease]]<br><SMALL>(Confirm with [[gene sequencing]])</SMALL>}}
{{Family tree/end}}
{{Family tree/end}}
</small>
</small>
Line 343: Line 348:
==Treatment==
==Treatment==
===Medical Therapy===
===Medical Therapy===
The mainstay of therapy for Apo A1 deficiency include:
The mainstay of therapy for Apo A1 deficiency includes:
*Patients with low HDL C and Apo A1 should be treated with statins for reduction of LDL C.
*Patients with low [[HDL]] C and [[Apo A1]] should be treated with [[statins]] for optimizing the level of [[LDL]] C.
*Patients with Apo A1 variants do not develop clinical sequelae generally to need specific treatment.
*Patients with [[Apo A1]] variants do not develop clinical sequelae generally to need specific treatment.
*Apo A1 infusion therapy is the future of treatment, which helps in  improving the cholesterol efflux and reduce the plaque burden in patients who undergo interventions like PCI.<ref name="pmid27659879">{{cite journal| author=Gibson CM, Korjian S, Tricoci P, Daaboul Y, Alexander JH, Steg PG et al.| title=Rationale and design of Apo-I Event Reduction in Ischemic Syndromes I (AEGIS-I): A phase 2b, randomized, placebo-controlled, dose-ranging trial to investigate the safety and tolerability of CSL112, a reconstituted, infusible, human apoA-I, after acute myocardial infarction. | journal=Am Heart J | year= 2016 | volume= 180 | issue=  | pages= 22-8 | pmid=27659879 | doi=10.1016/j.ahj.2016.06.017 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27659879  }}</ref>
*[[Apo A1]] infusion therapy is the future of treatment, which helps in  improving the [[cholesterol efflux]] and reduce the plaque burden in patients who undergo interventions for [[CAD]].<ref name="pmid27659879">{{cite journal| author=Gibson CM, Korjian S, Tricoci P, Daaboul Y, Alexander JH, Steg PG et al.| title=Rationale and design of Apo-I Event Reduction in Ischemic Syndromes I (AEGIS-I): A phase 2b, randomized, placebo-controlled, dose-ranging trial to investigate the safety and tolerability of CSL112, a reconstituted, infusible, human apoA-I, after acute myocardial infarction. | journal=Am Heart J | year= 2016 | volume= 180 | issue=  | pages= 22-8 | pmid=27659879 | doi=10.1016/j.ahj.2016.06.017 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27659879  }}</ref>


===Surgical Therapy===
===Surgical Therapy===
*Patients presenting with myocardial infarction should undergo PCI with stent of the blocked vessel.
*Patients presenting with [[myocardial infarction]] should undergo [[coronary bypass]] or [[PCI]] with stent.


== Primary Prevention ==
== Primary Prevention ==
*Assessment of cardiovascular risk in patients diagnosed with Apo A1 deficiency and Apo A1 variants.
*Assessment of cardiovascular risk in patients diagnosed with [[Apo A1]] deficiency and [[Apo A1]] variants.
*The goal of LDL C should be targeted below 70mg/dl according to the ATP III guidelines with high intensity statin therapy.
*The goal of [[LDL]] C should be targeted below 70mg/dl according to the ATP III guidelines with high intensity statin therapy.
*All the traditional risk factors of CVD should be identified and addressed.
*All the traditional risk factors of CVD should be identified and addressed.
*Sub-clinical atherosclerosis can be identified by imaging with coronary artery calcium or carotid media thickness assessment which helps in guiding the lipid lowering therapy and assess the cardiovascular risk.
*Sub-clinical [[atherosclerosis]] can be identified by imaging with [[coronary artery calcium]] or [[carotid media thickness]] assessment which helps in guiding the [[lipid lowering therapy]] and assess the [[cardiovascular]] risk.


==References==
==References==

Latest revision as of 17:11, 4 April 2017

WikiDoc Resources for Apolipoprotein A deficiency

Articles

Most recent articles on Apolipoprotein A deficiency

Most cited articles on Apolipoprotein A deficiency

Review articles on Apolipoprotein A deficiency

Articles on Apolipoprotein A deficiency in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Apolipoprotein A deficiency

Images of Apolipoprotein A deficiency

Photos of Apolipoprotein A deficiency

Podcasts & MP3s on Apolipoprotein A deficiency

Videos on Apolipoprotein A deficiency

Evidence Based Medicine

Cochrane Collaboration on Apolipoprotein A deficiency

Bandolier on Apolipoprotein A deficiency

TRIP on Apolipoprotein A deficiency

Clinical Trials

Ongoing Trials on Apolipoprotein A deficiency at Clinical Trials.gov

Trial results on Apolipoprotein A deficiency

Clinical Trials on Apolipoprotein A deficiency at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Apolipoprotein A deficiency

NICE Guidance on Apolipoprotein A deficiency

NHS PRODIGY Guidance

FDA on Apolipoprotein A deficiency

CDC on Apolipoprotein A deficiency

Books

Books on Apolipoprotein A deficiency

News

Apolipoprotein A deficiency in the news

Be alerted to news on Apolipoprotein A deficiency

News trends on Apolipoprotein A deficiency

Commentary

Blogs on Apolipoprotein A deficiency

Definitions

Definitions of Apolipoprotein A deficiency

Patient Resources / Community

Patient resources on Apolipoprotein A deficiency

Discussion groups on Apolipoprotein A deficiency

Patient Handouts on Apolipoprotein A deficiency

Directions to Hospitals Treating Apolipoprotein A deficiency

Risk calculators and risk factors for Apolipoprotein A deficiency

Healthcare Provider Resources

Symptoms of Apolipoprotein A deficiency

Causes & Risk Factors for Apolipoprotein A deficiency

Diagnostic studies for Apolipoprotein A deficiency

Treatment of Apolipoprotein A deficiency

Continuing Medical Education (CME)

CME Programs on Apolipoprotein A deficiency

International

Apolipoprotein A deficiency en Espanol

Apolipoprotein A deficiency en Francais

Business

Apolipoprotein A deficiency in the Marketplace

Patents on Apolipoprotein A deficiency

Experimental / Informatics

List of terms related to Apolipoprotein A deficiency

To view Lipoprotein Disorders Main Page Click here
To view Hypolipoproteinemia Main Page Click here

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Aravind Kuchkuntla, M.B.B.S[2]

Synonyms and keywords: Familial hypoalphalipoproteinemia, FHA, familial HDL deficiency, FHD, high density lipoprotein deficiency, HDLD

Overview

Apolipoprotien A1 deficiency is a rare monogenic metabolic disorder resulting in undetectable Apo A1 levels and HDL C less than 20mg/dl. APOA1 gene encodes for the Apo A1 protein which is the major component of HDL C. It is synthesized in the liver and released into the circulation as very small discoid pre beta HDL, which picks up free cholesterol from the cells and macrophages. Apo A1 also activates LCAT which esterifies free cholesterol on the surface of alpha 4 HDL resulting in the formation of cholesterol esters. These two initial steps in the reverse cholesterol are dependent on a functional Apo A1 which is defective in Apo A1 deficiency. Apo A1 synthesis is affected leading to very low HDL levels. Worldwide, 82 cases and a variety of mutations are reported. The biochemical phenotype is always a low Apo A1 and low HDL C. Clinical phenotype varies with each mutation and is inconsistent. Symptomatic patients usually present with corneal opacities, xanthelasma and premature heart disease. Cardiovascular risk assessment and optimizing risk factors has an important role in the management.

Historical Perspective

Classification

Familial apolipoprotein A-I/C-III/A-IV deficiency

ApoA1/ApoC-III Deficiency

Apo A1 Deficiency

Apo A1 Variants

Demographics, Epidemiology

  • Worldwide, 82 Apo A1 mutations have been reported.[22]
  • The prevalence of Apo A1 deficiency is estimated to be less than 1/1,000,000 population.[31]
  • Apo A1 deficiency accounts for 6% of Japanese population with low HDL C.[32]
  • Genomic sequencing of Apo A1 gene in 10,330 population based participants in the Copenhagen City Heart study revealed[24]:

Pathogenesis

Apolipoprotein A1 deficiency is caused by mutation in the APOA1 gene encoding ApoA1 protein, a major transport protein of reverse cholesterol transport.

Pathophysiology

Reverse Cholesterol Transport[33]

 
 
 
Very small discoidal pre beta-1 HDL picks up free cholesterol from cells via ABCA1 transporter[34] to become small discoidal alpha-4 HDL, this intitial step is disrupted in Tangier disease resulting in only pre beta HDL on 2D electrophoresis.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Discoidal HDL particles are converted to medium spherical α-3 HDL and larger particles by the esterification of free cholesterol via the enzyme lecithin cholesterol acyltransferase (LCAT) and the addition of ApoA II
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These particles are further converted to large and very large spherical α-2 and α-1 HDL by the actions of cholesteryl ester transfer protein (CETP). CETP transfers cholesteryl ester from HDL to triglyceride rich lipoproteins in exchange for triglyceride
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Very large α-1 HDL particles are donors of cholesterol to the liver, and the constituents of these particles can recycle back to form very small discoidal particles and re-enter the HDL cycle, or be catabolized directly by the kidney or liver
 
 
 

Genetics

Natural History, Prognosis, Complications

History and Symptoms

Physical Examination

Physical examination findings in Apo A1 deficiency include:

Diagnosis

  • Apo A1 deficiency is diagnosed by combination undectectable Apo A1 and HDL C levels.

Lipid Analysis

  • Laboratory features consistent with the diagnosis of Apo A1 deficiency include:

2D Electrophoresis

  • 2D gel electrophoresis with anti-apo A1 immunoblotting is very useful in differentiating the diseases with low HDL C. It is based on the distribution of Apo A1 in different sub-populations of HDL C.
  • The normal values and distribution of Apo A1 in HDL C are as follows:
    • Normal plasma Apo A1 is 140mg/dl
    • 10% is found in small discoidal pre beta HDL and alpha-1 HDL C.
    • 90% is found in alpha-2 and alpha-3 HDL C.
  • In Apo A1 deficiency, a total absence of Apo A1 containing HDL C is demonstrated on 2D electrophoresis.

Molecular Gene Sequencing

Differential Diagnosis

Familial LCAT

Deficiency

Fish Eye

Disease

Homozygous Tangier

Disease

Heterozygous Tangier

Disease

Apo A1 Deficiency
Gene Defect LCAT LCAT ABCA1 ABCA1 Apo A1
Inheritance Autosomal Recessive Autosomal Recessive Autosomal Recessive Autosomal Recessive Autosomal Dominant
Pathogenesis
  • Loss of alpha and beta LCAT function
  • Failure of cholesterol ester formation.
Loss of alpha function only

Pre beta-1 HDL fails to picks up free cholesterol from cells due to mutation in ABCA1 transporter.

Similar to homozygous Defective synthesis of Apo A1 resulting in failure of maturation of HDL and defective reverse cholesterol transport.
Clinical Features
  • Annular corneal opacity
  • Anaemia
  • Progressive renal disease with proteinuria
  • Corneal opacities only
  • Normal renal function
  • Large yellow-orange tonsils
  • Dense central corneal opacity
  • Relapsing and remitting course of neuropathy
Asymptomatic
  • Corneal Opacities
  • Tuboeruptive, Planar and palmar Xanthomas
  • Premature Heart Disease
Lipid Panel
  • Elevated Free cholesterol
  • HDL-C < 10 mg/dL
  • Low Apo A1 and Apo AII
  • Elevated Apo E and Triglycerides
  • Low LDL C
  • Elevated free cholesterol
  • HDL C < 27 mg/dL
  • Apo A1<30mg/dl and low Apo A2
  • Elevated Apo E and Triglycerides
  • Normal LDL and VLDL
  • HDL < 5% of normal
  • Apo A1 < 1% of normal
  • LDL < 40% of normal
  • HDL C, Apo A1 and LDL 50% less than normal.
  • Undetectable Apo A1
  • HDL C less than 10mg/dl
  • Normal or low Apo AII
  • LDL C normal
  • Triglyceride normal or elevated
2D Gel Electrophoresis Pre β-1 and α-4 HDL, LDL with β mobility due to Lipoprotien-X Pre β-1and α-4 HDL with normal pre-β LDL. Only preβ-1 HDL present
  • Lack of large α-1 and α-2 HDL particles
  • Normal preβ-1 HDL
Lack of Apo A1 containing HDL particles.

Distinguishing features of homozygous patients with very low or undetectable HDL C and Apo A1[47]:
Apo A/CIII/A-IV Deficiency ApoA/CIII Deficiency Apo A Deficiency
Planar Xanthomas Absent Present Present
Tubo-Eruptive Xanthomas Absent Absent Present
Premature Heart Disease Present Present Present
Triglyceride Decreased due to the absence of Apo C III(lipolysis inhibitor) Decreased Normal
LDL C Normal Normal Normal
HDL C Less than 5mg/dl Less than 5mg/dl Less than 5mg/dl
Apo A1 Undetectable Undetectable Undetectable
Apo C III Undetectable Undetectable Normal
Apo AIV Undetectable Normal Normal

Approch to a patient with low HDL C[48]

 
 
 
 
 
HDL <20mg/dl in the absence of severe hypertriglyceridemia
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Rule out secondary causes of low HDL C
Paraproteinemia from multiple myeloma
Anabolic steriod use
Fibrate use
Thiazolidinedione use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider Monogenic primary disorders
Order Apo A1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
>5mg/dl
 
 
 
 
Undetectable or <5mg/dl
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Familial LCAT deficiency
High plasma FC:CE ratio
2D electrophoresis: Prebeta and Alpha-4, Beta mobility of LDL
 
 
 
 
Do 2D Gel Electrophoresis with Apo A1 Immunoassay
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Complete absence of Apo A1 containing HDL C
 
 
Only Pre-Beta HDL C
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apo A1 Deficiency
(Confirm with gene sequencing)
 
 
Homozygous Tangier Disease
(Confirm with gene sequencing)

Treatment

Medical Therapy

The mainstay of therapy for Apo A1 deficiency includes:

  • Patients with low HDL C and Apo A1 should be treated with statins for optimizing the level of LDL C.
  • Patients with Apo A1 variants do not develop clinical sequelae generally to need specific treatment.
  • Apo A1 infusion therapy is the future of treatment, which helps in improving the cholesterol efflux and reduce the plaque burden in patients who undergo interventions for CAD.[49]

Surgical Therapy

Primary Prevention

References

  1. Vergani C, Bettale G (1981). "Familial hypo-alpha-lipoproteinemia". Clin Chim Acta. 114 (1): 45–52. PMID 7249374.
  2. Breslow JL, Ross D, McPherson J, Williams H, Kurnit D, Nussbaum AL; et al. (1982). "Isolation and characterization of cDNA clones for human apolipoprotein A-I". Proc Natl Acad Sci U S A. 79 (22): 6861–5. PMC 347233. PMID 6294659.
  3. Karathanasis SK, Zannis VI, Breslow JL (1983). "Isolation and characterization of the human apolipoprotein A-I gene". Proc Natl Acad Sci U S A. 80 (20): 6147–51. PMC 390160. PMID 6413973.
  4. Daniels SR, Bates S, Lukin RR, Benton C, Third J, Glueck CJ (1982). "Cerebrovascular arteriopathy (arteriosclerosis) and ischemic childhood stroke". Stroke. 13 (3): 360–5. PMID 7080131.
  5. Law SW, Gray G, Brewer HB (1983). "cDNA cloning of human apoA-I: amino acid sequence of preproapoA-I". Biochem Biophys Res Commun. 112 (1): 257–64. PMID 6404278.
  6. Borecki IB, Rao DC, Third JL, Laskarzewski PM, Glueck CJ (1986). "A major gene for primary hypoalphalipoproteinemia". Am J Hum Genet. 38 (3): 373–81. PMC 1684774. PMID 3953576.
  7. Ordovas JM, Schaefer EJ, Salem D, Ward RH, Glueck CJ, Vergani C; et al. (1986). "Apolipoprotein A-I gene polymorphism associated with premature coronary artery disease and familial hypoalphalipoproteinemia". N Engl J Med. 314 (11): 671–7. doi:10.1056/NEJM198603133141102. PMID 3081805.
  8. Li WH, Tanimura M, Luo CC, Datta S, Chan L (1988). "The apolipoprotein multigene family: biosynthesis, structure, structure-function relationships, and evolution". J Lipid Res. 29 (3): 245–71. PMID 3288703.
  9. Gillotte KL, Zaiou M, Lund-Katz S, Anantharamaiah GM, Holvoet P, Dhoest A; et al. (1999). "Apolipoprotein-mediated plasma membrane microsolubilization. Role of lipid affinity and membrane penetration in the efflux of cellular cholesterol and phospholipid". J Biol Chem. 274 (4): 2021–8. PMID 9890960.
  10. Ajees AA, Anantharamaiah GM, Mishra VK, Hussain MM, Murthy HM (2006). "Crystal structure of human apolipoprotein A-I: insights into its protective effect against cardiovascular diseases". Proc Natl Acad Sci U S A. 103 (7): 2126–31. doi:10.1073/pnas.0506877103. PMC 1413691. PMID 16452169.
  11. Schaefer EJ, Heaton WH, Wetzel MG, Brewer HB (1982). "Plasma apolipoprotein A-1 absence associated with a marked reduction of high density lipoproteins and premature coronary artery disease". Arteriosclerosis. 2 (1): 16–26. PMID 6800349.
  12. Schaefer EJ (1984). "Clinical, biochemical, and genetic features in familial disorders of high density lipoprotein deficiency". Arteriosclerosis. 4 (4): 303–22. PMID 6431953.
  13. Norum RA, Lakier JB, Goldstein S, Angel A, Goldberg RB, Block WD; et al. (1982). "Familial deficiency of apolipoproteins A-I and C-III and precocious coronary-artery disease". N Engl J Med. 306 (25): 1513–9. doi:10.1056/NEJM198206243062503. PMID 7078608.
  14. Forte TM, Nichols AV, Krauss RM, Norum RA (1984). "Familial apolipoprotein AI and apolipoprotein CIII deficiency. Subclass distribution, composition, and morphology of lipoproteins in a disorder associated with premature atherosclerosis". J Clin Invest. 74 (5): 1601–13. doi:10.1172/JCI111576. PMC 425337. PMID 6501564.
  15. Matsunaga T, Hiasa Y, Yanagi H, Maeda T, Hattori N, Yamakawa K; et al. (1991). "Apolipoprotein A-I deficiency due to a codon 84 nonsense mutation of the apolipoprotein A-I gene". Proc Natl Acad Sci U S A. 88 (7): 2793–7. PMC 51325. PMID 1901417.
  16. Ng DS, Leiter LA, Vezina C, Connelly PW, Hegele RA (1994). "Apolipoprotein A-I Q[-2]X causing isolated apolipoprotein A-I deficiency in a family with analphalipoproteinemia". J Clin Invest. 93 (1): 223–9. doi:10.1172/JCI116949. PMC 293756. PMID 8282791.
  17. Santos RD, Schaefer EJ, Asztalos BF, Polisecki E, Wang J, Hegele RA; et al. (2008). "Characterization of high density lipoprotein particles in familial apolipoprotein A-I deficiency". J Lipid Res. 49 (2): 349–57. doi:10.1194/jlr.M700362-JLR200. PMID 17991756.
  18. Wada M, Iso T, Asztalos BF, Takama N, Nakajima T, Seta Y; et al. (2009). "Marked high density lipoprotein deficiency due to apolipoprotein A-I Tomioka (codon 138 deletion)". Atherosclerosis. 207 (1): 157–61. doi:10.1016/j.atherosclerosis.2009.04.018. PMID 19473658.
  19. Al-Sarraf A, Al-Ghofaili K, Sullivan DR, Wasan KM, Hegele R, Frohlich J (2010). "Complete Apo AI deficiency in an Iraqi Mandaean family: case studies and review of the literature". J Clin Lipidol. 4 (5): 420–6. doi:10.1016/j.jacl.2010.05.001. PMID 21122686.
  20. Miccoli R, Zhu Y, Daum U, Wessling J, Huang Y, Navalesi R; et al. (1997). "A natural apolipoprotein A-I variant, apoA-I (L141R)Pisa, interferes with the formation of alpha-high density lipoproteins (HDL) but not with the formation of pre beta 1-HDL and influences efflux of cholesterol into plasma". J Lipid Res. 38 (6): 1242–53. PMID 9215551.
  21. Daum U, Leren TP, Langer C, Chirazi A, Cullen P, Pritchard PH; et al. (1999). "Multiple dysfunctions of two apolipoprotein A-I variants, apoA-I(R160L)Oslo and apoA-I(P165R), that are associated with hypoalphalipoproteinemia in heterozygous carriers". J Lipid Res. 40 (3): 486–94. PMID 10064737.
  22. 22.0 22.1 22.2 Anthanont P, Asztalos BF, Polisecki E, Zachariah B, Schaefer EJ (2015). "Case report: A novel apolipoprotein A-I missense mutation apoA-I (Arg149Ser)Boston associated with decreased lecithin-cholesterol acyltransferase activation and cellular cholesterol efflux". J Clin Lipidol. 9 (3): 390–5. doi:10.1016/j.jacl.2015.02.005. PMID 26073399.
  23. 23.0 23.1 Lee EY, Klementowicz PT, Hegele RA, Asztalos BF, Schaefer EJ (2013). "HDL deficiency due to a new insertion mutation (ApoA-INashua) and review of the literature". J Clin Lipidol. 7 (2): 169–73. doi:10.1016/j.jacl.2012.10.011. PMC 4565164. PMID 23415437.
  24. 24.0 24.1 Haase CL, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A (2012). "Population-based resequencing of APOA1 in 10,330 individuals: spectrum of genetic variation, phenotype, and comparison with extreme phenotype approach". PLoS Genet. 8 (11): e1003063. doi:10.1371/journal.pgen.1003063. PMC 3510059. PMID 23209431.
  25. Soutar AK, Hawkins PN, Vigushin DM, Tennent GA, Booth SE, Hutton T; et al. (1992). "Apolipoprotein AI mutation Arg-60 causes autosomal dominant amyloidosis". Proc Natl Acad Sci U S A. 89 (16): 7389–93. PMC 49715. PMID 1502149.
  26. Das M, Wilson CJ, Mei X, Wales TE, Engen JR, Gursky O (2016). "Structural Stability and Local Dynamics in Disease-Causing Mutants of Human Apolipoprotein A-I: What Makes the Protein Amyloidogenic?". J Mol Biol. 428 (2 Pt B): 449–62. doi:10.1016/j.jmb.2015.10.029. PMC 4744490. PMID 26562506.
  27. Franceschini G, Sirtori CR, Capurso A, Weisgraber KH, Mahley RW (1980). "A-IMilano apoprotein. Decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family". J Clin Invest. 66 (5): 892–900. doi:10.1172/JCI109956. PMC 371523. PMID 7430351.
  28. Funke H, von Eckardstein A, Pritchard PH, Karas M, Albers JJ, Assmann G (1991). "A frameshift mutation in the human apolipoprotein A-I gene causes high density lipoprotein deficiency, partial lecithin: cholesterol-acyltransferase deficiency, and corneal opacities". J Clin Invest. 87 (1): 371–6. doi:10.1172/JCI114997. PMC 295069. PMID 1898657.
  29. Takata K, Saku K, Ohta T, Takata M, Bai H, Jimi S; et al. (1995). "A new case of apoA-I deficiency showing codon 8 nonsense mutation of the apoA-I gene without evidence of coronary heart disease". Arterioscler Thromb Vasc Biol. 15 (11): 1866–74. PMID 7583566.
  30. Anthanont P, Polisecki E, Asztalos BF, Diffenderfer MR, Barrett PH, Millar JS; et al. (2014). "A novel ApoA-I truncation (ApoA-IMytilene) associated with decreased ApoA-I production". Atherosclerosis. 235 (2): 470–6. doi:10.1016/j.atherosclerosis.2014.05.935. PMID 24950002.
  31. "Orphanet: Apolipoprotein A I deficiency".
  32. Yamakawa-Kobayashi K, Yanagi H, Fukayama H, Hirano C, Shimakura Y, Yamamoto N; et al. (1999). "Frequent occurrence of hypoalphalipoproteinemia due to mutant apolipoprotein A-I gene in the population: a population-based survey". Hum Mol Genet. 8 (2): 331–6. PMID 9931341.
  33. 33.0 33.1 Asztalos BF, Tani M, Schaefer EJ (2011). "Metabolic and functional relevance of HDL subspecies". Curr Opin Lipidol. 22 (3): 176–85. doi:10.1097/MOL.0b013e3283468061. PMID 21537175.
  34. Favari E, Calabresi L, Adorni MP, Jessup W, Simonelli S, Franceschini G; et al. (2009). "Small discoidal pre-beta1 HDL particles are efficient acceptors of cell cholesterol via ABCA1 and ABCG1". Biochemistry. 48 (46): 11067–74. doi:10.1021/bi901564g. PMID 19839639.
  35. Lund-Katz S, Phillips MC (2010). "High density lipoprotein structure-function and role in reverse cholesterol transport". Subcell Biochem. 51: 183–227. doi:10.1007/978-90-481-8622-8_7. PMC 3215094. PMID 20213545.
  36. Hellerstein M, Turner S (2014). "Reverse cholesterol transport fluxes". Curr Opin Lipidol. 25 (1): 40–7. doi:10.1097/MOL.0000000000000050. PMID 24362356.
  37. Oram JF (2002). "ATP-binding cassette transporter A1 and cholesterol trafficking". Curr Opin Lipidol. 13 (4): 373–81. PMID 12151852.
  38. Iatan I, Bailey D, Ruel I, Hafiane A, Campbell S, Krimbou L; et al. (2011). "Membrane microdomains modulate oligomeric ABCA1 function: impact on apoAI-mediated lipid removal and phosphatidylcholine biosynthesis". J Lipid Res. 52 (11): 2043–55. doi:10.1194/jlr.M016196. PMC 3196236. PMID 21846716.
  39. Jonas A (2000). "Lecithin cholesterol acyltransferase". Biochim Biophys Acta. 1529 (1–3): 245–56. PMID 11111093.
  40. Krieger M (1999). "Charting the fate of the "good cholesterol": identification and characterization of the high-density lipoprotein receptor SR-BI". Annu Rev Biochem. 68: 523–58. doi:10.1146/annurev.biochem.68.1.523. PMID 10872459.
  41. Sorci-Thomas MG, Thomas MJ (2002). "The effects of altered apolipoprotein A-I structure on plasma HDL concentration". Trends Cardiovasc Med. 12 (3): 121–8. PMID 12007737.
  42. Wilson PW, Abbott RD, Castelli WP (1988). "High density lipoprotein cholesterol and mortality. The Framingham Heart Study". Arteriosclerosis. 8 (6): 737–41. PMID 3196218.
  43. Emerging Risk Factors Collaboration. Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK; et al. (2009). "Major lipids, apolipoproteins, and risk of vascular disease". JAMA. 302 (18): 1993–2000. doi:10.1001/jama.2009.1619. PMC 3284229. PMID 19903920. Review in: Ann Intern Med. 2010 Feb 16;152(4):JC-212
  44. Assmann G, Schulte H, von Eckardstein A, Huang Y (1996). "High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport". Atherosclerosis. 124 Suppl: S11–20. PMID 8831911.
  45. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F; et al. (2004). "Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study". Lancet. 364 (9438): 937–52. doi:10.1016/S0140-6736(04)17018-9. PMID 15364185.
  46. Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE; et al. (2014). "HDL cholesterol efflux capacity and incident cardiovascular events". N Engl J Med. 371 (25): 2383–93. doi:10.1056/NEJMoa1409065. PMC 4308988. PMID 25404125.
  47. Santos RD, Asztalos BF, Martinez LR, Miname MH, Polisecki E, Schaefer EJ (2008). "Clinical presentation, laboratory values, and coronary heart disease risk in marked high-density lipoprotein-deficiency states". J Clin Lipidol. 2 (4): 237–47. doi:10.1016/j.jacl.2008.06.002. PMID 21291740.
  48. Rader DJ, deGoma EM (2012). "Approach to the patient with extremely low HDL-cholesterol". J Clin Endocrinol Metab. 97 (10): 3399–407. doi:10.1210/jc.2012-2185. PMC 3462950. PMID 23043194.
  49. Gibson CM, Korjian S, Tricoci P, Daaboul Y, Alexander JH, Steg PG; et al. (2016). "Rationale and design of Apo-I Event Reduction in Ischemic Syndromes I (AEGIS-I): A phase 2b, randomized, placebo-controlled, dose-ranging trial to investigate the safety and tolerability of CSL112, a reconstituted, infusible, human apoA-I, after acute myocardial infarction". Am Heart J. 180: 22–8. doi:10.1016/j.ahj.2016.06.017. PMID 27659879.


Template:WH Template:WS