Pulmonary valve stenosis: Difference between revisions
No edit summary |
|||
(147 intermediate revisions by 5 users not shown) | |||
Line 15: | Line 15: | ||
MeshID = | | MeshID = | | ||
}} | }} | ||
{{CMG}}; {{AE}} {{AKI}} | {{CMG}}; {{AE}} {{AKI}} | ||
{{SK}} Valvular Pulmonary Stenosis, Pulmonic Stenosis, Right Ventricular Outlet Obstruction, supravalvular pulmonic stenosis, infundibular pulmonic stenosis, Narrowing of pulmonary valve | {{SK}} Valvular Pulmonary Stenosis, Pulmonic Stenosis, Right Ventricular Outlet Obstruction, supravalvular pulmonic stenosis, infundibular pulmonic stenosis, Narrowing of pulmonary valve, PS | ||
==Overview== | ==Overview== | ||
Pulmonary valve stenosis accounts for 8% of all [[congenital heart disease]] and worldwide the [[prevalence]] of pulmonary valve stenosis is 1 per 2000 births.<ref name="pmid22078432">{{cite journal| author=van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ et al.| title=Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. | journal=J Am Coll Cardiol | year= 2011 | volume= 58 | issue= 21 | pages= 2241-7 | pmid=22078432 | doi=10.1016/j.jacc.2011.08.025 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22078432 }} </ref> The pulmonic valve stenosis is classified into 3 different subtypes based on the location of the stenosis. Isolated [[valvular]] [[stenosis]] is the most common sub-type, with dome shaped morphology and dysplastic valves. Patients with mild stenosis usually have a beningn course and do not progress, patients with moderate to severe stenosis manifest [[Symptom|symptoms]] of [[dyspnea]], [[chest pain]], [[fatigue]] and [[syncope]]. If left [[untreated]] patients progress to [[right heart failure]]. [[2D Echo]] is the standard diagnostic test to identify the location and to assess the severity of the [[stenosis]]. Symptomatic patients undergo | Pulmonary valve stenosis accounts for 8% of all [[congenital heart disease]] and worldwide the [[prevalence]] of pulmonary valve stenosis is 1 per 2000 births.<ref name="pmid22078432">{{cite journal| author=van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ et al.| title=Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. | journal=J Am Coll Cardiol | year= 2011 | volume= 58 | issue= 21 | pages= 2241-7 | pmid=22078432 | doi=10.1016/j.jacc.2011.08.025 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22078432 }} </ref> The pulmonic valve stenosis is classified into 3 different subtypes based on the location of the stenosis. Isolated [[valvular]] [[stenosis]] is the most common sub-type, with dome shaped morphology and dysplastic valves. Patients with mild stenosis usually have a beningn course and do not progress, patients with moderate to severe stenosis manifest [[Symptom|symptoms]] of [[dyspnea]], [[chest pain]], [[fatigue]] and [[syncope]]. If left [[untreated]] patients progress to [[right heart failure]]. [[2D Echo]] is the standard diagnostic test to identify the location and to assess the severity of the [[stenosis]]. Symptomatic patients undergo valvulotomy or [[balloon valvuloplasty]] based on the morphology of the affected valves. Timely intervention in patients with [[valvular]] [[stenosis]] has good outcomes and excellent prognosis. Guidelines for evaluation, approach and treatment are well-defined. | ||
==Historical Perspective== | ==Historical Perspective== | ||
*The pulmonary valve and its function of allowing blood to the lungs for nourishment was first described by Hippocrates.<ref name=" | *The [[pulmonary valve]] and its function of allowing blood to the [[lungs]] for nourishment was first described by [[Hippocrates]]. <ref name="pmid18628928">{{cite journal |vauthors=Roberts WC, Ko JM |title=Some observations on mitral and aortic valve disease |journal=Proc (Bayl Univ Med Cent) |volume=21 |issue=3 |pages=282–99 |date=July 2008 |pmid=18628928 |pmc=2446420 |doi=10.1080/08998280.2008.11928412 |url=}}</ref> | ||
*Erasistratus, mentioned the function of the [[pulmonary valve]] in the unidirectional flow. <ref name="pmid19065003">{{cite journal| author=Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP et al.| title=Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. | journal=Eur J Echocardiogr | year= 2009 | volume= 10 | issue= 1 | pages= 1-25 | pmid=19065003 | doi=10.1093/ejechocard/jen303 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19065003 }} </ref> | |||
*Galen described the membranes of the valves and named them as "semilunar". | *Galen described the membranes of the [[valves]] and named them as "semilunar". <ref name="pmid7720297">{{cite journal| author=Waller BF, Howard J, Fess S| title=Pathology of tricuspid valve stenosis and pure tricuspid regurgitation--Part I. | journal=Clin Cardiol | year= 1995 | volume= 18 | issue= 2 | pages= 97-102 | pmid=7720297 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7720297 }} </ref> | ||
*Mondino de Luzzi designed the sketch of the pulmonary valves in the anatomical position for the first time. | *Mondino de Luzzi designed the sketch of the [[pulmonary valves]] in the anatomical position for the first time. <ref name="pmid7681733">{{cite journal |vauthors=Pellikka PA, Tajik AJ, Khandheria BK, Seward JB, Callahan JA, Pitot HC, Kvols LK |title=Carcinoid heart disease. Clinical and echocardiographic spectrum in 74 patients |journal=Circulation |volume=87 |issue=4 |pages=1188–96 |date=April 1993 |pmid=7681733 |doi=10.1161/01.cir.87.4.1188 |url=}}</ref> | ||
*Realdo Colombo described the pulmonary circulation for the first time. | *Realdo Colombo described the [[pulmonary circulation]] for the first time. <ref name="pmid24661289">{{cite journal |vauthors=Gur AK, Odabasi D, Kunt AG, Kunt AS |title=Isolated tricuspid valve repair for Libman-Sacks endocarditis |journal=Echocardiography |volume=31 |issue=6 |pages=E166–8 |date=July 2014 |pmid=24661289 |doi=10.1111/echo.12558 |url=}}</ref> | ||
*Aortic stenosis was probably first described by Lazare Riviere (1589-1655), a French physician in 1663. <ref name="pmid21365261">{{cite journal |vauthors=Muraru D, Badano LP, Sarais C, Soldà E, Iliceto S |title=Evaluation of tricuspid valve morphology and function by transthoracic three-dimensional echocardiography |journal=Curr Cardiol Rep |volume=13 |issue=3 |pages=242–9 |date=June 2011 |pmid=21365261 |doi=10.1007/s11886-011-0176-3 |url=}}</ref> | |||
*The first transcatheter aortic valve replacement procedure in the world was performed on 16 April 2002 in a 57-year-old inoperable patient with severe aortic stenosis. The procedure was done by the Interventional Cardiologist Professor Alain Cribier at the Charles Nicolle University Hospital in Rouen, France. | |||
==Classification== | ==Classification== | ||
===Based on the anatomic location=== | ===Based on the anatomic location=== | ||
[[Pulmonic stenosis]] is classified into valvular, subvalvular (infundibular) and supravalvular based on the location of the stenosis in relation to the pulmonary valve. Valvular stenosis is most common of the three sub-types. | [[Pulmonic stenosis]] is classified into valvular, subvalvular (infundibular) and supravalvular based on the location of the [[stenosis]] in relation to the pulmonary valve. Valvular stenosis is most common of the three sub-types.<ref name="pmid3337000">{{cite journal| author=Kelly TA, Rothbart RM, Cooper CM, Kaiser DL, Smucker ML, Gibson RS| title=Comparison of outcome of asymptomatic to symptomatic patients older than 20 years of age with valvular aortic stenosis. | journal=Am J Cardiol | year= 1988 | volume= 61 | issue= 1 | pages= 123-30 | pmid=3337000 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3337000 }} </ref> <ref name="pmid10">{{cite journal |vauthors=Schmoldt A, Benthe HF, Haberland G, Felt V, Nedvídková J, Hynie S, Mosinger B, Vavrinková M, Järvisalo J, Saris NE |title=Digitoxin metabolism by rat liver microsomes |journal=Biochem. Pharmacol. |volume=24 |issue=17 |pages=1639–41 |date=September 1975 |pmid=10 |pmc=5922622 |doi=10.1016/0006-2952(75)90009-x |url=}}</ref> | ||
*'''Sub-valvular stenosis''': It can be infudibular or sub-infundibular. Infundibular stenosis is a feature of tetralogy of | *'''Sub-valvular stenosis''': It can be infudibular or sub-infundibular. Infundibular stenosis is a feature of [[tetralogy of Fallot]]. Sub-infundibular pulmonic stenosis is known as ‘[[Double outlet right ventricle|double]] chambered right ventricle’ dividing the right ventricle into a high pressure inlet and a low pressure outlet causing a progressive [[right ventricular outflow tract obstruction]].<ref name="pmid7588901">{{cite journal| author=Cabrera A, Martinez P, Rumoroso JR, Alcibar J, Arriola J, Pastor E et al.| title=Double-chambered right ventricle. | journal=Eur Heart J | year= 1995 | volume= 16 | issue= 5 | pages= 682-6 | pmid=7588901 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7588901 }}</ref> | ||
*'''Valvular stenosis''': It is the most common cause of pulmonic stenosis. The valves are usually dome shaped or dysplastic affecting the movement of the cusps. It can be isolated or associated with other congenital heart diseases such as atrial septal | *'''Valvular stenosis''': It is the most common cause of pulmonic stenosis. The valves are usually dome shaped or dysplastic affecting the movement of the cusps. It can be isolated or associated with other [[congenital heart diseases]] such as [[atrial septal defect]], [[Ebstein’s anomaly|Ebstein’s]] anomaly, [[double outlet right ventricle]], and transposition of the great arteries.<ref name="pmid10">{{cite journal |vauthors=Schmoldt A, Benthe HF, Haberland G, Mills GC, Alperin JB, Trimmer KB, Dooren LJ, de Koning J, Kamphuis RP, Uittenbogaart CH, Brubakk AM, Vossen JM, Marniemi J, Parkki MG, Shute CC, Anderson TR, Slotkin TA |title=Digitoxin metabolism by rat liver microsomes |journal=Biochem. Pharmacol. |volume=24 |issue=17 |pages=1639–41 |date=September 1975 |pmid=10 |pmc=5922622 |doi=10.1016/0006-2944(75)90084-8 |url=}}</ref> | ||
*'''Supravalvular stenosis''': The obstruction is usually in the common pulmonary trunk or in the bifurcation or the pulmonary branches. It is commonly associated with other congenital syndromes such as Williams–Beuren, [[Noonan syndrome|Noonan]], Allagile, [[DiGeorges Syndrome|DiGeorge]], and [[Leopard syndrome|Leopard]] syndrome. | *'''Supravalvular stenosis''': The obstruction is usually in the common pulmonary trunk or in the bifurcation or the pulmonary branches. It is commonly associated with other congenital syndromes such as Williams–Beuren, [[Noonan syndrome|Noonan]], Allagile syndrome, [[DiGeorges Syndrome|DiGeorge]], and [[Leopard syndrome|Leopard]] syndrome. <ref name="pmid10">{{cite journal |vauthors=Schmoldt A, Benthe HF, Haberland G, Price J, Sandhu SS, Nelson P, Warren WJ, Nakamura M, Romrell LJ, Hall PF |title=Digitoxin metabolism by rat liver microsomes |journal=Biochem. Pharmacol. |volume=24 |issue=17 |pages=1639–41 |date=September 1975 |pmid=10 |pmc=5922622 |doi=10.1016/0009-8981(75)90259-4 |url=}}</ref> | ||
===Based on the severity of the stenosis=== | ===Based on the severity of the stenosis=== | ||
Severity of pulmonary stenosis is classified based on the estimated peak velocity and peak resting gradient calculated using modified [[Bernoulli equation|Bernoulli equatio]]<nowiki/>n. It is classified into:<ref name="pmid19130998">{{cite journal| author=Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP et al.| title=Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. | journal=J Am Soc Echocardiogr | year= 2009 | volume= 22 | issue= 1 | pages= 1-23; quiz 101-2 | pmid=19130998 | doi=10.1016/j.echo.2008.11.029 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19130998 }}</ref> | Severity of pulmonary stenosis is classified based on the estimated peak velocity and peak resting gradient calculated using modified [[Bernoulli equation|Bernoulli equatio]]<nowiki/>n. It is classified into:<ref name="pmid19130998">{{cite journal| author=Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP et al.| title=Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. | journal=J Am Soc Echocardiogr | year= 2009 | volume= 22 | issue= 1 | pages= 1-23; quiz 101-2 | pmid=19130998 | doi=10.1016/j.echo.2008.11.029 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19130998 }}</ref> | ||
*'''Mild:''' Peak velocity less than 3m/s and peak [[gradient]] is less than 36 mm Hg. | |||
*'''Mild:''' Peak velocity less than 3m/s and peak [[gradient]] is less than 36 mm Hg.<ref name="pmid19130998">{{cite journal| author=Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP et al.| title=Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. | journal=J Am Soc Echocardiogr | year= 2009 | volume= 22 | issue= 1 | pages= 1-23; quiz 101-2 | pmid=19130998 | doi=10.1016/j.echo.2008.11.029 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19130998 }}</ref> | |||
*'''Moderate:''' Peak velocity is 3 to 4m/s and peak [[gradient]] is 36 to 64mm Hg. | *'''Moderate:''' Peak velocity is 3 to 4m/s and peak [[gradient]] is 36 to 64mm Hg. | ||
*'''Severe''': Peak velocity is greater than 4m/s and peak gradient is greater than 64mm Hg. | *'''Severe''': Peak velocity is greater than 4m/s and peak gradient is greater than 64mm Hg. <ref name="pmid10">{{cite journal |vauthors=Schmoldt A, Benthe HF, Haberland G, Robinson JV, James AL, Sondén A, Rocksén D, Riddez L, Davidsson J, Persson JK, Gryth D, Bursell J, Arborelius UP, Ehrhart IC, Parker PE, Weidner WJ, Dabney JM, Scott JB, Haddy FJ, Meyer WJ, Gidwitz S, Ayers VK, Schoepp RJ, Johnston RE |title=Digitoxin metabolism by rat liver microsomes |journal=Biochem. Pharmacol. |volume=24 |issue=17 |pages=1639–41 |date=September 1975 |pmid=10 |pmc=5922622 |doi=10.1097/TA.0b013e3181a5b0e1 |url=}}</ref> | ||
*According to 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease, stages of severe [[pulmonic stenosis]] are defined as follows: This form of aortic stenosis presents later in life, usually after the age of 75. <ref>Townsend CM, et al. Sabiston Textbook of Surgery. 18th ed. Saunders; 2008:1841-1844.</ref> | |||
{| class="wikitable" | {| class="wikitable" | ||
!Stage | !Stage | ||
Line 58: | Line 65: | ||
*Vmax >4 m/s; peak instantaneous gradient >64 mm Hg | *Vmax >4 m/s; peak instantaneous gradient >64 mm Hg | ||
| | | | ||
*Right ventricular hypertrophy | *[[Right ventricular hypertrophy]] | ||
*Possible RV, RA enlargement | *Possible RV, RA enlargement | ||
*Poststenotic enlargement of main | *Poststenotic enlargement of main [[pulmonary artery]] | ||
| | | | ||
*None or variable and dependent on severity of obstruction | *None or variable and dependent on severity of obstruction | ||
Line 73: | Line 80: | ||
|A | |A | ||
|At risk | |At risk | ||
|Patients with risk factors for development of | |Patients with risk factors for development of [[valvular heart disease]] | ||
|- | |- | ||
|B | |B | ||
|Progressive | |Progressive | ||
|Patients with progressive | |Patients with progressive [[valvular heart disease]] (mild-to-moderate severity and asymptomatic) | ||
|- | |- | ||
|C | |C | ||
|Asymptomatic severe | |Asymptomatic severe | ||
|Asymptomatic patients who have the criteria for severe | |Asymptomatic patients who have the criteria for severe [[valvular heart disease]]: | ||
C1: Asymptomatic patients with severe VHD in whom the left or right ventricle remains compensated | *C1: Asymptomatic patients with severe [[VHD]] in whom the left or [[right ventricle]] remains compensated | ||
*C2: Asymptomatic patients with severe [[VHD]] with decompensation of the left or [[right ventricle]] | |||
C2: Asymptomatic patients with severe VHD with decompensation of the left or right ventricle | |||
|- | |- | ||
|D | |D | ||
|Symptomatic severe | |Symptomatic severe | ||
|Patients who have developed symptoms as a result of | |Patients who have developed symptoms as a result of [[valvular heart disease]] | ||
|} | |} | ||
==Pathophysiology== | ==Pathophysiology== | ||
===Pathogenesis=== | ===Pathogenesis=== | ||
*Pulmonic valve stenosis with fused commisures affect the flexibility of the valve causing obstruction of the outflow tract. In patients with dysplastic valves, the cusps are not fused but they are rigid from intrinsic thickening resulting in the narrowing of the outflow tract.<ref name=" | *Pulmonic valve stenosis with fused [[commisures]] affect the flexibility of the [[valve]] causing obstruction of the outflow tract. In patients with dysplastic valves, the [[cusps]] are not fused but they are rigid from intrinsic thickening resulting in the narrowing of the outflow tract. The valve problems develop 5 - 10 years after the rheumatic fever, a tiny nodule forms along the valve leaflets. The degree of leaflet thickening and [[calcification]] and the severity of chordal involvement are variable. Rheumatic fever is becoming rare in the United States, so mitral stenosis is also less common.<ref name="agabegi2nd-ch1">Chapter 1: Diseases of the Cardiovascular system > Section: Valvular Heart Disease in: {{cite book |author=Elizabeth D Agabegi; Agabegi, Steven S. |title=Step-Up to Medicine (Step-Up Series) |publisher=Lippincott Williams & Wilkins |location=Hagerstwon, MD |year=2008 |pages= |isbn=0-7817-7153-6 |oclc= |doi= |accessdate=}}</ref> | ||
*These morphological changes affect the complete opening of the [[pulmonic valve]] | *These morphological changes affect the complete opening of the [[pulmonic valve]] during the [[ventricular systole]] causing elevated right ventricular systolic pressures and leading to right ventricular remodelling.<ref name="pmid25771982">{{cite journal| author=Borgdorff MA, Dickinson MG, Berger RM, Bartelds B| title=Right ventricular failure due to chronic pressure load: What have we learned in animal models since the NIH working group statement? | journal=Heart Fail Rev | year= 2015 | volume= 20 | issue= 4 | pages= 475-91 | pmid=25771982 | doi=10.1007/s10741-015-9479-6 | pmc=4463984 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25771982 }}</ref> | ||
*The obstruction leads to increased pressure overload | *The obstruction leads to increased pressure overload on the [[right ventricle]] as it has to push the blood against resistance. <ref name="pmid10">{{cite journal |vauthors=Schmoldt A, Benthe HF, Haberland G, Price J, Philipps GR, Chiemprasert T |title=Digitoxin metabolism by rat liver microsomes |journal=Biochem. Pharmacol. |volume=24 |issue=17 |pages=1639–41 |date=September 1975 |pmid=10 |pmc=5922622 |doi=10.1016/0009-8981(75)90259-4 |url=}}</ref> | ||
===Genetics=== | ===Genetics=== | ||
These are a common genetic disorders associated with pulmonic stenosis:<ref name="pmid17519398">{{cite journal| author=Pierpont ME, Basson CT, Benson DW, Gelb BD, Giglia TM, Goldmuntz E et al.| title=Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. | journal=Circulation | year= 2007 | volume= 115 | issue= 23 | pages= 3015-38 | pmid=17519398 | doi=10.1161/CIRCULATIONAHA.106.183056 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17519398 }} </ref> | These are a common genetic disorders associated with pulmonic stenosis:<ref name="pmid17519398">{{cite journal| author=Pierpont ME, Basson CT, Benson DW, Gelb BD, Giglia TM, Goldmuntz E et al.| title=Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. | journal=Circulation | year= 2007 | volume= 115 | issue= 23 | pages= 3015-38 | pmid=17519398 | doi=10.1161/CIRCULATIONAHA.106.183056 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17519398 }} </ref> | ||
{| class="wikitable" | {| class="wikitable" | ||
!Syndrome | !Syndrome | ||
Line 105: | Line 111: | ||
!Other features | !Other features | ||
|- | |- | ||
|Noonan<ref name="pmid20301303">{{cite journal |vauthors=Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, Allanson JE, Roberts AE |title= |journal= |volume= |issue= |pages= |year= |pmid=20301303 |doi= |url=}}</ref> | |[[Noonan syndrome]]<ref name="pmid20301303">{{cite journal |vauthors=Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, Allanson JE, Roberts AE |title= |journal= |volume= |issue= |pages= |year= |pmid=20301303 |doi= |url=}}</ref> | ||
| | | | ||
*PTPN11, SOS1 | *PTPN11, SOS1 | ||
Line 114: | Line 120: | ||
*Dysplastic pulmonary valve stenosis | *Dysplastic pulmonary valve stenosis | ||
*Supravalvular pulmonary stenosis | *Supravalvular pulmonary stenosis | ||
*Hypertrophic cardiomyopathy | *[[Hypertrophic cardiomyopathy]] | ||
| | | | ||
*Short stature | *Short stature | ||
Line 124: | Line 130: | ||
| | | | ||
*7Q11.23 deletions | *7Q11.23 deletions | ||
*Autosomal dominant trait | *[[Autosomal dominant]] trait | ||
| | | | ||
*Supravalvular aortic or pulmonary stenosis | *Supravalvular aortic or pulmonary stenosis | ||
Line 133: | Line 139: | ||
*Endocrine disorders and genitourinary abnormalities | *Endocrine disorders and genitourinary abnormalities | ||
|- | |- | ||
|Leopard<ref name="pmid26632807">{{cite journal| author=Ghosh SK, Majumdar B, Rudra O, Chakraborty S| title=LEOPARD Syndrome. | journal=Dermatol Online J | year= 2015 | volume= 21 | issue= 10 | pages= | pmid=26632807 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26632807 }}</ref> | |[[Leopard syndrome]]<ref name="pmid26632807">{{cite journal| author=Ghosh SK, Majumdar B, Rudra O, Chakraborty S| title=LEOPARD Syndrome. | journal=Dermatol Online J | year= 2015 | volume= 21 | issue= 10 | pages= | pmid=26632807 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26632807 }}</ref> | ||
| | | | ||
*PTPN11, RAF-1 | *PTPN11, RAF-1 | ||
*Autosomal dominant trait | *[[Autosomal dominant]] trait | ||
| | | | ||
*Electrocardiographic abnormalities | *Electrocardiographic abnormalities | ||
Line 144: | Line 150: | ||
*Ocular hypertelorism | *Ocular hypertelorism | ||
*Abnormal genitalia | *Abnormal genitalia | ||
* | *Growth retardation | ||
*Deafness | *[[Deafness]] | ||
|- | |- | ||
|DiGeorge<ref name="pmid26056486">{{cite journal| author=Hacıhamdioğlu B, Hacıhamdioğlu D, Delil K| title=22q11 deletion syndrome: current perspective. | journal=Appl Clin Genet | year= 2015 | volume= 8 | issue= | pages= 123-32 | pmid=26056486 | doi=10.2147/TACG.S82105 | pmc=4445702 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26056486 }}</ref> | |[[DiGeorge syndrome]]<ref name="pmid26056486">{{cite journal| author=Hacıhamdioğlu B, Hacıhamdioğlu D, Delil K| title=22q11 deletion syndrome: current perspective. | journal=Appl Clin Genet | year= 2015 | volume= 8 | issue= | pages= 123-32 | pmid=26056486 | doi=10.2147/TACG.S82105 | pmc=4445702 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26056486 }}</ref> | ||
| | | | ||
*22Q11 deletion | *22Q11 deletion | ||
*Autosomal dominant trait | *[[Autosomal dominant]] trait | ||
| | | | ||
*Conotruncal defects such as tetralogy of Fallot | *Conotruncal defects such as [[tetralogy of Fallot]] | ||
*Interrupted aortic arch | *Interrupted aortic arch | ||
*Truncus arteriosus | *[[Truncus arteriosus]] | ||
*Vascular rings | *Vascular rings | ||
*ASD/VSD | *[[ASD]]/[[VSD]] | ||
| | | | ||
*Hypertelorism | *Hypertelorism | ||
Line 163: | Line 169: | ||
*Micrognathia | *Micrognathia | ||
*Developmental delay | *Developmental delay | ||
*Hypoplastic thymus | *Hypoplastic [[thymus]] | ||
*Hypocalcaemia | *[[Hypocalcaemia]] | ||
*Immunological abnormalities | *Immunological abnormalities | ||
|- | |- | ||
Line 170: | Line 176: | ||
| | | | ||
*AG-1, NOTCH-2 | *AG-1, NOTCH-2 | ||
* | *[[Autosomal dominant trait]] | ||
| | | | ||
*Peripheral pulmonary stenosis<ref name="pmid27041277">{{cite journal| author=Rodriguez RM, Feinstein JA, Chan FP| title=CT-defined phenotype of pulmonary artery stenoses in Alagille syndrome. | journal=Pediatr Radiol | year= 2016 | volume= 46 | issue= 8 | pages= 1120-7 | pmid=27041277 | doi=10.1007/s00247-016-3580-4 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27041277 }}</ref> | *Peripheral pulmonary stenosis<ref name="pmid27041277">{{cite journal| author=Rodriguez RM, Feinstein JA, Chan FP| title=CT-defined phenotype of pulmonary artery stenoses in Alagille syndrome. | journal=Pediatr Radiol | year= 2016 | volume= 46 | issue= 8 | pages= 1120-7 | pmid=27041277 | doi=10.1007/s00247-016-3580-4 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27041277 }}</ref> | ||
| | | | ||
*Facial dysmorphias (triangular face, wide nasal bridge, deep set eyes) | *Facial dysmorphias (triangular face, wide nasal bridge, deep set eyes) | ||
*Intrahepatic cholestasis | *Intrahepatic [[cholestasis]] | ||
*Butterfly | *Butterfly [vertebra]] | ||
|- | |- | ||
|Keutel<ref name="pmid26462901">{{cite journal| author=Bayramoğlu A, Saritemur M, Tasdemir S, Omeroglu M, Erdem HB, Sahin I| title=A rare cause of dyspnea in emergency medicine: Keutel syndrome. | journal=Am J Emerg Med | year= 2016 | volume= 34 | issue= 5 | pages= 935.e3-5 | pmid=26462901 | doi=10.1016/j.ajem.2015.09.020 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26462901 }}</ref> | |Keutel<ref name="pmid26462901">{{cite journal| author=Bayramoğlu A, Saritemur M, Tasdemir S, Omeroglu M, Erdem HB, Sahin I| title=A rare cause of dyspnea in emergency medicine: Keutel syndrome. | journal=Am J Emerg Med | year= 2016 | volume= 34 | issue= 5 | pages= 935.e3-5 | pmid=26462901 | doi=10.1016/j.ajem.2015.09.020 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26462901 }}</ref> | ||
| | | | ||
*MGP mutations | *MGP mutations | ||
*Autosomal recessive trait | *[[Autosomal recessive]] trait | ||
| | | | ||
*Multiple peripheral pulmonary stenosis | *Multiple peripheral pulmonary stenosis | ||
| | | | ||
*Abnormal cartilage calcifications | *Abnormal [[cartilage]] [[calcifications]] | ||
*Brachytelephalangy | *Brachytelephalangy | ||
*Subnormal IQ and hearing loss | *Subnormal [[IQ]] and [[hearing loss]] | ||
|- | |- | ||
|Congenital | |[[Congenital rubella syndrome]]<ref name="pmid4589966">{{cite journal| author=Rowe RD| title=Cardiovascular disease in the rubella syndrome. | journal=Cardiovasc Clin | year= 1973 | volume= 5 | issue= 1 | pages= 61-80 | pmid=4589966 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=4589966 }}</ref> | ||
| N/A | | N/A | ||
| | | | ||
Line 195: | Line 201: | ||
*Open ductus Botalli | *Open ductus Botalli | ||
| | | | ||
*Congenital cataract/glaucoma | *Congenital [[cataract]]/[[glaucoma]] | ||
*Deafness | *[[Deafness]] | ||
*Pigmentary retinopathy | *Pigmentary [[retinopathy]] | ||
|} | |} | ||
=== Associated conditions === | === Associated conditions === | ||
A rare association of pulmonic stenosis with an unrepaired [[ASD]] is reported.<ref name="pmid26901261">{{cite journal| author=Zampi G, Pergolini A, Celestini A, Benvissuto F, Tinti MD, Ortenzi M et al.| title=[Pulmonary stenosis and atrial septal defect: a rare association in the elderly]. | journal=G Ital Cardiol (Rome) | year= 2016 | volume= 17 | issue= 1 | pages= 62-3 | pmid=26901261 | doi=10.1714/2140.23196 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26901261 }}</ref> | A rare association of pulmonic stenosis with an unrepaired [[ASD]] is reported.<ref name="pmid26901261">{{cite journal| author=Zampi G, Pergolini A, Celestini A, Benvissuto F, Tinti MD, Ortenzi M et al.| title=[Pulmonary stenosis and atrial septal defect: a rare association in the elderly]. | journal=G Ital Cardiol (Rome) | year= 2016 | volume= 17 | issue= 1 | pages= 62-3 | pmid=26901261 | doi=10.1714/2140.23196 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26901261 }}</ref> <ref name="pmid23489526">{{cite journal| author=Park SJ, Enriquez-Sarano M, Chang SA, Choi JO, Lee SC, Park SW et al.| title=Hemodynamic patterns for symptomatic presentations of severe aortic stenosis. | journal=JACC Cardiovasc Imaging | year= 2013 | volume= 6 | issue= 2 | pages= 137-46 | pmid=23489526 | doi=10.1016/j.jcmg.2012.10.013 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23489526 }} </ref> <ref name="pmid10901521">{{cite journal| author=Nazari S, Carli F, Salvi S, Banfi C, Aluffi A, Mourad Z et al.| title=Patterns of systolic stress distribution on mitral valve anterior leaflet chordal apparatus. A structural mechanical theoretical analysis. | journal=J Cardiovasc Surg (Torino) | year= 2000 | volume= 41 | issue= 2 | pages= 193-202 | pmid=10901521 | doi= | pmc= | url= }} </ref> | ||
==Epidemiology and Demographics== | ==Epidemiology and Demographics== | ||
*Pulmonary stenosis accounts for 8% of all congenital heart disease. | *Pulmonary stenosis accounts for 8% of all [[congenital heart disease]]. <ref name="pmid24986049">{{cite journal| author=Iung B, Vahanian A| title=Epidemiology of acquired valvular heart disease. | journal=Can J Cardiol | year= 2014 | volume= 30 | issue= 9 | pages= 962-70 | pmid=24986049 | doi=10.1016/j.cjca.2014.03.022 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24986049 }} </ref> | ||
*Worldwide, the [[prevalence]] of pulmonic stenosis is 1 per 2000 births.<ref name=" | |||
*The [[prevalence]] of pulmonic stenosis and tetralogy of | *Worldwide, the [[prevalence]] of pulmonic stenosis is 1 per 2000 births.<ref name="pmid25140960">{{cite journal| author=Otto CM, Prendergast B| title=Aortic-valve stenosis--from patients at risk to severe valve obstruction. | journal=N Engl J Med | year= 2014 | volume= 371 | issue= 8 | pages= 744-56 | pmid=25140960 | doi=10.1056/NEJMra1313875 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25140960 }} </ref> | ||
*The [[prevalence]] of pulmonic stenosis and [[tetralogy of Fallot]] is higher in asian countries.<ref name="pmid10754087">{{cite journal| author=Jacobs EG, Leung MP, Karlberg J| title=Distribution of symptomatic congenital heart disease in Hong Kong. | journal=Pediatr Cardiol | year= 2000 | volume= 21 | issue= 2 | pages= 148-57 | pmid=10754087 | doi=10.1007/s002469910025 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10754087 }} </ref> <ref name="pmid18222317">{{cite journal |vauthors=Shah PM, Raney AA |title=Tricuspid valve disease |journal=Curr Probl Cardiol |volume=33 |issue=2 |pages=47–84 |date=February 2008 |pmid=18222317 |doi=10.1016/j.cpcardiol.2007.10.004 |url=}}</ref> | |||
==Causes== | ==Causes== | ||
Pulmonary valve stenosis is due to a structural changes resulting from thickening and fusion of the pulmonary valve. The valve pathology can be congenital or acquired. The following is the list of causes: | Pulmonary valve stenosis is due to a structural changes resulting from thickening and fusion of the [[pulmonary valve]]. The [[valve]] pathology can be [[congenital]] or acquired. The following is the list of causes: <ref name="pmid28236633">{{cite journal |vauthors=Farag M, Arif R, Sabashnikov A, Zeriouh M, Popov AF, Ruhparwar A, Schmack B, Dohmen PM, Szabó G, Karck M, Weymann A |title=Repair or Replacement for Isolated Tricuspid Valve Pathology? Insights from a Surgical Analysis on Long-Term Survival |journal=Med. Sci. Monit. |volume=23 |issue= |pages=1017–1025 |date=February 2017 |pmid=28236633 |pmc=5338566 |doi=10.12659/msm.900841 |url=}}</ref><ref name="pmid30311884">{{cite journal |vauthors=Salem A, Abdelgawad AME, Elshemy A |title=Early and Midterm Outcomes of Rheumatic Mitral Valve Repair |journal=Heart Surg Forum |volume=21 |issue=5 |pages=E352–E358 |date=August 2018 |pmid=30311884 |doi=10.1532/hsf.1978 |url=}}</ref>. | ||
====Congenital causes==== | ====Congenital causes==== | ||
These account for 95% of the cases with pulmonic stenosis which include isolated pulmonic valve pathologies and its associations with other congenital heart diseases.<ref name="pmid2593721">{{cite journal| author=Altrichter PM, Olson LJ, Edwards WD, Puga FJ, Danielson GK| title=Surgical pathology of the pulmonary valve: a study of 116 cases spanning 15 years. | journal=Mayo Clin Proc | year= 1989 | volume= 64 | issue= 11 | pages= 1352-60 | pmid=2593721 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2593721 }}</ref> | These account for 95% of the cases with pulmonic stenosis which include isolated pulmonic valve pathologies and its associations with other [[congenital heart diseases]].<ref name="pmid2593721">{{cite journal| author=Altrichter PM, Olson LJ, Edwards WD, Puga FJ, Danielson GK| title=Surgical pathology of the pulmonary valve: a study of 116 cases spanning 15 years. | journal=Mayo Clin Proc | year= 1989 | volume= 64 | issue= 11 | pages= 1352-60 | pmid=2593721 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2593721 }}</ref> | ||
'''Associated with congenital heart disease''' | '''Associated with congenital heart disease''' | ||
*[[Tetralogy of Fallot]]<ref name="pmid9388286">{{cite journal| author=Greenberg SB, Crisci KL, Koenig P, Robinson B, Anisman P, Russo P| title=Magnetic resonance imaging compared with echocardiography in the evaluation of pulmonary artery abnormalities in children with tetralogy of Fallot following palliative and corrective surgery. | journal=Pediatr Radiol | year= 1997 | volume= 27 | issue= 12 | pages= 932-5 | pmid=9388286 | doi=10.1007/s002470050275 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9388286 }}</ref> | *[[Tetralogy of Fallot]]<ref name="pmid9388286">{{cite journal| author=Greenberg SB, Crisci KL, Koenig P, Robinson B, Anisman P, Russo P| title=Magnetic resonance imaging compared with echocardiography in the evaluation of pulmonary artery abnormalities in children with tetralogy of Fallot following palliative and corrective surgery. | journal=Pediatr Radiol | year= 1997 | volume= 27 | issue= 12 | pages= 932-5 | pmid=9388286 | doi=10.1007/s002470050275 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9388286 }}</ref> <ref name="urlValvular Heart Disease - ScienceDirect">{{cite web |url=+https://www.sciencedirect.com/science/article/pii/B9780124202191000124?via%3Dihub |title=Valvular Heart Disease - ScienceDirect |format= |work= |accessdate=}}</ref> <ref name="pmid8459080">{{cite journal |author=Lindroos M, Kupari M, Heikkilä J, Tilvis R |title=Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample |journal=[[Journal of the American College of Cardiology]] |volume=21 |issue=5 |pages=1220–5 |year=1993 |month=April |pmid=8459080 |doi= |url=http://linkinghub.elsevier.com/retrieve/pii/0735-1097(93)90249-Z |accessdate=2012-04-11}}</ref> | ||
*[[Double outlet right ventricle]] | *[[Double outlet right ventricle]] <ref name="pmid9060903">{{cite journal |author=Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottdiener JS, Smith VE, Kitzman DW, Otto CM |title=Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study |journal=[[Journal of the American College of Cardiology]] |volume=29 |issue=3 |pages=630–4 |year=1997 |month=March |pmid=9060903 |doi= |url=http://linkinghub.elsevier.com/retrieve/pii/S0735109796005633 |accessdate=2012-04-11}}</ref> | ||
*Univentricular atrio-ventricular connection | *Univentricular atrio-ventricular connection <ref name="pmid16825001">{{cite journal| author=Movahed MR, Ahmadi-Kashani M, Kasravi B, Saito Y| title=Increased prevalence of mitral stenosis in women. | journal=J Am Soc Echocardiogr | year= 2006 | volume= 19 | issue= 7 | pages= 911-3 | pmid=16825001 | doi=10.1016/j.echo.2006.01.017 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16825001 }} </ref> | ||
*Atrioventricular canal defect | *Atrioventricular canal defect <ref name="urlHarold on History: The Evolution of Transcatheter Aortic Valve Replacement - American College of Cardiology">{{cite web |url=https://www.acc.org/latest-in-cardiology/articles/2017/07/19/15/42/the-evolution-of-transcatheter-aortic-valve-replacement |title=Harold on History: The Evolution of Transcatheter Aortic Valve Replacement - American College of Cardiology |format= |work= |accessdate=}}</ref> | ||
*Bicuspid pulmonary valve<ref name="pmid19557994">{{cite journal| author=Jashari R, Van Hoeck B, Goffin Y, Vanderkelen A| title=The incidence of congenital bicuspid or bileaflet and quadricuspid or quadrileaflet arterial valves in 3,861 donor hearts in the European Homograft Bank. | journal=J Heart Valve Dis | year= 2009 | volume= 18 | issue= 3 | pages= 337-44 | pmid=19557994 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19557994 }}</ref> | *Bicuspid pulmonary valve<ref name="pmid19557994">{{cite journal| author=Jashari R, Van Hoeck B, Goffin Y, Vanderkelen A| title=The incidence of congenital bicuspid or bileaflet and quadricuspid or quadrileaflet arterial valves in 3,861 donor hearts in the European Homograft Bank. | journal=J Heart Valve Dis | year= 2009 | volume= 18 | issue= 3 | pages= 337-44 | pmid=19557994 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19557994 }}</ref> | ||
*Quadricuspid pulmonary valve: Benign and an incidental finding | *Quadricuspid pulmonary valve: Benign and an incidental finding<ref name="pmid19017322">{{cite journal| author=Fernández-Armenta J, Villagómez D, Fernández-Vivancos C, Vázquez R, Pastor L| title=Quadricuspid pulmonary valve identified by transthoracic echocardiography. | journal=Echocardiography | year= 2009 | volume= 26 | issue= 3 | pages= 288-90 | pmid=19017322 | doi=10.1111/j.1540-8175.2008.00798.x | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19017322 }}</ref> | ||
*Isolated pulmonic stenosis<ref name="pmid2957652">{{cite journal| author=Gikonyo BM, Lucas RV, Edwards JE| title=Anatomic features of congenital pulmonary valvar stenosis. | journal=Pediatr Cardiol | year= 1987 | volume= 8 | issue= 2 | pages= 109-16 | pmid=2957652 | doi=10.1007/BF02079465 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2957652 }}</ref> | *Isolated pulmonic stenosis<ref name="pmid2957652">{{cite journal| author=Gikonyo BM, Lucas RV, Edwards JE| title=Anatomic features of congenital pulmonary valvar stenosis. | journal=Pediatr Cardiol | year= 1987 | volume= 8 | issue= 2 | pages= 109-16 | pmid=2957652 | doi=10.1007/BF02079465 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2957652 }}</ref> | ||
** | **Acommissural pulmonary valves: Valve has a prominent systolic doming of the cusps and an eccentric orifice.<ref name="pmid4889601">{{cite journal| author=Snellen HA, Hartman H, Buis-Liem TN, Kole EH, Rohmer J| title=Pulmonic stenosis. | journal=Circulation | year= 1968 | volume= 38 | issue= 1 Suppl | pages= 93-101 | pmid=4889601 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=4889601 }}</ref><ref name="pmid26656195">{{cite journal| author=Jonas SN, Kligerman SJ, Burke AP, Frazier AA, White CS| title=Pulmonary Valve Anatomy and Abnormalities: A Pictorial Essay of Radiography, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). | journal=J Thorac Imaging | year= 2016 | volume= 31 | issue= 1 | pages= W4-12 | pmid=26656195 | doi=10.1097/RTI.0000000000000182 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26656195 }}</ref> | ||
**Dysplastic pulmonary valves: Thickened and deformed cusps with no commissural fusion. | **Dysplastic [[pulmonary valves]]: Thickened and deformed cusps with no commissural fusion. It is a common finding associated with [[Noonan syndrome]].<ref name="pmid57929962">{{cite journal| author=Koretzky ED, Moller JH, Korns ME, Schwartz CJ, Edwards JE| title=Congenital pulmonary stenosis resulting from dysplasia of valve. | journal=Circulation | year= 1969 | volume= 40 | issue= 1 | pages= 43-53 | pmid=5792996 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=5792996 }}</ref> | ||
**Unicommissural pulmonary valve | **Unicommissural [[pulmonary valve]] | ||
**Bicuspid valve with fused commissures | **Bicuspid valve with fused [[commissures]] | ||
====Acquired Causes==== | ====Acquired Causes==== | ||
These are less frequent and account for less than 5% of the cases | These are less frequent and account for less than 5% of the cases. <ref name="url15 Years in TAVI">{{cite web |url=https://www.pcronline.com/About-PCR/40-years-angioplasty/15-years-TAVI |title=15 Years in TAVI |format= |work= |accessdate=}}</ref> | ||
*[[Carcinoid syndrome|Carcinoid Syndrome]]: most common acquired cause<ref name="pmid6391843">{{cite journal| author=Waller BF| title=Morphological aspects of valvular heart disease: Part II. | journal=Curr Probl Cardiol | year= 1984 | volume= 9 | issue= 8 | pages= 1-74 | pmid=6391843 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6391843 }}</ref> | |||
*Post infectious: [[Infective endocarditis]] | *Post infectious: [[Infective endocarditis]] | ||
*Calcification of the pulmonary valve<ref name="pmid5448727">{{cite journal| author=Gabriele OF, Scatliff JH| title=Pulmonary valve calcification. | journal=Am Heart J | year= 1970 | volume= 80 | issue= 3 | pages= 299-302 | pmid=5448727 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=5448727 }}</ref> | *[[Calcification]] of the [[pulmonary valve]]<ref name="pmid5448727">{{cite journal| author=Gabriele OF, Scatliff JH| title=Pulmonary valve calcification. | journal=Am Heart J | year= 1970 | volume= 80 | issue= 3 | pages= 299-302 | pmid=5448727 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=5448727 }}</ref> | ||
*[[Rheumatic heart disease]]<ref name="pmid5380838">{{cite journal| author=Vela JE, Contreras R, Sosa FR| title=Rheumatic pulmonary valve disease. | journal=Am J Cardiol | year= 1969 | volume= 23 | issue= 1 | pages= 12-8 | pmid=5380838 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=5380838 }}</ref> | *[[Rheumatic heart disease]]<ref name="pmid5380838">{{cite journal| author=Vela JE, Contreras R, Sosa FR| title=Rheumatic pulmonary valve disease. | journal=Am J Cardiol | year= 1969 | volume= 23 | issue= 1 | pages= 12-8 | pmid=5380838 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=5380838 }}</ref> | ||
*[[Ross procedure]]<ref name="pmid11156101">{{cite journal| author=Raanani E, Yau TM, David TE, Dellgren G, Sonnenberg BD, Omran A| title=Risk factors for late pulmonary homograft stenosis after the Ross procedure. | journal=Ann Thorac Surg | year= 2000 | volume= 70 | issue= 6 | pages= 1953-7 | pmid=11156101 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11156101 }}</ref> | *[[Ross procedure]]<ref name="pmid11156101">{{cite journal| author=Raanani E, Yau TM, David TE, Dellgren G, Sonnenberg BD, Omran A| title=Risk factors for late pulmonary homograft stenosis after the Ross procedure. | journal=Ann Thorac Surg | year= 2000 | volume= 70 | issue= 6 | pages= 1953-7 | pmid=11156101 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11156101 }}</ref> | ||
*Functional | *Functional pulmonic stenosis: Primary [[cardiac tumors]] obstructing the [[right ventricular outflow tract]] such as [[leiomyosarcoma]].<ref name="pmid27047294">{{cite journal| author=Vakilian F, Shabestari MM, Poorzand H, Teshnizi MA, Allahyari A, Memar B| title=Primary Pulmonary Valve Leiomyosarcoma in a 35-Year-Old Woman. | journal=Tex Heart Inst J | year= 2016 | volume= 43 | issue= 1 | pages= 84-7 | pmid=27047294 | doi=10.14503/THIJ-14-4748 | pmc=4810595 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27047294 }}</ref> | ||
== Differentiating from other diseases == | == Differentiating from other diseases == | ||
Right ventricular outflow tract obstruction must be distinguished from an [[ASD]], a small [[VSD]], [[aortic stenosis]], and acyanotic or pink [[tetralogy of Fallot]]. | Right ventricular outflow tract obstruction must be distinguished from an [[ASD]], a small [[VSD]], [[aortic stenosis]], and acyanotic or pink [[tetralogy of Fallot]].<ref name="pmid21386976">{{cite journal| author=Seckeler MD, Hoke TR| title=The worldwide epidemiology of acute rheumatic fever and rheumatic heart disease. | journal=Clin Epidemiol | year= 2011 | volume= 3 | issue= | pages= 67-84 | pmid=21386976 | doi=10.2147/CLEP.S12977 | pmc=PMC3046187 | url= }} </ref> | ||
* [[Atrial septal defect]]: Presence of systolic ejection murmur, wide fixed split S2, EKG showing [[RVH]]. In ASD the split of the S2 is fixed, there is no ejection click. | * [[Atrial septal defect]]: Presence of [[systolic ejection murmur]], wide fixed split S2, [[EKG]] showing [[RVH]]. In [[ASD]] the split of the S2 is fixed, there is no ejection click. <ref name="pmid12633546">{{cite journal |author=Cleland JG, Swedberg K, Follath F, Komajda M, Cohen-Solal A, Aguilar JC, Dietz R, Gavazzi A, Hobbs R, Korewicki J, Madeira HC, Moiseyev VS, Preda I, van Gilst WH, Widimsky J, Freemantle N, Eastaugh J, Mason J |title=The EuroHeart Failure survey programme-- a survey on the quality of care among patients with heart failure in Europe. Part 1: patient characteristics and diagnosis |journal=[[European Heart Journal]] |volume=24 |issue=5 |pages=442–63 |year=2003 |month=March |pmid=12633546 |doi= |url=http://eurheartj.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=12633546 |accessdate=2012-04-11}}</ref> | ||
*Small [[Ventricular septal defect]]: [[Amyl nitrate]] increases venous return and increases the murmur of [[pulmonary stenosis]], in VSD the murmur becomes softer. | *Small [[Ventricular septal defect]]: [[Amyl nitrate]] increases venous return and increases the murmur of [[pulmonary stenosis]], in [[VSD]] the [[murmur]] becomes softer. | ||
*Mild left-sided outflow obstruction: With [[valsalva maneuver]] the murmur of [[aortic stenosis]] becomes softer after about 5 beats, with [[pulmonary stenosis]] it becomes softer within 3 beats. | *Mild left-sided outflow obstruction: With [[valsalva maneuver]] the murmur of [[aortic stenosis]] becomes softer after about 5 beats, with [[pulmonary stenosis]] it becomes softer within 3 beats. | ||
*Acyanotic or pink [[tetralogy of Fallot]]: with amyl nitrate and increased venous return the murmur of PS increases, and the murmur of tetralogy decreases because of peripheral | *Acyanotic or pink [[tetralogy of Fallot]]: with [[amyl nitrate]] and increased [[venous return]] the [[murmur]] of PS increases, and the [[murmur]] of [[tetralogy of Fallot]] decreases because of peripheral vasodilation and an increase in right to left shunting. <ref name="pmid28236633">{{cite journal |vauthors=Farag M, Arif R, Sabashnikov A, Zeriouh M, Popov AF, Ruhparwar A, Schmack B, Dohmen PM, Szabó G, Karck M, Weymann A |title=Repair or Replacement for Isolated Tricuspid Valve Pathology? Insights from a Surgical Analysis on Long-Term Survival |journal=Med. Sci. Monit. |volume=23 |issue= |pages=1017–1025 |date=February 2017 |pmid=28236633 |pmc=5338566 |doi=10.12659/msm.900841 |url=}}</ref> | ||
==Risk Factors== | ==Risk Factors== | ||
Common risk factors in the development of congenital heart disease apply for pulmonic stenosis and include:<ref name="pmid220784322">{{cite journal| author=van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ et al.| title=Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. | journal=J Am Coll Cardiol | year= 2011 | volume= 58 | issue= 21 | pages= 2241-7 | pmid=22078432 | doi=10.1016/j.jacc.2011.08.025 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22078432 }}</ref> | Common [[risk factors]] in the development of [[congenital heart disease]] apply for pulmonic stenosis and include:<ref name="pmid220784322">{{cite journal| author=van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ et al.| title=Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. | journal=J Am Coll Cardiol | year= 2011 | volume= 58 | issue= 21 | pages= 2241-7 | pmid=22078432 | doi=10.1016/j.jacc.2011.08.025 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22078432 }}</ref> | ||
*Maternal [[gestational diabetes mellitus]] | *Maternal [[gestational diabetes mellitus]] | ||
*[[Consanguineous]] marriage<ref name="pmid570260">{{cite journal| author=Naderi S| title=Congenital abnormalities in newborns of consanguineous and nonconsanguineous parents. | journal=Obstet Gynecol | year= 1979 | volume= 53 | issue= 2 | pages= 195-9 | pmid=570260 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=570260 }} </ref> | *[[Consanguineous]] marriage<ref name="pmid570260">{{cite journal| author=Naderi S| title=Congenital abnormalities in newborns of consanguineous and nonconsanguineous parents. | journal=Obstet Gynecol | year= 1979 | volume= 53 | issue= 2 | pages= 195-9 | pmid=570260 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=570260 }} </ref> | ||
*[[Phenylketonuria]] | *[[Phenylketonuria]] | ||
*Febrile illness | *Febrile illness | ||
*Vitamin A use | *[[Vitamin A]] use <ref name="Aronow-2013">{{Cite journal | last1 = Aronow | first1 = WS. | title = A review of the pathophysiology, diagnosis, and treatment of aortic valve stenosis in elderly patients. | journal = Hosp Pract (1995) | volume = 41 | issue = 4 | pages = 66-77 | month = Oct | year = 2013 | doi = 10.3810/hp.2013.10.1082 | PMID = 24145591 }}</ref> | ||
*[[Marijuana]] use | *[[Marijuana]] use <ref name="pmid17921746">{{cite journal| author=Moura LM, Maganti K, Puthumana JJ, Rocha-Gonçalves F, Rajamannan NM| title=New understanding about calcific aortic stenosis and opportunities for pharmacologic intervention. | journal=Curr Opin Cardiol | year= 2007 | volume= 22 | issue= 6 | pages= 572-7 | pmid=17921746 | doi=10.1097/HCO.0b013e3282f0dae6 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17921746 }} </ref> | ||
*Exposure to [[organic solvents]] | *Exposure to [[organic solvents]] <ref name="pmid22100375">{{cite journal| author=Hannoush H, Introne WJ, Chen MY, Lee SJ, O'Brien K, Suwannarat P et al.| title=Aortic stenosis and vascular calcifications in alkaptonuria. | journal=Mol Genet Metab | year= 2012 | volume= 105 | issue= 2 | pages= 198-202 | pmid=22100375 | doi=10.1016/j.ymgme.2011.10.017 | pmc=PMC3276068 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22100375 }} </ref> | ||
==Natural History, Complications and Prognosis== | ==Natural History, Complications and Prognosis== | ||
'''Natural History''' | '''Natural History''' | ||
Patients with congenital pulmonary stenosis manifest clinical features few hours after birth, in childhood or in adulthood. Manifestation of symptoms, symptom severity and the outcomes are dependent on the severity of | Patients with [[congenital]] pulmonary stenosis manifest clinical features few hours after birth, in childhood or in adulthood. Manifestation of symptoms, symptom severity and the outcomes are dependent on the severity of [[stenosis]]. Patients with mild pulmonic stenosis have a benign course and do not progress and patients with moderate and severe stenosis have [[dyspnea]] with exertion and [[syncope]].<ref name="pmid1163423">{{cite journal| author=Mody MR| title=The natural history of uncomplicated valvular pulmonic stenosis. | journal=Am Heart J | year= 1975 | volume= 90 | issue= 3 | pages= 317-21 | pmid=1163423 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=1163423 }}</ref> | ||
'''Prognosis''' | '''Prognosis''' | ||
Patients with moderate to severe pulmonic valve stenosis are managed well with [[surgery]] or [[balloon valvuloplasty]] and have very good prognosis. | Patients with moderate to severe pulmonic valve stenosis are managed well with [[surgery]] or [[balloon valvuloplasty]] and have very good prognosis. <ref name="pmid18820172">{{cite journal| author=Bonow RO, Carabello BA, Chatterjee K, de Leon AC, Faxon DP, Freed MD et al.| title=2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. | journal=Circulation | year= 2008 | volume= 118 | issue= 15 | pages= e523-661 | pmid=18820172 | doi=10.1161/CIRCULATIONAHA.108.190748 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=18820172 }} </ref> | ||
'''Complications''' | '''Complications''' | ||
Line 267: | Line 276: | ||
Gold standard diagnosis of pulmonic stenosis and assessment of severity is done by [[Two dimensional echocardiography|2D echocardiography]].<ref name="pmid23560138">{{cite journal| author=Kim DH, Park SJ, Jung JW, Kim NK, Choi JY| title=The Comparison between the Echocardiographic Data to the Cardiac Catheterization Data on the Diagnosis, Treatment, and Follow-Up in Patients Diagnosed as Pulmonary Valve Stenosis. | journal=J Cardiovasc Ultrasound | year= 2013 | volume= 21 | issue= 1 | pages= 18-22 | pmid=23560138 | doi=10.4250/jcu.2013.21.1.18 | pmc=3611114 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23560138 }}</ref> | Gold standard diagnosis of pulmonic stenosis and assessment of severity is done by [[Two dimensional echocardiography|2D echocardiography]].<ref name="pmid23560138">{{cite journal| author=Kim DH, Park SJ, Jung JW, Kim NK, Choi JY| title=The Comparison between the Echocardiographic Data to the Cardiac Catheterization Data on the Diagnosis, Treatment, and Follow-Up in Patients Diagnosed as Pulmonary Valve Stenosis. | journal=J Cardiovasc Ultrasound | year= 2013 | volume= 21 | issue= 1 | pages= 18-22 | pmid=23560138 | doi=10.4250/jcu.2013.21.1.18 | pmc=3611114 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23560138 }}</ref> | ||
== History and Symptoms == | |||
The severity of symptoms and age of symptom onset depends on the severity of the stenosis. Clinical presentations vary as follows: | The severity of symptoms and age of symptom onset depends on the severity of the stenosis. Clinical presentations vary as follows: | ||
*Critical pulmonary stenosis:It presents in first few hours to days of life with [[cyanosis]]. It is a condition with a very small or pin-hole orifice in the pulmonary valve which can be diagnosed prenatally. These patients have an intact interventricular septum, poorly complaint hypoplastic right ventricle and are ductus dependent. Cyanosis in these patients is due to the right to left shunting at the level of the foramen ovale.<ref name="pmid11460987">{{cite journal| author=Hornberger LK, Barrea C| title=Diagnosis, natural history, and outcome of fetal heart disease. | journal=Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu | year= 2001 | volume= 4 | issue= | pages= 229-43 | pmid=11460987 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11460987 }} </ref><ref name=" | *Critical pulmonary stenosis:It presents in first few hours to days of life with [[cyanosis]]. It is a condition with a very small or pin-hole orifice in the [[pulmonary valve]] which can be diagnosed prenatally. These patients have an intact [[interventricular septum]], poorly complaint [[hypoplastic right ventricle]] and are[[ ductus]] dependent. [[Cyanosis]] in these patients is due to the right to left shunting at the level of the [[foramen ovale]].<ref name="pmid11460987">{{cite journal| author=Hornberger LK, Barrea C| title=Diagnosis, natural history, and outcome of fetal heart disease. | journal=Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu | year= 2001 | volume= 4 | issue= | pages= 229-43 | pmid=11460987 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11460987 }} </ref> | ||
*Mild Pulmonic Stenosis: Patients with mild stenosis are asymptomatic and are diagnosed by routine examination with an ejection systolic murmur. | |||
*Moderate Pulmonic Stenosis: Patients present with exertional dyspnea and fatigue. <ref name="pmid4552598">{{cite journal| author=Selzer A, Cohn KE| title=Natural history of mitral stenosis: a review. | journal=Circulation | year= 1972 | volume= 45 | issue= 4 | pages= 878-90 | pmid=4552598 | doi= | pmc= | url= }} </ref> | |||
*Severe Pulmonic Stenosis: Patients present with exertional dyspnea, chest pain and syncope. | *Severe Pulmonic Stenosis: Patients present with exertional dyspnea, chest pain and syncope. <ref name="pmid14439687">{{cite journal| author=ROWE JC, BLAND EF, SPRAGUE HB, WHITE PD| title=The course of mitral stenosis without surgery: ten- and twenty-year perspectives. | journal=Ann Intern Med | year= 1960 | volume= 52 | issue= | pages= 741-9 | pmid=14439687 | doi= | pmc= | url= }} </ref> | ||
*Untreated patients develop features of [[right ventricular failure]] which include: | *Untreated patients develop features of [[right ventricular failure]] which include: | ||
**[[Exercise intolerance]] | **[[Exercise intolerance]] | ||
Line 280: | Line 289: | ||
**Abdominal discomfort | **Abdominal discomfort | ||
*Patients with subinfundibular/infundibular PS can be asymptomatic or they may present with [[angina]], [[dyspnea]], [[dizziness]], or [[syncope]]. | *Patients with subinfundibular/infundibular PS can be asymptomatic or they may present with [[angina]], [[dyspnea]], [[dizziness]], or [[syncope]]. | ||
*Patients with supravalvular PS may be asymptomatic or have symptoms of dyspnea and fatigue on exertion. | *Patients with supravalvular PS may be asymptomatic or have symptoms of [[dyspnea]] and [[fatigue]] on exertion. | ||
{| class="wikitable" | {| class="wikitable" | ||
! | ! | ||
Line 292: | Line 301: | ||
!Supravalvular | !Supravalvular | ||
Pulmonic Stenosis | Pulmonic Stenosis | ||
!Right Heart Failure | ![[Right Heart Failure]] | ||
|- | |- | ||
|Clinical Features | |Clinical Features | ||
Line 298: | Line 307: | ||
Asymptomatic | Asymptomatic | ||
| | | | ||
*Exertional dyspnea | *[[Exertional dyspnea]] | ||
*Fatigue | *[[Fatigue]] | ||
| | | | ||
*Exertional dyspnea | *[[Exertional dyspnea]] | ||
*Chest pain | *[[Chest pain]] | ||
*Syncope | *[[Syncope]] | ||
| | | | ||
*[[Angina]] | *[[Angina]] | ||
Line 310: | Line 319: | ||
*[[Syncope]] | *[[Syncope]] | ||
| | | | ||
*Dyspnea | *[[Dyspnea]] | ||
*Fatigue on exertion | *[[Fatigue]] on [[exertion]] | ||
| | | | ||
*[[Exercise intolerance]] | *[[Exercise intolerance]] | ||
Line 317: | Line 326: | ||
*[[Shortness of breath]] | *[[Shortness of breath]] | ||
*[[Swelling of the feet or ankles]] | *[[Swelling of the feet or ankles]] | ||
*Abdominal discomfort | *[[Abdominal discomfort]] | ||
|} | |} | ||
===Physical Examination=== | ===Physical Examination=== | ||
The common examination findings include: | The common examination findings include: | ||
*Patients with isolated pulmonary stenosis usually appear normal. In patients diagnosed with syndromes associated with pulmonic stenosis syndrome specific physical examination findings are demonstrated. | *Patients with isolated pulmonary stenosis usually appear normal. In patients diagnosed with syndromes associated with pulmonic stenosis syndrome specific physical examination findings are demonstrated.<ref name="REEVE-1964">{{Cite journal | last1 = REEVE | first1 = R. | last2 = ROBINSON | first2 = SJ. | title = HYPOPLASTIC ANNULUS--AN UNUSUAL TYPE OF AORTIC STENOSIS: A REPORT OF THREE CASES IN CHILDREN. | journal = Dis Chest | volume = 45 | issue = | pages = 99-102 | month = Jan | year = 1964 | doi = | PMID = 14114644 }}</ref> | ||
*Cardiac examination findings are dependent on the degree of the pulmonary stenosis, the pathology of the valve and associated cardiac lesions. The common findings include as follows: | **[[Fabry's disease]]<ref name="pmid7596372">{{cite journal| author=Nakao S, Takenaka T, Maeda M, Kodama C, Tanaka A, Tahara M et al.| title=An atypical variant of Fabry's disease in men with left ventricular hypertrophy. | journal=N Engl J Med | year= 1995 | volume= 333 | issue= 5 | pages= 288-93 | pmid=7596372 | doi=10.1056/NEJM199508033330504 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7596372 }} </ref> | ||
**In mild stenosis findings include normal jugular venous pulse, absent right ventricle lift, ejection click in the pulmonary area which decreases with inspiration, [[ejection systolic murmur]] in the pulmonary area heard in the ending of mid systole increasing in intensity during inspiration.<ref name="pmid5377205">{{cite journal |vauthors=Hultgren HN, Reeve R, Cohn K, McLeod R |title=The ejection click of valvular pulmonic stenosis |journal=Circulation |volume=40 |issue=5 |pages=631–40 |year=1969 |pmid=5377205 |doi= |url=}}</ref> | *Cardiac examination findings are dependent on the degree of the [[pulmonary stenosis]], the pathology of the [[valve]] and associated cardiac lesions. The common findings include as follows: <ref name="pmid27278482">{{cite journal| author=Yamagishi Y, Yuda S, Tsuchihashi K, Saitoh S, Miura T, Ura N et al.| title=Quadricuspid aortic valve associated with aortic stenosis and regurgitation: report of a case and a review of the literature. | journal=J Med Ultrason (2001) | year= 2007 | volume= 34 | issue= 4 | pages= 197-200 | pmid=27278482 | doi=10.1007/s10396-007-0148-9 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27278482 }} </ref> | ||
**In mild stenosis findings include normal [[jugular venous pulse]], absent [[right ventricle]] lift, [[ejection click]] in the pulmonary area which decreases with [[inspiration]], [[ejection systolic murmur]] in the pulmonary area heard in the ending of mid systole increasing in intensity during inspiration.<ref name="pmid5377205">{{cite journal |vauthors=Hultgren HN, Reeve R, Cohn K, McLeod R |title=The ejection click of valvular pulmonic stenosis |journal=Circulation |volume=40 |issue=5 |pages=631–40 |year=1969 |pmid=5377205 |doi= |url=}}</ref> | |||
**In severe stenosis findings include: | **In severe stenosis findings include: | ||
***Elevated [[Jugular venous pressure|JVP]] with a prominent " | ***Elevated [[Jugular venous pressure|JVP]] with a prominent "a" wave | ||
***Right ventricular heave | ***Right ventricular heave. | ||
***Louder and longer ejection murmur in the left parasternal area in second and third intercostal space | ***Louder and longer [[ejection murmur]] in the left parasternal area in second and third [[intercostal space]]. | ||
***Ejection click is softer and absent with increasing severity | ***Ejection click is softer and absent with increasing severity. | ||
***Wide split [[S2 splitting|S2]] with reduced or absent [[Heart sounds|P2]] component | ***Wide split [[S2 splitting|S2]] with reduced or absent [[Heart sounds|P2]] component. | ||
***Right sided [[S4]] can be audible. | ***Right sided [[S4]] can be audible. <ref name="pmid27721957">{{cite journal| author=Kwon HJ, Park JH, Kim SS, Sun BJ, Jin SA, Kim JH et al.| title=Severe Aortic Stenosis Associated with Unicommissural Unicuspid Aortic Valve in a Middle Aged Male. | journal=J Cardiovasc Ultrasound | year= 2016 | volume= 24 | issue= 3 | pages= 247-250 | pmid=27721957 | doi=10.4250/jcu.2016.24.3.247 | pmc=5050315 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27721957 }} </ref> | ||
Line 343: | Line 354: | ||
|Physical Examination Findings | |Physical Examination Findings | ||
| | | | ||
*Normal jugular venous pulse | *Normal [[jugular venous pulse]] | ||
*Absent right ventricle lift | *Absent [[right ventricle lift]] | ||
*Ejection click in the pulmonary area which decreases with inspiration | *[[Ejection click]] in the [[pulmonary area]] which decreases with inspiration | ||
*[[Ejection systolic murmur]] in the pulmonary area heard in the ending of mid systole increasing in intensity during inspiration | *[[Ejection systolic murmur]] in the [[pulmonary area]] heard in the ending of mid [[systole]] increasing in intensity during inspiration | ||
| | | | ||
*Elevated [[Jugular venous pressure|JVP]] with a prominent " | *Elevated [[Jugular venous pressure|JVP]] with a prominent [["a" wave]] | ||
*Right ventricular heave | *[[Right ventricular heave]] | ||
*Louder and longer ejection murmur in the left parasternal area in second and third intercostal space | *Louder and longer ejection murmur in the left parasternal area in second and third intercostal space | ||
*Ejection click is softer and absent with increasing severity | *Ejection click is softer and absent with increasing severity | ||
Line 357: | Line 368: | ||
===EKG=== | ===EKG=== | ||
Patients with mild stenosis usually do not show any [[EKG]] changes excepting for right axis deviation of -100° to -110° which is considered normal in children and adults.<br> | Patients with mild stenosis usually do not show any [[EKG]] changes excepting for [[right axis deviation]] of -100° to -110° which is considered normal in children and adults.<br> | ||
In case of severe stenosis the following changes can be noted, which include:<ref name="pmid23303481">{{cite journal| author=Cuypers JA, Witsenburg M, van der Linde D, Roos-Hesselink JW| title=Pulmonary stenosis: update on diagnosis and therapeutic options. | journal=Heart | year= 2013 | volume= 99 | issue= 5 | pages= 339-47 | pmid=23303481 | doi=10.1136/heartjnl-2012-301964 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23303481 }} </ref> | In case of severe stenosis the following changes can be noted, which include:<ref name="pmid23303481">{{cite journal| author=Cuypers JA, Witsenburg M, van der Linde D, Roos-Hesselink JW| title=Pulmonary stenosis: update on diagnosis and therapeutic options. | journal=Heart | year= 2013 | volume= 99 | issue= 5 | pages= 339-47 | pmid=23303481 | doi=10.1136/heartjnl-2012-301964 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23303481 }} </ref> | ||
*Features of [[right ventricular hypertrophy]] | |||
*[[Rightward axis deviation]] | *Features of [[right ventricular hypertrophy]] | ||
*High [[R wave]] amplitude in lead V1 | *[[Rightward axis deviation]] <ref name="pmid26805657">{{cite journal| author=Petit CJ, Gao K, Goldstein BH, Lang SM, Gillespie SE, Kim SI et al.| title=Relation of Aortic Valve Morphologic Characteristics to Aortic Valve Insufficiency and Residual Stenosis in Children With Congenital Aortic Stenosis Undergoing Balloon Valvuloplasty. | journal=Am J Cardiol | year= 2016 | volume= 117 | issue= 6 | pages= 972-9 | pmid=26805657 | doi=10.1016/j.amjcard.2015.12.034 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26805657 }} </ref> | ||
*Deep S waves in the left precordial leads with <1 R:S ratio in lead V6 | *High [[R wave]] amplitude in lead V1. | ||
*Deep S waves in the left [[precordial leads]] with <1 R:S ratio in lead V6 | |||
===Chest X-Ray=== | ===Chest X-Ray=== | ||
*Vascular fullness in the left lung base greater than the right lung base. | *Vascular fullness in the left [[lung]] base greater than the right [[lung]] base. | ||
*Dilation of the main pulmonary artery is a more common finding in doming pulmonary valve stenosis when compared to dysplastic valves. | *Dilation of the main [[pulmonary artery]] is a more common finding in doming [[pulmonary valve]] [[stenosis]] when compared to dysplastic valves. | ||
*Calcification can be rarely seen. | *[[Calcification]] can be rarely seen. | ||
===Echocardiography=== | ===Echocardiography=== | ||
Transthoracic 2D Echo and Doppler imaging is the standard diagnostic test to detect and assess the severity of the stenosis.<ref name="pmid912836">{{cite journal| author=Weyman AE, Hurwitz RA, Girod DA, Dillon JC, Feigenbaum H, Green D| title=Cross-sectional echocardiographic visualization of the stenotic pulmonary valve. | journal=Circulation | year= 1977 | volume= 56 | issue= 5 | pages= 769-74 | pmid=912836 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=912836 }}</ref> | Transthoracic 2D Echo and [[Doppler]] imaging is the standard diagnostic test to detect and assess the severity of the stenosis.<ref name="pmid912836">{{cite journal| author=Weyman AE, Hurwitz RA, Girod DA, Dillon JC, Feigenbaum H, Green D| title=Cross-sectional echocardiographic visualization of the stenotic pulmonary valve. | journal=Circulation | year= 1977 | volume= 56 | issue= 5 | pages= 769-74 | pmid=912836 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=912836 }}</ref> | ||
*Echo shows thickened and dome shaped valves, peak and mean gradients to assess the severity can be measured by Doppler imaging. | *Echo shows thickened and dome shaped valves, peak and mean gradients to assess the severity can be measured by [[Doppler]] imaging. <ref name="pmid12835667">{{cite journal |author=Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, Nihoyannopoulos P, Otto CM, Quinones MA, Rakowski H, Stewart WJ, Waggoner A, Weissman NJ |title=Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography |journal=[[Journal of the American Society of Echocardiography : Official Publication of the American Society of Echocardiography]] |volume=16 |issue=7 |pages=777–802 |year=2003 |month=July |pmid=12835667 |doi=10.1016/S0894-7317(03)00335-3 |url=http://linkinghub.elsevier.com/retrieve/pii/S0894731703003353 |accessdate=2011-03-02}}</ref> | ||
*Dysplastic valves are well visualized on echo.<ref name="pmid2953383">{{cite journal| author=Musewe NN, Robertson MA, Benson LN, Smallhorn JF, Burrows PE, Freedom RM et al.| title=The dysplastic pulmonary valve: echocardiographic features and results of balloon dilatation. | journal=Br Heart J | year= 1987 | volume= 57 | issue= 4 | pages= 364-70 | pmid=2953383 | doi= | pmc=1277176 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2953383 }}</ref> | *Dysplastic valves are well visualized on echo.<ref name="pmid2953383">{{cite journal| author=Musewe NN, Robertson MA, Benson LN, Smallhorn JF, Burrows PE, Freedom RM et al.| title=The dysplastic pulmonary valve: echocardiographic features and results of balloon dilatation. | journal=Br Heart J | year= 1987 | volume= 57 | issue= 4 | pages= 364-70 | pmid=2953383 | doi= | pmc=1277176 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2953383 }}</ref> | ||
*Always calculate the [[tricuspid regurgitation]] gradient to rule out overestimation of the pulmonary stenosis gradient.<ref name="pmid16275521">{{cite journal| author=Silvilairat S, Cabalka AK, Cetta F, Hagler DJ, O'Leary PW| title=Echocardiographic assessment of isolated pulmonary valve stenosis: which outpatient Doppler gradient has the most clinical validity? | journal=J Am Soc Echocardiogr | year= 2005 | volume= 18 | issue= 11 | pages= 1137-42 | pmid=16275521 | doi=10.1016/j.echo.2005.03.041 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16275521 }}</ref> | *Always calculate the [[tricuspid regurgitation]] gradient to rule out overestimation of the pulmonary stenosis gradient.<ref name="pmid16275521">{{cite journal| author=Silvilairat S, Cabalka AK, Cetta F, Hagler DJ, O'Leary PW| title=Echocardiographic assessment of isolated pulmonary valve stenosis: which outpatient Doppler gradient has the most clinical validity? | journal=J Am Soc Echocardiogr | year= 2005 | volume= 18 | issue= 11 | pages= 1137-42 | pmid=16275521 | doi=10.1016/j.echo.2005.03.041 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16275521 }}</ref> | ||
Line 382: | Line 395: | ||
===MRI=== | ===MRI=== | ||
Cardiac [[Magnetic resonance imaging|MRI]] is very useful to study the anatomy of the right ventricular outflow tract, pulmonary artery and to locate the exact level of stenosis.<ref name="pmid24582177">{{cite journal| author=Rajiah P, Nazarian J, Vogelius E, Gilkeson RC| title=CT and MRI of pulmonary valvular abnormalities. | journal=Clin Radiol | year= 2014 | volume= 69 | issue= 6 | pages= 630-8 | pmid=24582177 | doi=10.1016/j.crad.2014.01.019 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24582177 }}</ref> | Cardiac [[Magnetic resonance imaging|MRI]] is very useful to study the anatomy of the [[right ventricular outflow tract]], [[pulmonary artery]] and to locate the exact level of [[stenosis]].<ref name="pmid24582177">{{cite journal| author=Rajiah P, Nazarian J, Vogelius E, Gilkeson RC| title=CT and MRI of pulmonary valvular abnormalities. | journal=Clin Radiol | year= 2014 | volume= 69 | issue= 6 | pages= 630-8 | pmid=24582177 | doi=10.1016/j.crad.2014.01.019 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24582177 }}</ref> | ||
===Cardiac Catheterization=== | ===Cardiac Catheterization=== | ||
[[Cardiac catheterization]] is useful to measure the pressure gradients directly, but its not performed on a regular basis as echo is a reliable and non-invasive test to measure the pressure gradients.<ref name="pmid18997168">{{cite journal| author=Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA et al.| title=ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines for the management of adults with congenital heart disease). | journal=Circulation | year= 2008 | volume= 118 | issue= 23 | pages= 2395-451 | pmid=18997168 | doi=10.1161/CIRCULATIONAHA.108.190811 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=18997168 }}</ref> | [[Cardiac catheterization]] is useful to measure the [[pressure gradients]] directly, but its not performed on a regular basis as [[echo]] is a reliable and non-invasive test to measure the [[pressure gradients]].<ref name="pmid18997168">{{cite journal| author=Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA et al.| title=ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines for the management of adults with congenital heart disease). | journal=Circulation | year= 2008 | volume= 118 | issue= 23 | pages= 2395-451 | pmid=18997168 | doi=10.1161/CIRCULATIONAHA.108.190811 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=18997168 }}</ref> | ||
===Dual-Source Computed Tomography=== | ===Dual-Source Computed Tomography=== | ||
It is an accurate imaging technique to evaluate the function and anatomy of the [[pulmonary valve]].<ref name="pmid27703660">{{cite journal| author=Sun Z, Xu W, Huang S, Chen Y, Guo X, Shi Z| title=Dual-Source Computed Tomography Evaluation of Children with Congenital Pulmonary Valve Stenosis. | journal=Iran J Radiol | year= 2016 | volume= 13 | issue= 2 | pages= e34399 | pmid=27703660 | doi=10.5812/iranjradiol.34399 | pmc=5037969 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27703660 }} </ref> | It is an accurate imaging technique to evaluate the function and anatomy of the [[pulmonary valve]].<ref name="pmid27703660">{{cite journal| author=Sun Z, Xu W, Huang S, Chen Y, Guo X, Shi Z| title=Dual-Source Computed Tomography Evaluation of Children with Congenital Pulmonary Valve Stenosis. | journal=Iran J Radiol | year= 2016 | volume= 13 | issue= 2 | pages= e34399 | pmid=27703660 | doi=10.5812/iranjradiol.34399 | pmc=5037969 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27703660 }} </ref> | ||
=== Evaluation of Pulmonary Stenosis in Adolescents and Young Adults === | === Evaluation of Pulmonary Stenosis in Adolescents and Young Adults === | ||
According to 2008 ACC/AHA guidelines | According to 2008 ACC/[[American Heart Association|AHA]] guidelines, following are the guidelines for evaluation of patients with pulmonary stenosis: | ||
{|class="wikitable" width:60% | {|class="wikitable" width:60% | ||
|- | |- | ||
Line 408: | Line 424: | ||
==Treatment== | ==Treatment== | ||
===Medical Therapy=== | ===Medical Therapy=== | ||
There is no specific medical therapy for the treatment of pulmonic stenosis. However, patients diagnosed with right heart failure [[diuretics]] are recommended to decrease the [[fluid overload]]. | There is no specific medical therapy for the treatment of pulmonic stenosis. However, patients diagnosed with right heart failure [[diuretics]] are recommended to decrease the [[fluid overload]]. <ref name="pmid8000584">{{cite journal |author=Schön HR, Dorn R, Barthel P, Schömig A |title=Effects of 12 months quinapril therapy in asymptomatic patients with chronic aortic regurgitation |journal=[[The Journal of Heart Valve Disease]] |volume=3 |issue=5 |pages=500–9 |year=1994 |month=September |pmid=8000584 |doi= |url= |accessdate=2011-03-23}}</ref> | ||
===Surgery=== | ===Surgery=== | ||
====Indications For Intervention==== | ====Indications For Intervention==== | ||
Surgical correction is recommended based on the peak gradient and other associated clinical features:<ref name="pmid18997169">{{cite journal| author=Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA et al.| title=ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease). | journal=Circulation | year= 2008 | volume= 118 | issue= 23 | pages= e714-833 | pmid=18997169 | doi=10.1161/CIRCULATIONAHA.108.190690 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=18997169 }}</ref> | Surgical correction is recommended based on the [[peak gradient]] and other associated clinical features:<ref name="pmid18997169">{{cite journal| author=Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA et al.| title=ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease). | journal=Circulation | year= 2008 | volume= 118 | issue= 23 | pages= e714-833 | pmid=18997169 | doi=10.1161/CIRCULATIONAHA.108.190690 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=18997169 }}</ref> <ref name="pmid7930196">{{cite journal |author=Lin M, Chiang HT, Lin SL, Chang MS, Chiang BN, Kuo HW, Cheitlin MD |title=Vasodilator therapy in chronic asymptomatic aortic regurgitation: enalapril versus hydralazine therapy |journal=[[Journal of the American College of Cardiology]] |volume=24 |issue=4 |pages=1046–53 |year=1994 |month=October |pmid=7930196 |doi= |url=http://linkinghub.elsevier.com/retrieve/pii/0735-1097(94)90868-0 |accessdate=2011-03-23}}</ref> | ||
*Surgery is advised regardless of the symptoms if the | *Surgery is advised regardless of the symptoms if the doppler derived peak instantaneous [[gradient]] greater than 64 mm Hg (peak velocity >4 m/s). <ref name="pmid3289791">{{cite journal |author=Greenberg B, Massie B, Bristow JD, Cheitlin M, Siemienczuk D, Topic N, Wilson RA, Szlachcic J, Thomas D |title=Long-term vasodilator therapy of chronic AR. A randomized double-blinded, placebo-controlled clinical trial |journal=[[Circulation]] |volume=78 |issue=1 |pages=92–103 |year=1988 |month=July |pmid=3289791 |doi= |url=http://circ.ahajournals.org/cgi/pmidlookup?view=long&pmid=3289791 |accessdate=2011-03-23}}</ref> | ||
*In patients with | *In patients with doppler derived peak instantaneous [[gradient]] less than 64 mm Hg ([[peak velocity]]>4 m/s), surgery is advised if any of the following is present:<ref name="pmid8000584">{{cite journal |author=Schön HR, Dorn R, Barthel P, Schömig A |title=Effects of 12 months quinapril therapy in asymptomatic patients with chronic aortic regurgitation |journal=[[The Journal of Heart Valve Disease]] |volume=3 |issue=5 |pages=500–9 |year=1994 |month=September |pmid=8000584 |doi= |url= |accessdate=2011-03-23}}</ref> | ||
**Symptomatic patient | **Symptomatic patient | ||
**Decreased right [[ventricular function]] | **Decreased right [[ventricular function]] | ||
**Double chambered [[right ventricle]] | **Double chambered [[right ventricle]] | ||
**[[Arrhythmias|Arrhythmia]] | **[[Arrhythmias|Arrhythmia]] | ||
**Right to left shunting via the [[Ventricular septal defect|VSD]] or [[Atrial septal defect|ASD]] | **Right to left shunting via the [[Ventricular septal defect|VSD]] or [[Atrial septal defect|ASD]] | ||
*Asymptomatic patients with a systolic RV pressure greater than 80 mm Hg (TR velocity >4.3 m/s). | *Asymptomatic patients with a systolic [[RV]] pressure greater than 80 mm Hg ([[TR]] jet velocity >4.3 m/s). | ||
== 2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines<ref name="pmid30121240">{{cite journal| author=Stout KK, Daniels CJ, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM | display-authors=etal| title=2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. | journal=J Am Coll Cardiol | year= 2019 | volume= 73 | issue= 12 | pages= 1494-1563 | pmid=30121240 | doi=10.1016/j.jacc.2018.08.1028 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30121240 }}</ref> == | |||
=== Recommendations for Valvular Pulmonary Stenosis === | |||
{| class="wikitable" width:60% | |||
|- | |||
| colspan="1" style="text-align:center; background:LightGreen" |[[ACC AHA guidelines classification scheme#Classification of Recommendations |Class I]] | |||
|- | |||
| bgcolor="LightGreen" |'''1.''' In adults with moderate or severe valvular pulmonary stenosis and otherwise unexplained symptoms of HF, cyanosis from interatrial right-to-left communication, and/or exercise intolerance, balloon valvuloplasty is recommended..''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: B-NR]])'' | |||
|- | |||
| bgcolor="LightGreen" |'''2.'''In adults with moderate or severe valvular pulmonary stenosis and otherwise unexplained symptoms of HF, cyanosis, and/ or exercise intolerance who are ineligible for or who failed balloon valvuloplasty, surgical repair is recommended''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: B-NR]])'' | |||
|} | |||
{| class="wikitable" | |||
|- | |||
| colspan="1" style="text-align:center; background:LemonChiffon" |[[ESC Guidelines Classification Scheme#Classification of Recommendations|Class IIa]] | |||
|- | |||
| bgcolor="LemonChiffon" |'''1.'''In asymptomatic adults with severe valvular pulmonary stenosis, intervention is reasonable. ([[ESC Guidelines Classification Scheme#Level of Evidence|Level of Evidence: C-EO]])''<nowiki>"</nowiki> '' | |||
|} | |||
==According to 2010, ESC Guidelines for the management of grown-up congenital heart disease, Indications for intervention in Right Ventricular Outlet Obstruction are as follows:<ref name="pmid20801927">{{cite journal| author=Baumgartner H, Bonhoeffer P, De Groot NM, de Haan F, Deanfield JE, Galie N et al.| title=ESC Guidelines for the management of grown-up congenital heart disease (new version 2010). | journal=Eur Heart J | year= 2010 | volume= 31 | issue= 23 | pages= 2915-57 | pmid=20801927 | doi=10.1093/eurheartj/ehq249 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20801927 }}</ref>== | ==According to 2010, ESC Guidelines for the management of grown-up congenital heart disease, Indications for intervention in Right Ventricular Outlet Obstruction are as follows:<ref name="pmid20801927">{{cite journal| author=Baumgartner H, Bonhoeffer P, De Groot NM, de Haan F, Deanfield JE, Galie N et al.| title=ESC Guidelines for the management of grown-up congenital heart disease (new version 2010). | journal=Eur Heart J | year= 2010 | volume= 31 | issue= 23 | pages= 2915-57 | pmid=20801927 | doi=10.1093/eurheartj/ehq249 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20801927 }}</ref>== | ||
{|class="wikitable" | {|class="wikitable" | ||
Line 451: | Line 484: | ||
*Catheter intervention is recommended for patients with doming valves which are not dysplastic.<ref name="pmid10539828">{{cite journal| author=Jarrar M, Betbout F, Farhat MB, Maatouk F, Gamra H, Addad F et al.| title=Long-term invasive and noninvasive results of percutaneous balloon pulmonary valvuloplasty in children, adolescents, and adults. | journal=Am Heart J | year= 1999 | volume= 138 | issue= 5 Pt 1 | pages= 950-4 | pmid=10539828 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10539828 }}</ref> | *Catheter intervention is recommended for patients with doming valves which are not dysplastic.<ref name="pmid10539828">{{cite journal| author=Jarrar M, Betbout F, Farhat MB, Maatouk F, Gamra H, Addad F et al.| title=Long-term invasive and noninvasive results of percutaneous balloon pulmonary valvuloplasty in children, adolescents, and adults. | journal=Am Heart J | year= 1999 | volume= 138 | issue= 5 Pt 1 | pages= 950-4 | pmid=10539828 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10539828 }}</ref> | ||
*Surgery is recommended for patients with: | *Surgery is recommended for patients with: | ||
**Subinfundibular or infundibular | **Subinfundibular or infundibular [[pulmonic stenosis]] and hypoplastic pulmonary annulus | ||
**Dysplastic pulmonary valves | **Dysplastic pulmonary valves | ||
**Patients with associated lesions which need a surgical approach, such as severe PR or severe TR. | **Patients with associated lesions which need a surgical approach, such as severe PR or severe TR. | ||
Line 473: | Line 506: | ||
====Follow up==== | ====Follow up==== | ||
Patients with | Patients with [[pulmonic stenosis]] are recommended for a regular echocardiography to evaluate the degree of pulmonary regurgitation, RV pressure, RV function and [[tricuspid regurgitation]]. The frequency of visits is dependent on the degree of stenosis and is as follows:<ref name="pmid18848134">{{cite journal| author=Bonow RO, Carabello BA, Chatterjee K, de Leon AC, Faxon DP, Freed MD et al.| title=2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. | journal=J Am Coll Cardiol | year= 2008 | volume= 52 | issue= 13 | pages= e1-142 | pmid=18848134 | doi=10.1016/j.jacc.2008.05.007 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=18848134 }} </ref> | ||
*Mild untreated or residual pulmonic stenosis: Follow up once every 5 years. | *Mild untreated or residual [[pulmonic stenosis]]: Follow up once every 5 years. | ||
*Moderate pulmonic stenosis: Annual visit with echocardiography every 2 years. | *Moderate [[pulmonic stenosis]]: Annual visit with echocardiography every 2 years. | ||
==ACC / AHA Guidelines - Indications for balloon valvotomy in Pulmonary Stenosis (DO NOT EDIT)== | ==ACC / AHA Guidelines - Indications for balloon valvotomy in Pulmonary Stenosis (DO NOT EDIT)== | ||
Line 510: | Line 543: | ||
{|class="wikitable" | {|class="wikitable" | ||
|- | |- | ||
| colspan="1" style="text-align:center; background: | | colspan="1" style="text-align:center; background:LemonChiffon"|[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class IIa]] | ||
|- | |- | ||
| bgcolor=" | | bgcolor="LemonChiffon" |<nowiki>"</nowiki>'''1.''' It is reasonable to perform pulmonary valvuloplasty on a patient with valvar pulmonic stenosis who meets the above criteria in the setting of a dysplastic pulmonary valve.''([[ACC AHA guidelines classification scheme#|Level of Evidence: C]])'' <nowiki>"</nowiki> | ||
|- | |- | ||
| bgcolor=" | | bgcolor="LemonChiffon" |<nowiki>"</nowiki>'''2.''' It is reasonable to perform pulmonary valvuloplasty in newborns with pulmonary valve atresia and intact ventricular septum who have favorable anatomy that includes the exclusion of RV-dependent coronary circulation.''([[ACC AHA guidelines classification scheme#|Level of Evidence: C]])'' <nowiki>"</nowiki> | ||
|} | |} | ||
{|class="wikitable" | {|class="wikitable" | ||
Line 532: | Line 565: | ||
*There are no specific primary preventive measures. | *There are no specific primary preventive measures. | ||
*Patients with diagnosed pulmonary valvar stenosis are not candidates for infective endocarditis prophylaxis. | *Patients with diagnosed pulmonary valvar stenosis are not candidates for infective endocarditis prophylaxis. | ||
*Infective endocarditis prophylaxis is recommended only in patients with prosthetic valves. | *Infective endocarditis prophylaxis is recommended only in patients with prosthetic valves. | ||
==Participation In Sports== | ==Participation In Sports== |
Latest revision as of 21:22, 15 December 2022
Pulmonary valve stenosis | |
Pulmonary valve stenosis | |
ICD-10 | I37.0, I37.2, Q22.1 |
ICD-9 | 424.3, 746.02 |
OMIM | 265500 |
DiseasesDB | 11025 |
MedlinePlus | 001096 |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Aravind Kuchkuntla, M.B.B.S[2]
Synonyms and keywords: Valvular Pulmonary Stenosis, Pulmonic Stenosis, Right Ventricular Outlet Obstruction, supravalvular pulmonic stenosis, infundibular pulmonic stenosis, Narrowing of pulmonary valve, PS
Overview
Pulmonary valve stenosis accounts for 8% of all congenital heart disease and worldwide the prevalence of pulmonary valve stenosis is 1 per 2000 births.[1] The pulmonic valve stenosis is classified into 3 different subtypes based on the location of the stenosis. Isolated valvular stenosis is the most common sub-type, with dome shaped morphology and dysplastic valves. Patients with mild stenosis usually have a beningn course and do not progress, patients with moderate to severe stenosis manifest symptoms of dyspnea, chest pain, fatigue and syncope. If left untreated patients progress to right heart failure. 2D Echo is the standard diagnostic test to identify the location and to assess the severity of the stenosis. Symptomatic patients undergo valvulotomy or balloon valvuloplasty based on the morphology of the affected valves. Timely intervention in patients with valvular stenosis has good outcomes and excellent prognosis. Guidelines for evaluation, approach and treatment are well-defined.
Historical Perspective
- The pulmonary valve and its function of allowing blood to the lungs for nourishment was first described by Hippocrates. [2]
- Erasistratus, mentioned the function of the pulmonary valve in the unidirectional flow. [3]
- Galen described the membranes of the valves and named them as "semilunar". [4]
- Mondino de Luzzi designed the sketch of the pulmonary valves in the anatomical position for the first time. [5]
- Realdo Colombo described the pulmonary circulation for the first time. [6]
- Aortic stenosis was probably first described by Lazare Riviere (1589-1655), a French physician in 1663. [7]
- The first transcatheter aortic valve replacement procedure in the world was performed on 16 April 2002 in a 57-year-old inoperable patient with severe aortic stenosis. The procedure was done by the Interventional Cardiologist Professor Alain Cribier at the Charles Nicolle University Hospital in Rouen, France.
Classification
Based on the anatomic location
Pulmonic stenosis is classified into valvular, subvalvular (infundibular) and supravalvular based on the location of the stenosis in relation to the pulmonary valve. Valvular stenosis is most common of the three sub-types.[8] [9]
- Sub-valvular stenosis: It can be infudibular or sub-infundibular. Infundibular stenosis is a feature of tetralogy of Fallot. Sub-infundibular pulmonic stenosis is known as ‘double chambered right ventricle’ dividing the right ventricle into a high pressure inlet and a low pressure outlet causing a progressive right ventricular outflow tract obstruction.[10]
- Valvular stenosis: It is the most common cause of pulmonic stenosis. The valves are usually dome shaped or dysplastic affecting the movement of the cusps. It can be isolated or associated with other congenital heart diseases such as atrial septal defect, Ebstein’s anomaly, double outlet right ventricle, and transposition of the great arteries.[9]
- Supravalvular stenosis: The obstruction is usually in the common pulmonary trunk or in the bifurcation or the pulmonary branches. It is commonly associated with other congenital syndromes such as Williams–Beuren, Noonan, Allagile syndrome, DiGeorge, and Leopard syndrome. [9]
Based on the severity of the stenosis
Severity of pulmonary stenosis is classified based on the estimated peak velocity and peak resting gradient calculated using modified Bernoulli equation. It is classified into:[11]
- Mild: Peak velocity less than 3m/s and peak gradient is less than 36 mm Hg.[11]
- Moderate: Peak velocity is 3 to 4m/s and peak gradient is 36 to 64mm Hg.
- Severe: Peak velocity is greater than 4m/s and peak gradient is greater than 64mm Hg. [9]
- According to 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease, stages of severe pulmonic stenosis are defined as follows: This form of aortic stenosis presents later in life, usually after the age of 75. [12]
Stage | Definition | Valve Anatomy | Valve Hemodynamics | Hemodynamic Consequences | Symptoms |
---|---|---|---|---|---|
C,D | Severe pulmonic stenosis |
|
|
|
|
- According to 2014 AHA/ACC Guidelines for the Management of Patients With Valvular Heart Disease, progression of valvular heart disease (VHD) are defined as follows:[13]
Stage | Definition | Description |
---|---|---|
A | At risk | Patients with risk factors for development of valvular heart disease |
B | Progressive | Patients with progressive valvular heart disease (mild-to-moderate severity and asymptomatic) |
C | Asymptomatic severe | Asymptomatic patients who have the criteria for severe valvular heart disease:
|
D | Symptomatic severe | Patients who have developed symptoms as a result of valvular heart disease |
Pathophysiology
Pathogenesis
- Pulmonic valve stenosis with fused commisures affect the flexibility of the valve causing obstruction of the outflow tract. In patients with dysplastic valves, the cusps are not fused but they are rigid from intrinsic thickening resulting in the narrowing of the outflow tract. The valve problems develop 5 - 10 years after the rheumatic fever, a tiny nodule forms along the valve leaflets. The degree of leaflet thickening and calcification and the severity of chordal involvement are variable. Rheumatic fever is becoming rare in the United States, so mitral stenosis is also less common.[14]
- These morphological changes affect the complete opening of the pulmonic valve during the ventricular systole causing elevated right ventricular systolic pressures and leading to right ventricular remodelling.[15]
- The obstruction leads to increased pressure overload on the right ventricle as it has to push the blood against resistance. [9]
Genetics
These are a common genetic disorders associated with pulmonic stenosis:[16]
Syndrome | Genetic Defect | Cardiac features | Other features |
---|---|---|---|
Noonan syndrome[17] |
|
|
|
Williams Beuren[18] |
|
|
|
Leopard syndrome[19] |
|
|
|
DiGeorge syndrome[21] |
|
|
|
Allagile[22] |
|
|
|
Keutel[24] |
|
|
|
Congenital rubella syndrome[25] | N/A |
|
|
Associated conditions
A rare association of pulmonic stenosis with an unrepaired ASD is reported.[26] [27] [28]
Epidemiology and Demographics
- Pulmonary stenosis accounts for 8% of all congenital heart disease. [29]
- Worldwide, the prevalence of pulmonic stenosis is 1 per 2000 births.[30]
- The prevalence of pulmonic stenosis and tetralogy of Fallot is higher in asian countries.[31] [32]
Causes
Pulmonary valve stenosis is due to a structural changes resulting from thickening and fusion of the pulmonary valve. The valve pathology can be congenital or acquired. The following is the list of causes: [33][34].
Congenital causes
These account for 95% of the cases with pulmonic stenosis which include isolated pulmonic valve pathologies and its associations with other congenital heart diseases.[35]
Associated with congenital heart disease
- Tetralogy of Fallot[36] [37] [38]
- Double outlet right ventricle [39]
- Univentricular atrio-ventricular connection [40]
- Atrioventricular canal defect [41]
- Bicuspid pulmonary valve[42]
- Quadricuspid pulmonary valve: Benign and an incidental finding[43]
- Isolated pulmonic stenosis[44]
- Acommissural pulmonary valves: Valve has a prominent systolic doming of the cusps and an eccentric orifice.[45][46]
- Dysplastic pulmonary valves: Thickened and deformed cusps with no commissural fusion. It is a common finding associated with Noonan syndrome.[47]
- Unicommissural pulmonary valve
- Bicuspid valve with fused commissures
Acquired Causes
These are less frequent and account for less than 5% of the cases. [48]
- Carcinoid Syndrome: most common acquired cause[49]
- Post infectious: Infective endocarditis
- Calcification of the pulmonary valve[50]
- Rheumatic heart disease[51]
- Ross procedure[52]
- Functional pulmonic stenosis: Primary cardiac tumors obstructing the right ventricular outflow tract such as leiomyosarcoma.[53]
Differentiating from other diseases
Right ventricular outflow tract obstruction must be distinguished from an ASD, a small VSD, aortic stenosis, and acyanotic or pink tetralogy of Fallot.[54]
- Atrial septal defect: Presence of systolic ejection murmur, wide fixed split S2, EKG showing RVH. In ASD the split of the S2 is fixed, there is no ejection click. [55]
- Small Ventricular septal defect: Amyl nitrate increases venous return and increases the murmur of pulmonary stenosis, in VSD the murmur becomes softer.
- Mild left-sided outflow obstruction: With valsalva maneuver the murmur of aortic stenosis becomes softer after about 5 beats, with pulmonary stenosis it becomes softer within 3 beats.
- Acyanotic or pink tetralogy of Fallot: with amyl nitrate and increased venous return the murmur of PS increases, and the murmur of tetralogy of Fallot decreases because of peripheral vasodilation and an increase in right to left shunting. [33]
Risk Factors
Common risk factors in the development of congenital heart disease apply for pulmonic stenosis and include:[56]
- Maternal gestational diabetes mellitus
- Consanguineous marriage[57]
- Phenylketonuria
- Febrile illness
- Vitamin A use [58]
- Marijuana use [59]
- Exposure to organic solvents [60]
Natural History, Complications and Prognosis
Natural History
Patients with congenital pulmonary stenosis manifest clinical features few hours after birth, in childhood or in adulthood. Manifestation of symptoms, symptom severity and the outcomes are dependent on the severity of stenosis. Patients with mild pulmonic stenosis have a benign course and do not progress and patients with moderate and severe stenosis have dyspnea with exertion and syncope.[61]
Prognosis
Patients with moderate to severe pulmonic valve stenosis are managed well with surgery or balloon valvuloplasty and have very good prognosis. [62]
Complications
If left untreated, patients with moderate to severe stenosis progress to develop tricuspid regurgitation and right ventricular dysfunction leading to right ventricular failure and arrhythmias.[63]
Diagnosis
Gold standard diagnosis of pulmonic stenosis and assessment of severity is done by 2D echocardiography.[64]
History and Symptoms
The severity of symptoms and age of symptom onset depends on the severity of the stenosis. Clinical presentations vary as follows:
- Critical pulmonary stenosis:It presents in first few hours to days of life with cyanosis. It is a condition with a very small or pin-hole orifice in the pulmonary valve which can be diagnosed prenatally. These patients have an intact interventricular septum, poorly complaint hypoplastic right ventricle and areductus dependent. Cyanosis in these patients is due to the right to left shunting at the level of the foramen ovale.[65]
- Mild Pulmonic Stenosis: Patients with mild stenosis are asymptomatic and are diagnosed by routine examination with an ejection systolic murmur.
- Moderate Pulmonic Stenosis: Patients present with exertional dyspnea and fatigue. [66]
- Severe Pulmonic Stenosis: Patients present with exertional dyspnea, chest pain and syncope. [67]
- Untreated patients develop features of right ventricular failure which include:
- Exercise intolerance
- Fatigue
- Shortness of breath
- Swelling of the feet or ankles
- Abdominal discomfort
- Patients with subinfundibular/infundibular PS can be asymptomatic or they may present with angina, dyspnea, dizziness, or syncope.
- Patients with supravalvular PS may be asymptomatic or have symptoms of dyspnea and fatigue on exertion.
Mild valvular
PS |
Moderate Valvular
PS |
Severe Valvular PS | Infundibular
Pulmonic Stenosis |
Supravalvular
Pulmonic Stenosis |
Right Heart Failure | |
---|---|---|---|---|---|---|
Clinical Features |
Asymptomatic |
Physical Examination
The common examination findings include:
- Patients with isolated pulmonary stenosis usually appear normal. In patients diagnosed with syndromes associated with pulmonic stenosis syndrome specific physical examination findings are demonstrated.[68]
- Cardiac examination findings are dependent on the degree of the pulmonary stenosis, the pathology of the valve and associated cardiac lesions. The common findings include as follows: [70]
- In mild stenosis findings include normal jugular venous pulse, absent right ventricle lift, ejection click in the pulmonary area which decreases with inspiration, ejection systolic murmur in the pulmonary area heard in the ending of mid systole increasing in intensity during inspiration.[71]
- In severe stenosis findings include:
- Elevated JVP with a prominent "a" wave
- Right ventricular heave.
- Louder and longer ejection murmur in the left parasternal area in second and third intercostal space.
- Ejection click is softer and absent with increasing severity.
- Wide split S2 with reduced or absent P2 component.
- Right sided S4 can be audible. [72]
Mild valvular
PS |
Severe Valvular
PS | |
---|---|---|
Physical Examination Findings |
|
|
EKG
Patients with mild stenosis usually do not show any EKG changes excepting for right axis deviation of -100° to -110° which is considered normal in children and adults.
In case of severe stenosis the following changes can be noted, which include:[73]
- Features of right ventricular hypertrophy
- Rightward axis deviation [74]
- High R wave amplitude in lead V1.
- Deep S waves in the left precordial leads with <1 R:S ratio in lead V6
Chest X-Ray
- Vascular fullness in the left lung base greater than the right lung base.
- Dilation of the main pulmonary artery is a more common finding in doming pulmonary valve stenosis when compared to dysplastic valves.
- Calcification can be rarely seen.
Echocardiography
Transthoracic 2D Echo and Doppler imaging is the standard diagnostic test to detect and assess the severity of the stenosis.[75]
- Echo shows thickened and dome shaped valves, peak and mean gradients to assess the severity can be measured by Doppler imaging. [76]
- Dysplastic valves are well visualized on echo.[77]
- Always calculate the tricuspid regurgitation gradient to rule out overestimation of the pulmonary stenosis gradient.[78]
- Right ventricular function and ejection fraction is better measured by a 3D echo when compared to a 2D echo.[79]
- Pulmonic Stenosis 1
{{#ev:youtube|4nCLhy6tYBs}}
- Pulmonic Stenosis 2
{{#ev:youtube|s-tfOTR11r0}}
MRI
Cardiac MRI is very useful to study the anatomy of the right ventricular outflow tract, pulmonary artery and to locate the exact level of stenosis.[80]
Cardiac Catheterization
Cardiac catheterization is useful to measure the pressure gradients directly, but its not performed on a regular basis as echo is a reliable and non-invasive test to measure the pressure gradients.[81]
Dual-Source Computed Tomography
It is an accurate imaging technique to evaluate the function and anatomy of the pulmonary valve.[82]
Evaluation of Pulmonary Stenosis in Adolescents and Young Adults
According to 2008 ACC/AHA guidelines, following are the guidelines for evaluation of patients with pulmonary stenosis:
Class I |
"1. An ECG is recommended for the initial evaluation of pulmonic stenosis in adolescent and young adult patients and serially every 5 to 10 years for follow-up examinations.(Level of Evidence: C) " |
"2.Transthoracic Doppler echocardiography is recommended for the initial evaluation of pulmonic stenosis in adolescent and young adult patients, and serially every 5 to 10 years for follow-up examinations.(Level of Evidence: C)" |
"3.Cardiac catheterization is recommended in the adoles- cent or young adult with pulmonic stenosis for evalu- ation of the valvular gradient if the Doppler peak jet velocity is greater than 3 m per second (estimated peak gradient greater than 36 mm Hg) and balloon dilation can be performed if indicated.(Level of Evidence: C) " |
Class III |
"1.Diagnostic cardiac catheterization is not recommended for the initial diagnostic evaluation of pulmonic stenosis in adolescent and young adult patients.(Level of Evidence: C).(Level of Evidence: C) " |
Treatment
Medical Therapy
There is no specific medical therapy for the treatment of pulmonic stenosis. However, patients diagnosed with right heart failure diuretics are recommended to decrease the fluid overload. [83]
Surgery
Indications For Intervention
Surgical correction is recommended based on the peak gradient and other associated clinical features:[84] [85]
- Surgery is advised regardless of the symptoms if the doppler derived peak instantaneous gradient greater than 64 mm Hg (peak velocity >4 m/s). [86]
- In patients with doppler derived peak instantaneous gradient less than 64 mm Hg (peak velocity>4 m/s), surgery is advised if any of the following is present:[83]
- Symptomatic patient
- Decreased right ventricular function
- Double chambered right ventricle
- Arrhythmia
- Right to left shunting via the VSD or ASD
- Asymptomatic patients with a systolic RV pressure greater than 80 mm Hg (TR jet velocity >4.3 m/s).
2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines[87]
Recommendations for Valvular Pulmonary Stenosis
Class I |
1. In adults with moderate or severe valvular pulmonary stenosis and otherwise unexplained symptoms of HF, cyanosis from interatrial right-to-left communication, and/or exercise intolerance, balloon valvuloplasty is recommended..(Level of Evidence: B-NR) |
2.In adults with moderate or severe valvular pulmonary stenosis and otherwise unexplained symptoms of HF, cyanosis, and/ or exercise intolerance who are ineligible for or who failed balloon valvuloplasty, surgical repair is recommended(Level of Evidence: B-NR) |
Class IIa |
1.In asymptomatic adults with severe valvular pulmonary stenosis, intervention is reasonable. (Level of Evidence: C-EO)" |
According to 2010, ESC Guidelines for the management of grown-up congenital heart disease, Indications for intervention in Right Ventricular Outlet Obstruction are as follows:[88]
Class I |
"1.RVOTO at any level should be repaired regardless of the symptoms when the doppler peak gradient is >64mm Hg(peak velocity >4.0m/s), provided that the RV function is normal and no valve substitute is required(Level of Evidence: C)" |
"2.In valvular PS, balloon valvulotomy should be the intervention of choice.(Level of Evidence: C) " |
"3.In asymptomatic patients in whom balloon valvulotomy is ineffective and the surgical valve replacement is the only option, surgery should be performed in the presence of a systolic right ventricular pressure greater than 80mm Hg ( TR velocity >4.3m/s)(Level of Evidence: C) " |
Class IIa |
"1.Intervention in patients with gradient <64 mm Hg should be considered in the presence of:
|
"2.Peripheral PS, regardless of the symptoms, should be considered for repair if :
|
Intervention Options
- Percutaneous balloon pulmonary valvulotomy (BPV) has widely replaced surgical valvulotomy as a treatment option for pulmonary valve stenosis.[89][90]
- Catheter intervention is recommended for patients with doming valves which are not dysplastic.[91]
- Surgery is recommended for patients with:
- Subinfundibular or infundibular pulmonic stenosis and hypoplastic pulmonary annulus
- Dysplastic pulmonary valves
- Patients with associated lesions which need a surgical approach, such as severe PR or severe TR.
- In patients with significant residual PS after BPV, a redo BPV can be performed with a larger balloon to avoid valve replacement.
- In patients with hemodynamically significant pulmonary regurgitation after valvulotomy or BPV, surgical valve replacement is recommended.
Intervention Outcome
- Surgical outcomes in patients with valvular stenosis is good with survival rate of 90 to 96% 25 years after the surgery when its done in the childhood.[92][93]
- Survival is around 70% at 25 years when the surgery is performed in adulthood.
- BPV has shown to have good outcomes in long term follow up with very low rate of re-intervention requirement.[94][95][96]
- BPV has shown to have sub-optimal results in patients with dysplastic valves when compared to doming valves.[97]
Complications
- Post procedural pulmonary regurgitation is a common complication and occurs in 10 to 40% patients. Majority of the patients remain asymptomatic and only few patients develop hemodynamically significant pulmonary regurgitation.[98]
- Bradycardia and hypotension at the time of balloon inflation
- Transient permanent right bundle branch block or atrioventricular block
- Higher mortality rates reported after surgical decompression in patients with RV-dependent coronary circulation.[99]
- Balloon rupture
- Tricuspid papillary muscle rupture
- Perforation of the RV outflow tract
Follow up
Patients with pulmonic stenosis are recommended for a regular echocardiography to evaluate the degree of pulmonary regurgitation, RV pressure, RV function and tricuspid regurgitation. The frequency of visits is dependent on the degree of stenosis and is as follows:[100]
- Mild untreated or residual pulmonic stenosis: Follow up once every 5 years.
- Moderate pulmonic stenosis: Annual visit with echocardiography every 2 years.
ACC / AHA Guidelines - Indications for balloon valvotomy in Pulmonary Stenosis (DO NOT EDIT)
According to 2008 ACC/AHA guidelines[100], following are the indications for balloon valvotomy in pulmonary stenosis:
Class I |
"1.Balloon valvotomy is recommended in adolescent and young adult patients with pulmonic stenosis who have exertional dyspnea, angina, syncope, or presyncope and an RV–to–pulmonary artery peak-to-peak gradient greater than 30 mm Hg at catheterization.(Level of Evidence: C) " |
"2.Balloon valvotomy is recommended in asymptomatic adolescent and young adult patients with pulmonic stenosis and RV–to–pulmonary artery peak-to-peak gradient greater than 40 mm Hg at catheterization.(Level of Evidence: C) " |
Class III |
"1.Balloon valvotomy is not recommended in asymptomatic adolescent and young adult patients with pulmonic stenosis and RV–to–pulmonary artery peak-to-peak gradient less than 30 mm Hg at catheterization.(Level of Evidence: C) " |
Class IIb |
"1.Balloon valvotomy may be reasonable in asymptomatic adolescent and young adult patients with pulmonic stenosis and an RV–to–pulmonary artery peak-to-peak gradient 30 to 39 mm Hg at catheterization.(Level of Evidence: C) " |
Recommendations For Pulmonary Valvuloplasty
According to 2011, Indications for Cardiac Catheterization and Intervention in Pediatric Cardiac Disease, A Scientific Statement From the American Heart Association.[101]
Class I |
"1. Pulmonary valvuloplasty is indicated for a patient with critical valvar pulmonary stenosis (defined as pulmonary stenosis present at birth with cyanosis and evidence of patent ductus arteriosus dependency), valvar pulmonic stenosis, and a peak-to-peak catheter gradient or echocardiographic peak instantaneous gradient of >40 mm Hg or clinically significant pulmonary valvar obstruction in the presence of RV dysfunction.(Level of Evidence: A) " |
Class IIa |
"1. It is reasonable to perform pulmonary valvuloplasty on a patient with valvar pulmonic stenosis who meets the above criteria in the setting of a dysplastic pulmonary valve.(Level of Evidence: C) " |
"2. It is reasonable to perform pulmonary valvuloplasty in newborns with pulmonary valve atresia and intact ventricular septum who have favorable anatomy that includes the exclusion of RV-dependent coronary circulation.(Level of Evidence: C) " |
Class IIb |
"1. Pulmonary valvuloplasty may be considered as a palliative procedure in a patient with complex cyanotic CHD, including some rare cases of tetralogy of Fallot.(Level of Evidence: C) " |
Class III |
"1. Pulmonary valvuloplasty should not be performed in patients with pulmonary atresia and RV-dependent coronary circulation.(Level of Evidence: B) " |
Prevention
- There are no specific primary preventive measures.
- Patients with diagnosed pulmonary valvar stenosis are not candidates for infective endocarditis prophylaxis.
- Infective endocarditis prophylaxis is recommended only in patients with prosthetic valves.
Participation In Sports
According to 2005 Task Force 2: Congenital Heart Disease, guidelines for participation in sports are as follows:[102]
Pulmonary valve stenosis in untreated patients
"1.Athletes with a peak systolic gradient less than 40 mm Hg and normal right ventricular function can participate in all competitive sports if no symptoms are present. Annual re-evaluation is recommended. " |
"2.Athletes with a peak systolic gradient greater than 40 mm Hg can participate in low-intensity competitive sports (classes IA and IB). Patients in this category usually are referred for balloon valvuloplasty or operative valvotomy before sports participation. " |
Pulmonary valve stenosis treated by operation or balloon valvuloplasty
"1.Athletes with no or only residual mild PS and normal ventricular function without symptoms can participate in all competitive sports. Participation in sports can begin two to four weeks after balloon valvuloplasty. After operation, an interval of approximately three months is suggested before resuming sports participation. " |
"2.Athletes with a persistent peak systolic gradient greater than 40 mm Hg should follow the same recommendations as those for patients before treatment." |
"3.Athletes with severe pulmonary incompetence characterized by a marked right ventricular enlargement can participate in class IA and IB competitive sports." |
SupraValvular Pulmonic Stenosis
According to 2008 ACC/AHA Guidelines, Recommendations for Evaluation of Patients With Supravalvular, Branch, and Peripheral Pulmonary Stenosis (DO NOT EDIT)[103]
Class I |
"1. Patients with suspected supravalvular, branch, or peripheral PS should have baseline imaging with echocardiography- Doppler plus 1 of the following: MRI angiography, CT angiography, or contrast angiography. (Level of Evidence: C)" |
"2. Once the diagnosis is established, follow-up echocardiography- Doppler to assess RV systolic pressure should be performed periodically, depending on severity. (Level of Evidence: C)" |
Recommendations for Interventional Therapy in the Management of Branch and Peripheral Pulmonary Stenosis (DO NOT EDIT)[103]
Class I |
"1. Percutaneous interventional therapy is recommended as the treatment of choice in the management of appropriate focal branch and/or peripheral pulmonary artery stenosis with greater than 50% diameter narrowing, an elevated RV systolic pressure greater than 50 mm Hg, and/or symptoms. (Level of Evidence: B)" |
"2. In patients with the above indications for intervention, surgeons with training and expertise in CHD should perform operations for management of branch pulmonary artery stenosis not anatomically amenable to percutaneous interventional therapy. (Level of Evidence: B)" |
Recommendations for Evaluation and Follow-Up (DO NOT EDIT)[103]
Class I |
"1. Patients with peripheral PS should be followed up every 1 to 2 years, on the basis of severity, with a clinical evaluation and echocardiography-Doppler to evaluate RV systolic pressure and RV function. (Level of Evidence: C)" |
"2. Discussion with a cardiac surgeon with expertise in CHD should take place before percutaneous peripheral pulmonary artery interventions are undertaken. (Level of Evidence: C)" |
References
- ↑ van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ; et al. (2011). "Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis". J Am Coll Cardiol. 58 (21): 2241–7. doi:10.1016/j.jacc.2011.08.025. PMID 22078432.
- ↑ Roberts WC, Ko JM (July 2008). "Some observations on mitral and aortic valve disease". Proc (Bayl Univ Med Cent). 21 (3): 282–99. doi:10.1080/08998280.2008.11928412. PMC 2446420. PMID 18628928.
- ↑ Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP; et al. (2009). "Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice". Eur J Echocardiogr. 10 (1): 1–25. doi:10.1093/ejechocard/jen303. PMID 19065003.
- ↑ Waller BF, Howard J, Fess S (1995). "Pathology of tricuspid valve stenosis and pure tricuspid regurgitation--Part I." Clin Cardiol. 18 (2): 97–102. PMID 7720297.
- ↑ Pellikka PA, Tajik AJ, Khandheria BK, Seward JB, Callahan JA, Pitot HC, Kvols LK (April 1993). "Carcinoid heart disease. Clinical and echocardiographic spectrum in 74 patients". Circulation. 87 (4): 1188–96. doi:10.1161/01.cir.87.4.1188. PMID 7681733.
- ↑ Gur AK, Odabasi D, Kunt AG, Kunt AS (July 2014). "Isolated tricuspid valve repair for Libman-Sacks endocarditis". Echocardiography. 31 (6): E166–8. doi:10.1111/echo.12558. PMID 24661289.
- ↑ Muraru D, Badano LP, Sarais C, Soldà E, Iliceto S (June 2011). "Evaluation of tricuspid valve morphology and function by transthoracic three-dimensional echocardiography". Curr Cardiol Rep. 13 (3): 242–9. doi:10.1007/s11886-011-0176-3. PMID 21365261.
- ↑ Kelly TA, Rothbart RM, Cooper CM, Kaiser DL, Smucker ML, Gibson RS (1988). "Comparison of outcome of asymptomatic to symptomatic patients older than 20 years of age with valvular aortic stenosis". Am J Cardiol. 61 (1): 123–30. PMID 3337000.
- ↑ 9.0 9.1 9.2 9.3 9.4 Schmoldt A, Benthe HF, Haberland G, Felt V, Nedvídková J, Hynie S, Mosinger B, Vavrinková M, Järvisalo J, Saris NE (September 1975). "Digitoxin metabolism by rat liver microsomes". Biochem. Pharmacol. 24 (17): 1639–41. doi:10.1016/0006-2952(75)90009-x. PMC 5922622. PMID 10.
- ↑ Cabrera A, Martinez P, Rumoroso JR, Alcibar J, Arriola J, Pastor E; et al. (1995). "Double-chambered right ventricle". Eur Heart J. 16 (5): 682–6. PMID 7588901.
- ↑ 11.0 11.1 Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP; et al. (2009). "Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice". J Am Soc Echocardiogr. 22 (1): 1–23, quiz 101-2. doi:10.1016/j.echo.2008.11.029. PMID 19130998.
- ↑ Townsend CM, et al. Sabiston Textbook of Surgery. 18th ed. Saunders; 2008:1841-1844.
- ↑ Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA, O'Gara PT, Ruiz CE, Skubas NJ, Sorajja P, Sundt TM, Thomas JD (2014). "2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines". J. Am. Coll. Cardiol. 63 (22): 2438–88. doi:10.1016/j.jacc.2014.02.537. PMID 24603192.
- ↑ Chapter 1: Diseases of the Cardiovascular system > Section: Valvular Heart Disease in: Elizabeth D Agabegi; Agabegi, Steven S. (2008). Step-Up to Medicine (Step-Up Series). Hagerstwon, MD: Lippincott Williams & Wilkins. ISBN 0-7817-7153-6.
- ↑ Borgdorff MA, Dickinson MG, Berger RM, Bartelds B (2015). "Right ventricular failure due to chronic pressure load: What have we learned in animal models since the NIH working group statement?". Heart Fail Rev. 20 (4): 475–91. doi:10.1007/s10741-015-9479-6. PMC 4463984. PMID 25771982.
- ↑ Pierpont ME, Basson CT, Benson DW, Gelb BD, Giglia TM, Goldmuntz E; et al. (2007). "Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics". Circulation. 115 (23): 3015–38. doi:10.1161/CIRCULATIONAHA.106.183056. PMID 17519398.
- ↑ Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean L, Bird TD, Fong CT, Mefford HC, Smith R, Stephens K, Allanson JE, Roberts AE. PMID 20301303. Vancouver style error: initials (help); Missing or empty
|title=
(help) - ↑ Samanta D (2016). "Infantile spasms in Williams-Beuren syndrome with typical deletions of the 7q11.23 critical region and a review of the literature". Acta Neurol Belg. doi:10.1007/s13760-016-0635-0. PMID 27062269.
- ↑ Ghosh SK, Majumdar B, Rudra O, Chakraborty S (2015). "LEOPARD Syndrome". Dermatol Online J. 21 (10). PMID 26632807.
- ↑ Gozali MV, Zhou BR, Luo D (2015). "Generalized lentiginosis in an 11 year old boy". Dermatol Online J. 21 (9). PMID 26437287.
- ↑ Hacıhamdioğlu B, Hacıhamdioğlu D, Delil K (2015). "22q11 deletion syndrome: current perspective". Appl Clin Genet. 8: 123–32. doi:10.2147/TACG.S82105. PMC 4445702. PMID 26056486.
- ↑ Saleh M, Kamath BM, Chitayat D (2016). "Alagille syndrome: clinical perspectives". Appl Clin Genet. 9: 75–82. doi:10.2147/TACG.S86420. PMC 4935120. PMID 27418850.
- ↑ Rodriguez RM, Feinstein JA, Chan FP (2016). "CT-defined phenotype of pulmonary artery stenoses in Alagille syndrome". Pediatr Radiol. 46 (8): 1120–7. doi:10.1007/s00247-016-3580-4. PMID 27041277.
- ↑ Bayramoğlu A, Saritemur M, Tasdemir S, Omeroglu M, Erdem HB, Sahin I (2016). "A rare cause of dyspnea in emergency medicine: Keutel syndrome". Am J Emerg Med. 34 (5): 935.e3–5. doi:10.1016/j.ajem.2015.09.020. PMID 26462901.
- ↑ Rowe RD (1973). "Cardiovascular disease in the rubella syndrome". Cardiovasc Clin. 5 (1): 61–80. PMID 4589966.
- ↑ Zampi G, Pergolini A, Celestini A, Benvissuto F, Tinti MD, Ortenzi M; et al. (2016). "[Pulmonary stenosis and atrial septal defect: a rare association in the elderly]". G Ital Cardiol (Rome). 17 (1): 62–3. doi:10.1714/2140.23196. PMID 26901261.
- ↑ Park SJ, Enriquez-Sarano M, Chang SA, Choi JO, Lee SC, Park SW; et al. (2013). "Hemodynamic patterns for symptomatic presentations of severe aortic stenosis". JACC Cardiovasc Imaging. 6 (2): 137–46. doi:10.1016/j.jcmg.2012.10.013. PMID 23489526.
- ↑ Nazari S, Carli F, Salvi S, Banfi C, Aluffi A, Mourad Z; et al. (2000). "Patterns of systolic stress distribution on mitral valve anterior leaflet chordal apparatus. A structural mechanical theoretical analysis". J Cardiovasc Surg (Torino). 41 (2): 193–202. PMID 10901521.
- ↑ Iung B, Vahanian A (2014). "Epidemiology of acquired valvular heart disease". Can J Cardiol. 30 (9): 962–70. doi:10.1016/j.cjca.2014.03.022. PMID 24986049.
- ↑ Otto CM, Prendergast B (2014). "Aortic-valve stenosis--from patients at risk to severe valve obstruction". N Engl J Med. 371 (8): 744–56. doi:10.1056/NEJMra1313875. PMID 25140960.
- ↑ Jacobs EG, Leung MP, Karlberg J (2000). "Distribution of symptomatic congenital heart disease in Hong Kong". Pediatr Cardiol. 21 (2): 148–57. doi:10.1007/s002469910025. PMID 10754087.
- ↑ Shah PM, Raney AA (February 2008). "Tricuspid valve disease". Curr Probl Cardiol. 33 (2): 47–84. doi:10.1016/j.cpcardiol.2007.10.004. PMID 18222317.
- ↑ 33.0 33.1 Farag M, Arif R, Sabashnikov A, Zeriouh M, Popov AF, Ruhparwar A, Schmack B, Dohmen PM, Szabó G, Karck M, Weymann A (February 2017). "Repair or Replacement for Isolated Tricuspid Valve Pathology? Insights from a Surgical Analysis on Long-Term Survival". Med. Sci. Monit. 23: 1017–1025. doi:10.12659/msm.900841. PMC 5338566. PMID 28236633.
- ↑ Salem A, Abdelgawad A, Elshemy A (August 2018). "Early and Midterm Outcomes of Rheumatic Mitral Valve Repair". Heart Surg Forum. 21 (5): E352–E358. doi:10.1532/hsf.1978. PMID 30311884. Vancouver style error: initials (help)
- ↑ Altrichter PM, Olson LJ, Edwards WD, Puga FJ, Danielson GK (1989). "Surgical pathology of the pulmonary valve: a study of 116 cases spanning 15 years". Mayo Clin Proc. 64 (11): 1352–60. PMID 2593721.
- ↑ Greenberg SB, Crisci KL, Koenig P, Robinson B, Anisman P, Russo P (1997). "Magnetic resonance imaging compared with echocardiography in the evaluation of pulmonary artery abnormalities in children with tetralogy of Fallot following palliative and corrective surgery". Pediatr Radiol. 27 (12): 932–5. doi:10.1007/s002470050275. PMID 9388286.
- ↑ [+https://www.sciencedirect.com/science/article/pii/B9780124202191000124?via%3Dihub "Valvular Heart Disease - ScienceDirect"] Check
|url=
value (help). - ↑ Lindroos M, Kupari M, Heikkilä J, Tilvis R (1993). "Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample". Journal of the American College of Cardiology. 21 (5): 1220–5. PMID 8459080. Retrieved 2012-04-11. Unknown parameter
|month=
ignored (help) - ↑ Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottdiener JS, Smith VE, Kitzman DW, Otto CM (1997). "Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study". Journal of the American College of Cardiology. 29 (3): 630–4. PMID 9060903. Retrieved 2012-04-11. Unknown parameter
|month=
ignored (help) - ↑ Movahed MR, Ahmadi-Kashani M, Kasravi B, Saito Y (2006). "Increased prevalence of mitral stenosis in women". J Am Soc Echocardiogr. 19 (7): 911–3. doi:10.1016/j.echo.2006.01.017. PMID 16825001.
- ↑ "Harold on History: The Evolution of Transcatheter Aortic Valve Replacement - American College of Cardiology".
- ↑ Jashari R, Van Hoeck B, Goffin Y, Vanderkelen A (2009). "The incidence of congenital bicuspid or bileaflet and quadricuspid or quadrileaflet arterial valves in 3,861 donor hearts in the European Homograft Bank". J Heart Valve Dis. 18 (3): 337–44. PMID 19557994.
- ↑ Fernández-Armenta J, Villagómez D, Fernández-Vivancos C, Vázquez R, Pastor L (2009). "Quadricuspid pulmonary valve identified by transthoracic echocardiography". Echocardiography. 26 (3): 288–90. doi:10.1111/j.1540-8175.2008.00798.x. PMID 19017322.
- ↑ Gikonyo BM, Lucas RV, Edwards JE (1987). "Anatomic features of congenital pulmonary valvar stenosis". Pediatr Cardiol. 8 (2): 109–16. doi:10.1007/BF02079465. PMID 2957652.
- ↑ Snellen HA, Hartman H, Buis-Liem TN, Kole EH, Rohmer J (1968). "Pulmonic stenosis". Circulation. 38 (1 Suppl): 93–101. PMID 4889601.
- ↑ Jonas SN, Kligerman SJ, Burke AP, Frazier AA, White CS (2016). "Pulmonary Valve Anatomy and Abnormalities: A Pictorial Essay of Radiography, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI)". J Thorac Imaging. 31 (1): W4–12. doi:10.1097/RTI.0000000000000182. PMID 26656195.
- ↑ Koretzky ED, Moller JH, Korns ME, Schwartz CJ, Edwards JE (1969). "Congenital pulmonary stenosis resulting from dysplasia of valve". Circulation. 40 (1): 43–53. PMID 5792996.
- ↑ "15 Years in TAVI".
- ↑ Waller BF (1984). "Morphological aspects of valvular heart disease: Part II". Curr Probl Cardiol. 9 (8): 1–74. PMID 6391843.
- ↑ Gabriele OF, Scatliff JH (1970). "Pulmonary valve calcification". Am Heart J. 80 (3): 299–302. PMID 5448727.
- ↑ Vela JE, Contreras R, Sosa FR (1969). "Rheumatic pulmonary valve disease". Am J Cardiol. 23 (1): 12–8. PMID 5380838.
- ↑ Raanani E, Yau TM, David TE, Dellgren G, Sonnenberg BD, Omran A (2000). "Risk factors for late pulmonary homograft stenosis after the Ross procedure". Ann Thorac Surg. 70 (6): 1953–7. PMID 11156101.
- ↑ Vakilian F, Shabestari MM, Poorzand H, Teshnizi MA, Allahyari A, Memar B (2016). "Primary Pulmonary Valve Leiomyosarcoma in a 35-Year-Old Woman". Tex Heart Inst J. 43 (1): 84–7. doi:10.14503/THIJ-14-4748. PMC 4810595. PMID 27047294.
- ↑ Seckeler MD, Hoke TR (2011). "The worldwide epidemiology of acute rheumatic fever and rheumatic heart disease". Clin Epidemiol. 3: 67–84. doi:10.2147/CLEP.S12977. PMC 3046187. PMID 21386976.
- ↑ Cleland JG, Swedberg K, Follath F, Komajda M, Cohen-Solal A, Aguilar JC, Dietz R, Gavazzi A, Hobbs R, Korewicki J, Madeira HC, Moiseyev VS, Preda I, van Gilst WH, Widimsky J, Freemantle N, Eastaugh J, Mason J (2003). "The EuroHeart Failure survey programme-- a survey on the quality of care among patients with heart failure in Europe. Part 1: patient characteristics and diagnosis". European Heart Journal. 24 (5): 442–63. PMID 12633546. Retrieved 2012-04-11. Unknown parameter
|month=
ignored (help) - ↑ van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ; et al. (2011). "Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis". J Am Coll Cardiol. 58 (21): 2241–7. doi:10.1016/j.jacc.2011.08.025. PMID 22078432.
- ↑ Naderi S (1979). "Congenital abnormalities in newborns of consanguineous and nonconsanguineous parents". Obstet Gynecol. 53 (2): 195–9. PMID 570260.
- ↑ Aronow, WS. (2013). "A review of the pathophysiology, diagnosis, and treatment of aortic valve stenosis in elderly patients". Hosp Pract (1995). 41 (4): 66–77. doi:10.3810/hp.2013.10.1082. PMID 24145591. Unknown parameter
|month=
ignored (help) - ↑ Moura LM, Maganti K, Puthumana JJ, Rocha-Gonçalves F, Rajamannan NM (2007). "New understanding about calcific aortic stenosis and opportunities for pharmacologic intervention". Curr Opin Cardiol. 22 (6): 572–7. doi:10.1097/HCO.0b013e3282f0dae6. PMID 17921746.
- ↑ Hannoush H, Introne WJ, Chen MY, Lee SJ, O'Brien K, Suwannarat P; et al. (2012). "Aortic stenosis and vascular calcifications in alkaptonuria". Mol Genet Metab. 105 (2): 198–202. doi:10.1016/j.ymgme.2011.10.017. PMC 3276068. PMID 22100375.
- ↑ Mody MR (1975). "The natural history of uncomplicated valvular pulmonic stenosis". Am Heart J. 90 (3): 317–21. PMID 1163423.
- ↑ Bonow RO, Carabello BA, Chatterjee K, de Leon AC, Faxon DP, Freed MD; et al. (2008). "2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons". Circulation. 118 (15): e523–661. doi:10.1161/CIRCULATIONAHA.108.190748. PMID 18820172.
- ↑ Wolfe RR, Driscoll DJ, Gersony WM, Hayes CJ, Keane JF, Kidd L; et al. (1993). "Arrhythmias in patients with valvar aortic stenosis, valvar pulmonary stenosis, and ventricular septal defect. Results of 24-hour ECG monitoring". Circulation. 87 (2 Suppl): I89–101. PMID 8425327.
- ↑ Kim DH, Park SJ, Jung JW, Kim NK, Choi JY (2013). "The Comparison between the Echocardiographic Data to the Cardiac Catheterization Data on the Diagnosis, Treatment, and Follow-Up in Patients Diagnosed as Pulmonary Valve Stenosis". J Cardiovasc Ultrasound. 21 (1): 18–22. doi:10.4250/jcu.2013.21.1.18. PMC 3611114. PMID 23560138.
- ↑ Hornberger LK, Barrea C (2001). "Diagnosis, natural history, and outcome of fetal heart disease". Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 4: 229–43. PMID 11460987.
- ↑ Selzer A, Cohn KE (1972). "Natural history of mitral stenosis: a review". Circulation. 45 (4): 878–90. PMID 4552598.
- ↑ ROWE JC, BLAND EF, SPRAGUE HB, WHITE PD (1960). "The course of mitral stenosis without surgery: ten- and twenty-year perspectives". Ann Intern Med. 52: 741–9. PMID 14439687.
- ↑ REEVE, R.; ROBINSON, SJ. (1964). "HYPOPLASTIC ANNULUS--AN UNUSUAL TYPE OF AORTIC STENOSIS: A REPORT OF THREE CASES IN CHILDREN". Dis Chest. 45: 99–102. PMID 14114644. Unknown parameter
|month=
ignored (help) - ↑ Nakao S, Takenaka T, Maeda M, Kodama C, Tanaka A, Tahara M; et al. (1995). "An atypical variant of Fabry's disease in men with left ventricular hypertrophy". N Engl J Med. 333 (5): 288–93. doi:10.1056/NEJM199508033330504. PMID 7596372.
- ↑ Yamagishi Y, Yuda S, Tsuchihashi K, Saitoh S, Miura T, Ura N; et al. (2007). "Quadricuspid aortic valve associated with aortic stenosis and regurgitation: report of a case and a review of the literature". J Med Ultrason (2001). 34 (4): 197–200. doi:10.1007/s10396-007-0148-9. PMID 27278482.
- ↑ Hultgren HN, Reeve R, Cohn K, McLeod R (1969). "The ejection click of valvular pulmonic stenosis". Circulation. 40 (5): 631–40. PMID 5377205.
- ↑ Kwon HJ, Park JH, Kim SS, Sun BJ, Jin SA, Kim JH; et al. (2016). "Severe Aortic Stenosis Associated with Unicommissural Unicuspid Aortic Valve in a Middle Aged Male". J Cardiovasc Ultrasound. 24 (3): 247–250. doi:10.4250/jcu.2016.24.3.247. PMC 5050315. PMID 27721957.
- ↑ Cuypers JA, Witsenburg M, van der Linde D, Roos-Hesselink JW (2013). "Pulmonary stenosis: update on diagnosis and therapeutic options". Heart. 99 (5): 339–47. doi:10.1136/heartjnl-2012-301964. PMID 23303481.
- ↑ Petit CJ, Gao K, Goldstein BH, Lang SM, Gillespie SE, Kim SI; et al. (2016). "Relation of Aortic Valve Morphologic Characteristics to Aortic Valve Insufficiency and Residual Stenosis in Children With Congenital Aortic Stenosis Undergoing Balloon Valvuloplasty". Am J Cardiol. 117 (6): 972–9. doi:10.1016/j.amjcard.2015.12.034. PMID 26805657.
- ↑ Weyman AE, Hurwitz RA, Girod DA, Dillon JC, Feigenbaum H, Green D (1977). "Cross-sectional echocardiographic visualization of the stenotic pulmonary valve". Circulation. 56 (5): 769–74. PMID 912836.
- ↑ Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, Nihoyannopoulos P, Otto CM, Quinones MA, Rakowski H, Stewart WJ, Waggoner A, Weissman NJ (2003). "Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography". Journal of the American Society of Echocardiography : Official Publication of the American Society of Echocardiography. 16 (7): 777–802. doi:10.1016/S0894-7317(03)00335-3. PMID 12835667. Retrieved 2011-03-02. Unknown parameter
|month=
ignored (help) - ↑ Musewe NN, Robertson MA, Benson LN, Smallhorn JF, Burrows PE, Freedom RM; et al. (1987). "The dysplastic pulmonary valve: echocardiographic features and results of balloon dilatation". Br Heart J. 57 (4): 364–70. PMC 1277176. PMID 2953383.
- ↑ Silvilairat S, Cabalka AK, Cetta F, Hagler DJ, O'Leary PW (2005). "Echocardiographic assessment of isolated pulmonary valve stenosis: which outpatient Doppler gradient has the most clinical validity?". J Am Soc Echocardiogr. 18 (11): 1137–42. doi:10.1016/j.echo.2005.03.041. PMID 16275521.
- ↑ Ahmed MI, Escañuela MG, Crosland WA, McMahon WS, Alli OO, Nanda NC (2014). "Utility of live/real time three-dimensional transesophageal echocardiography in the assessment and percutaneous intervention of bioprosthetic pulmonary valve stenosis". Echocardiography. 31 (4): 531–3. doi:10.1111/echo.12551. PMID 24646027.
- ↑ Rajiah P, Nazarian J, Vogelius E, Gilkeson RC (2014). "CT and MRI of pulmonary valvular abnormalities". Clin Radiol. 69 (6): 630–8. doi:10.1016/j.crad.2014.01.019. PMID 24582177.
- ↑ Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA; et al. (2008). "ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines for the management of adults with congenital heart disease)". Circulation. 118 (23): 2395–451. doi:10.1161/CIRCULATIONAHA.108.190811. PMID 18997168.
- ↑ Sun Z, Xu W, Huang S, Chen Y, Guo X, Shi Z (2016). "Dual-Source Computed Tomography Evaluation of Children with Congenital Pulmonary Valve Stenosis". Iran J Radiol. 13 (2): e34399. doi:10.5812/iranjradiol.34399. PMC 5037969. PMID 27703660.
- ↑ 83.0 83.1 Schön HR, Dorn R, Barthel P, Schömig A (1994). "Effects of 12 months quinapril therapy in asymptomatic patients with chronic aortic regurgitation". The Journal of Heart Valve Disease. 3 (5): 500–9. PMID 8000584. Unknown parameter
|month=
ignored (help);|access-date=
requires|url=
(help) - ↑ Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA; et al. (2008). "ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease)". Circulation. 118 (23): e714–833. doi:10.1161/CIRCULATIONAHA.108.190690. PMID 18997169.
- ↑ Lin M, Chiang HT, Lin SL, Chang MS, Chiang BN, Kuo HW, Cheitlin MD (1994). "Vasodilator therapy in chronic asymptomatic aortic regurgitation: enalapril versus hydralazine therapy". Journal of the American College of Cardiology. 24 (4): 1046–53. PMID 7930196. Retrieved 2011-03-23. Unknown parameter
|month=
ignored (help) - ↑ Greenberg B, Massie B, Bristow JD, Cheitlin M, Siemienczuk D, Topic N, Wilson RA, Szlachcic J, Thomas D (1988). "Long-term vasodilator therapy of chronic AR. A randomized double-blinded, placebo-controlled clinical trial". Circulation. 78 (1): 92–103. PMID 3289791. Retrieved 2011-03-23. Unknown parameter
|month=
ignored (help) - ↑ Stout KK, Daniels CJ, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM; et al. (2019). "2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines". J Am Coll Cardiol. 73 (12): 1494–1563. doi:10.1016/j.jacc.2018.08.1028. PMID 30121240.
- ↑ Baumgartner H, Bonhoeffer P, De Groot NM, de Haan F, Deanfield JE, Galie N; et al. (2010). "ESC Guidelines for the management of grown-up congenital heart disease (new version 2010)". Eur Heart J. 31 (23): 2915–57. doi:10.1093/eurheartj/ehq249. PMID 20801927.
- ↑ Peterson C, Schilthuis JJ, Dodge-Khatami A, Hitchcock JF, Meijboom EJ, Bennink GB (2003). "Comparative long-term results of surgery versus balloon valvuloplasty for pulmonary valve stenosis in infants and children". Ann Thorac Surg. 76 (4): 1078–82, discussion 1082-3. PMID 14529989.
- ↑ Rao PS (2007). "Percutaneous balloon pulmonary valvuloplasty: state of the art". Catheter Cardiovasc Interv. 69 (5): 747–63. doi:10.1002/ccd.20982. PMID 17330270.
- ↑ Jarrar M, Betbout F, Farhat MB, Maatouk F, Gamra H, Addad F; et al. (1999). "Long-term invasive and noninvasive results of percutaneous balloon pulmonary valvuloplasty in children, adolescents, and adults". Am Heart J. 138 (5 Pt 1): 950–4. PMID 10539828.
- ↑ Earing MG, Connolly HM, Dearani JA, Ammash NM, Grogan M, Warnes CA (2005). "Long-term follow-up of patients after surgical treatment for isolated pulmonary valve stenosis". Mayo Clin Proc. 80 (7): 871–6. doi:10.4065/80.7.871. PMID 16007892.
- ↑ Idrizi S, Milev I, Zafirovska P, Tosheski G, Zimbakov Z, Ampova-Sokolov V; et al. (2015). "Interventional Treatment of Pulmonary Valve Stenosis: A Single Center Experience". Open Access Maced J Med Sci. 3 (3): 408–12. doi:10.3889/oamjms.2015.089. PMC 4877828. PMID 27275259.
- ↑ Rao PS, Galal O, Patnana M, Buck SH, Wilson AD (1998). "Results of three to 10 year follow up of balloon dilatation of the pulmonary valve". Heart. 80 (6): 591–5. PMC 1728864. PMID 10065029.
- ↑ Ananthakrishna A, Balasubramonium VR, Thazhath HK, Saktheeshwaran M, Selvaraj R, Satheesh S; et al. (2014). "Balloon pulmonary valvuloplasty in adults: immediate and long-term outcomes". J Heart Valve Dis. 23 (4): 511–5. PMID 25803978.
- ↑ Masura J, Burch M, Deanfield JE, Sullivan ID (1993). "Five-year follow-up after balloon pulmonary valvuloplasty". J Am Coll Cardiol. 21 (1): 132–6. PMID 8417053.
- ↑ Sehar T, Qureshi AU, Kazmi U, Mehmood A, Hyder SN, Sadiq M (2015). "Balloon valvuloplasty in dysplastic pulmonary valve stenosis: immediate and intermediate outcomes". J Coll Physicians Surg Pak. 25 (1): 16–21. doi:01.2015/JCPSP.1621 Check
|doi=
value (help). PMID 25604363. - ↑ Masura J, Burch M, Deanfield JE, Sullivan ID (1993). "Five-year follow-up after balloon pulmonary valvuloplasty". J Am Coll Cardiol. 21 (1): 132–6. PMID 8417053.
- ↑ Giglia TM, Mandell VS, Connor AR, Mayer JE, Lock JE (1992). "Diagnosis and management of right ventricle-dependent coronary circulation in pulmonary atresia with intact ventricular septum". Circulation. 86 (5): 1516–28. PMID 1423965.
- ↑ 100.0 100.1 Bonow RO, Carabello BA, Chatterjee K, de Leon AC, Faxon DP, Freed MD; et al. (2008). "2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons". J Am Coll Cardiol. 52 (13): e1–142. doi:10.1016/j.jacc.2008.05.007. PMID 18848134.
- ↑ Feltes TF, Bacha E, Beekman RH, Cheatham JP, Feinstein JA, Gomes AS; et al. (2011). "Indications for cardiac catheterization and intervention in pediatric cardiac disease: a scientific statement from the American Heart Association". Circulation. 123 (22): 2607–52. doi:10.1161/CIR.0b013e31821b1f10. PMID 21536996.
- ↑ "Participants/authors". Journal of the American College of Cardiology. 45 (8): 1313–1315. 2005. doi:10.1016/j.jacc.2005.02.004. ISSN 0735-1097.
- ↑ 103.0 103.1 103.2 Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA; et al. (2008). "ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Developed in Collaboration With the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons". J Am Coll Cardiol. 52 (23): e1–121. doi:10.1016/j.jacc.2008.10.001. PMID 19038677.
- Pages with reference errors
- CS1 maint: Explicit use of et al.
- CS1 maint: Multiple names: authors list
- CS1 errors: Vancouver style
- Pages with citations lacking titles
- Pages with URL errors
- Pages with citations using unsupported parameters
- CS1 maint: PMC format
- Pages using citations with accessdate and no URL
- CS1 errors: DOI
- Valvular heart disease
- Cardiology
- Mature chapter
- Disease