17 alpha-hydroxylase deficiency pathophysiology: Difference between revisions

Jump to navigation Jump to search
Iqra Qamar (talk | contribs)
 
(9 intermediate revisions by 4 users not shown)
Line 4: Line 4:


==Overview==
==Overview==
17 alpha-hydroxylase deficiency is an uncommon form of [[congenital adrenal hyperplasia]] resulting from a defect in the [[gene]] [[CYP17A1]], which encodes for the [[enzyme]] 17 alpha-hydroxylase and 17,20-lyase. 17 alpha-hydroxylase deficiency is transmitted in an autosomal recessive pattern. [[Mineralocorticoid excess]] and lack of [[androgens]] are two main features in this disease.  
17 alpha-hydroxylase deficiency is an uncommon form of [[congenital adrenal hyperplasia]] resulting from a defect in the [[gene]] [[CYP17A1]], which encodes for the [[enzyme]] 17 alpha-hydroxylase and 17,20-lyase. 17 alpha-hydroxylase deficiency is transmitted in an [[autosomal recessive]] pattern. [[Mineralocorticoid excess]] and lack of [[androgens]] are two main features in this disease.  
==Pathogenesis==
==Pathogenesis==
* [[CYP17A1]] gene defects can cause two type of enzyme deficiencies. 17α-hydroxylase enzyme deficiency and 17,20-lyase deficiency. The dual activities mediate key transformations in [[cortisol]] and [[sex steroid]] synthesis:
* [[CYP17A1]] gene defects can cause two type of enzyme deficiencies: 17α-hydroxylase enzyme deficiency and 17,20-lyase deficiency. The dual activities mediate key transformations in [[cortisol]] and [[sex steroid]] synthesis:
** 17α-hydroxylase mediates the pathway: [[pregnenolone]] → [[17-hydroxypregnenolone]], also [[progesterone]] → [[17-hydroxyprogesterone]].
** 17α-hydroxylase mediates the pathway: [[pregnenolone]] → [[17-hydroxypregnenolone]], also [[progesterone]] → [[17-hydroxyprogesterone]].
** 17,20-lyase mediates pathway [[17-hydroxypregnenolone]] → [[DHEA|Dehydroepiandrosterone]], also [[17-hydroxyprogesterone]] → [[androstenedione]]
** 17,20-lyase mediates pathway [[17-hydroxypregnenolone]] → [[DHEA|Dehydroepiandrosterone]], also [[17-hydroxyprogesterone]] → [[androstenedione]].
* [[Mineralocorticoid excess]] are the major clinical clue distinguishing the 17α-hydroxylase deficiency from the 17,20-lyase deficiency, which only affects the sex steroids.
* [[Mineralocorticoid excess]] is the major clinical clue distinguishing the 17α-hydroxylase deficiency from the 17,20-lyase deficiency, which only affects the [[Sex (activity)|sex]] [[steroids]].
* In 17 alpha-hydroxylase deficiency [[steroid biosynthesis]] will be limited to [[progesterone]], [[11-deoxycorticosterone]] ([[Deoxycorticosterone|DOC]]), and [[corticosterone]].
* In 17 alpha-hydroxylase deficiency, [[steroid biosynthesis]] will be limited to [[progesterone]], [[11-deoxycorticosterone]] ([[Deoxycorticosterone|DOC]]), and [[corticosterone]].
* [[11-deoxycorticosterone]] ([[Deoxycorticosterone|DOC)]] binds to the mineralocorticoid receptor and its excess amounts in 17 alpha-hydroxylase deficiency causes [[aldosterone]] effects such as volume expansion, [[hypertension]], and [[hypokalemia]]. Also, [[11-deoxycorticosterone]] ([[Deoxycorticosterone|DOC)]] effects will suppress [[renin]] and [[aldosterone]] production.
* [[11-deoxycorticosterone]] ([[Deoxycorticosterone|DOC)]] binds to the mineralocorticoid receptor and its excess amounts in 17 alpha-hydroxylase deficiency causes [[aldosterone]] effects such as volume expansion, [[hypertension]], and [[hypokalemia]]. Also, [[11-deoxycorticosterone]] ([[Deoxycorticosterone|DOC)]] effects will suppress [[renin]] and [[aldosterone]] production.
* The most important features of 17 alpha-hydroxylase deficiency include [[hypertension]], [[hypokalemia]] and [[sexual infantilism]].
* The most important features of 17 alpha-hydroxylase deficiency include [[hypertension]], [[hypokalemia]] and [[sexual infantilism]].
** [[Hypertension]] and [[hypokalemia]] result from accumulation of [[cortisol]] precursors, that they have [[mineralocorticoid]] characteristics.
** [[Hypertension]] and [[hypokalemia]] result from accumulation of [[cortisol]] precursors, that have [[mineralocorticoid]] characteristics.
** [[Sexual infantilism]] results from inability of [[adrenal cortex]] to synthesize [[androgens]] and [[estrogens]].<ref name="pmid8070426">{{cite journal |vauthors=Kater CE, Biglieri EG |title=Disorders of steroid 17 alpha-hydroxylase deficiency |journal=Endocrinol. Metab. Clin. North Am. |volume=23 |issue=2 |pages=341–57 |year=1994 |pmid=8070426 |doi= |url=}}</ref><ref name="pmid999330">{{cite journal |vauthors=Heremans GF, Moolenaar AJ, van Gelderen HH |title=Female phenotype in a male child due to 17-alpha-hydroxylase deficiency |journal=Arch. Dis. Child. |volume=51 |issue=9 |pages=721–3 |year=1976 |pmid=999330 |pmc=1546244 |doi= |url=}}</ref><ref name="pmid9452426">{{cite journal |vauthors=Auchus RJ, Lee TC, Miller WL |title=Cytochrome b5 augments the 17,20-lyase activity of human P450c17 without direct electron transfer |journal=J. Biol. Chem. |volume=273 |issue=6 |pages=3158–65 |year=1998 |pmid=9452426 |doi= |url=}}</ref><ref name="pmid6332824">{{cite journal |vauthors=Griffing GT, Wilson TE, Holbrook MM, Dale SL, Jackson TK, Ullrich I, Melby JC |title=Plasma and urinary 19-nor-deoxycorticosterone in 17 alpha-hydroxylase deficiency syndrome |journal=J. Clin. Endocrinol. Metab. |volume=59 |issue=5 |pages=1011–5 |year=1984 |pmid=6332824 |doi=10.1210/jcem-59-5-1011 |url=}}</ref><ref name="pmid15866602">{{cite journal |vauthors=Simsek E, Ozdemir I, Lin L, Achermann JC |title=Isolated 17,20-lyase (desmolase) deficiency in a 46,XX female presenting with delayed puberty |journal=Fertil. Steril. |volume=83 |issue=5 |pages=1548–51 |year=2005 |pmid=15866602 |doi=10.1016/j.fertnstert.2004.11.063 |url=}}</ref>
** [[Sexual infantilism]] results from the inability of [[adrenal cortex]] to synthesize [[androgens]] and [[estrogens]].<ref name="pmid8070426">{{cite journal |vauthors=Kater CE, Biglieri EG |title=Disorders of steroid 17 alpha-hydroxylase deficiency |journal=Endocrinol. Metab. Clin. North Am. |volume=23 |issue=2 |pages=341–57 |year=1994 |pmid=8070426 |doi= |url=}}</ref><ref name="pmid999330">{{cite journal |vauthors=Heremans GF, Moolenaar AJ, van Gelderen HH |title=Female phenotype in a male child due to 17-alpha-hydroxylase deficiency |journal=Arch. Dis. Child. |volume=51 |issue=9 |pages=721–3 |year=1976 |pmid=999330 |pmc=1546244 |doi= |url=}}</ref><ref name="pmid9452426">{{cite journal |vauthors=Auchus RJ, Lee TC, Miller WL |title=Cytochrome b5 augments the 17,20-lyase activity of human P450c17 without direct electron transfer |journal=J. Biol. Chem. |volume=273 |issue=6 |pages=3158–65 |year=1998 |pmid=9452426 |doi= |url=}}</ref><ref name="pmid6332824">{{cite journal |vauthors=Griffing GT, Wilson TE, Holbrook MM, Dale SL, Jackson TK, Ullrich I, Melby JC |title=Plasma and urinary 19-nor-deoxycorticosterone in 17 alpha-hydroxylase deficiency syndrome |journal=J. Clin. Endocrinol. Metab. |volume=59 |issue=5 |pages=1011–5 |year=1984 |pmid=6332824 |doi=10.1210/jcem-59-5-1011 |url=}}</ref><ref name="pmid15866602">{{cite journal |vauthors=Simsek E, Ozdemir I, Lin L, Achermann JC |title=Isolated 17,20-lyase (desmolase) deficiency in a 46,XX female presenting with delayed puberty |journal=Fertil. Steril. |volume=83 |issue=5 |pages=1548–51 |year=2005 |pmid=15866602 |doi=10.1016/j.fertnstert.2004.11.063 |url=}}</ref>
 
[[image:17 hydroxylase.gif|center|frame|800px|Adrenal steroid synthesis pathways in adrenal cortex and related enzymes <ref name="urlFile:Adrenal Steroids Pathways.svg - Wikimedia Commons">{{cite web |url=https://commons.wikimedia.org/wiki/File:Adrenal_Steroids_Pathways.svg|title=File:Adrenal Steroids Pathways.svg - Wikimedia Commons |format= |work= |accessdate=}}</ref>]]


==Genetics==
==Genetics==
* 17 alpha-hydroxylase deficiency is an [[inherited]] disease with an [[autosomal recessive]] pattern, which means both copies of the [[gene]] in each cell have [[gene]] [[mutations]].  
* 17 alpha-hydroxylase deficiency is an [[inherited]] disease with an [[autosomal recessive]] pattern, which means both copies of the [[gene]] in each [[cell]] have [[gene]] [[mutations]].  
* Commonly, the parents of an individual with an [[autosomal recessive]] condition each carry one copy of the mutated [[gene]], but they typically do not show signs and symptoms of the condition.
* Commonly, the parents of an individual with an [[autosomal recessive]] condition each carry one copy of the mutated [[gene]], but they typically do not show signs and symptoms of the condition.<ref name="pmid28476231">{{cite journal |vauthors=Hannah-Shmouni F, Chen W, Merke DP |title=Genetics of Congenital Adrenal Hyperplasia |journal=Endocrinol. Metab. Clin. North Am. |volume=46 |issue=2 |pages=435–458 |year=2017 |pmid=28476231 |doi=10.1016/j.ecl.2017.01.008 |url=}}</ref>
 
<ref name="pmid28476231">{{cite journal |vauthors=Hannah-Shmouni F, Chen W, Merke DP |title=Genetics of Congenital Adrenal Hyperplasia |journal=Endocrinol. Metab. Clin. North Am. |volume=46 |issue=2 |pages=435–458 |year=2017 |pmid=28476231 |doi=10.1016/j.ecl.2017.01.008 |url=}}</ref>


==Associated Conditions==
==Associated Conditions==
Line 32: Line 32:
*Cerebriform pattern [[adrenal glands]] ([[pathognomonic]] sign)
*Cerebriform pattern [[adrenal glands]] ([[pathognomonic]] sign)
*Normal [[ultrasound]] appearances may also be seen
*Normal [[ultrasound]] appearances may also be seen
*[[Testicular]] masses may be identified representing adrenal rest tissue
*[[Testicular]] masses may be identified representing [[adrenal]] rest tissue
[[Image:Cah.jpg|center|thumb|400px|frame|Adrenal gland, Cortex - Hyperplasia in a male rat from a chronic study. There are two adjacent foci of hyperplasia (H) in the zona fasciculata.<ref name="urlAdrenal Gland - Hyperplasia - Nonneoplastic Lesion Atlas">{{cite web |url=https://ntp.niehs.nih.gov/nnl/endocrine/adrenal/hyperpl/index.htm |title=Adrenal Gland - Hyperplasia - Nonneoplastic Lesion Atlas |format= |work= |accessdate=}}</ref>]]


==Microscopic Pathology==
==Microscopic Pathology==
Line 39: Line 40:
* The cell [[cytoplasm]] can be vacuolated, and often more [[basophilic]]
* The cell [[cytoplasm]] can be vacuolated, and often more [[basophilic]]
* Rare [[mitotic]] figures may be present
* Rare [[mitotic]] figures may be present
* The [[hyperplastic]] cells typically lack features of cellular [[atypia]].<ref name="urlAdrenal Gland - Hyperplasia - Nonneoplastic Lesion Atlas">{{cite web |url=https://ntp.niehs.nih.gov/nnl/endocrine/adrenal/hyperpl/index.htm |title=Adrenal Gland - Hyperplasia - Nonneoplastic Lesion Atlas |format= |work= |accessdate=}}</ref>
* The [[hyperplastic]] cells typically lack features of cellular [[atypia]]<ref name="urlAdrenal Gland - Hyperplasia - Nonneoplastic Lesion Atlas">{{cite web |url=https://ntp.niehs.nih.gov/nnl/endocrine/adrenal/hyperpl/index.htm |title=Adrenal Gland - Hyperplasia - Nonneoplastic Lesion Atlas |format= |work= |accessdate=}}</ref>
{|
[[Image:Cah mic.jpg|thumb|center|400px|frame|Adrenal gland, Cortex - Hyperplasia in a female rat from a chronic study. There is a hyperplastic lesion (H) in which cortical cells are increased in number but are smaller in size than adjacent normal cortical cells (NC)<ref name="urlAdrenal Gland - Hyperplasia - Nonneoplastic Lesion Atlas">{{cite web |url=https://ntp.niehs.nih.gov/nnl/endocrine/adrenal/hyperpl/index.htm |title=Adrenal Gland - Hyperplasia - Nonneoplastic Lesion Atlas |format= |work= |accessdate=}}</ref>]]
|
[[Image:Cah mic.jpg|thumb|200px|frame|Adrenal gland, Cortex - Hyperplasia in a female rat from a chronic study. There is a hyperplastic lesion (H) in which cortical cells are increased in number but are smaller in size than adjacent normal cortical cells (NC)<ref name="urlAdrenal Gland - Hyperplasia - Nonneoplastic Lesion Atlas">{{cite web |url=https://ntp.niehs.nih.gov/nnl/endocrine/adrenal/hyperpl/index.htm |title=Adrenal Gland - Hyperplasia - Nonneoplastic Lesion Atlas |format= |work= |accessdate=}}</ref>]]
|
[[Image:Cah.jpg|thumb|250px|frame|Adrenal gland, Cortex - Hyperplasia in a male rat from a chronic study. There are two adjacent foci of hyperplasia (H) in the zona fasciculata.<ref name="urlAdrenal Gland - Hyperplasia - Nonneoplastic Lesion Atlas">{{cite web |url=https://ntp.niehs.nih.gov/nnl/endocrine/adrenal/hyperpl/index.htm |title=Adrenal Gland - Hyperplasia - Nonneoplastic Lesion Atlas |format= |work= |accessdate=}}</ref>]]
|}


==References==
==References==
{{Reflist|2}}
{{Reflist|2}}

Latest revision as of 16:04, 20 October 2017

Congenital adrenal hyperplasia main page

17 alpha-hydroxylase deficiency Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating 17 alpha-hydroxylase deficiency from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

17 alpha-hydroxylase deficiency pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of 17 alpha-hydroxylase deficiency pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on 17 alpha-hydroxylase deficiency pathophysiology

CDC on 17 alpha-hydroxylase deficiency pathophysiology

17 alpha-hydroxylase deficiency pathophysiology in the news

Blogs on 17 alpha-hydroxylase deficiency pathophysiology

Directions to Hospitals Treating Congenital adrenal hyperplasia due to 17 alpha-hydroxylase deficiency

Risk calculators and risk factors for 17 alpha-hydroxylase deficiency pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mehrian Jafarizade, M.D [2]

Overview

17 alpha-hydroxylase deficiency is an uncommon form of congenital adrenal hyperplasia resulting from a defect in the gene CYP17A1, which encodes for the enzyme 17 alpha-hydroxylase and 17,20-lyase. 17 alpha-hydroxylase deficiency is transmitted in an autosomal recessive pattern. Mineralocorticoid excess and lack of androgens are two main features in this disease.

Pathogenesis

Adrenal steroid synthesis pathways in adrenal cortex and related enzymes [6]

Genetics

Associated Conditions

Gross Pathology

Gross pathology findings in patients with 17 alpha-hydroxylase deficiency are:[8][9]

Adrenal gland, Cortex - Hyperplasia in a male rat from a chronic study. There are two adjacent foci of hyperplasia (H) in the zona fasciculata.[10]

Microscopic Pathology

In 17 alpha-hydroxylase deficiency microscopic findings may include:

Adrenal gland, Cortex - Hyperplasia in a female rat from a chronic study. There is a hyperplastic lesion (H) in which cortical cells are increased in number but are smaller in size than adjacent normal cortical cells (NC)[10]

References

  1. Kater CE, Biglieri EG (1994). "Disorders of steroid 17 alpha-hydroxylase deficiency". Endocrinol. Metab. Clin. North Am. 23 (2): 341–57. PMID 8070426.
  2. Heremans GF, Moolenaar AJ, van Gelderen HH (1976). "Female phenotype in a male child due to 17-alpha-hydroxylase deficiency". Arch. Dis. Child. 51 (9): 721–3. PMC 1546244. PMID 999330.
  3. Auchus RJ, Lee TC, Miller WL (1998). "Cytochrome b5 augments the 17,20-lyase activity of human P450c17 without direct electron transfer". J. Biol. Chem. 273 (6): 3158–65. PMID 9452426.
  4. Griffing GT, Wilson TE, Holbrook MM, Dale SL, Jackson TK, Ullrich I, Melby JC (1984). "Plasma and urinary 19-nor-deoxycorticosterone in 17 alpha-hydroxylase deficiency syndrome". J. Clin. Endocrinol. Metab. 59 (5): 1011–5. doi:10.1210/jcem-59-5-1011. PMID 6332824.
  5. Simsek E, Ozdemir I, Lin L, Achermann JC (2005). "Isolated 17,20-lyase (desmolase) deficiency in a 46,XX female presenting with delayed puberty". Fertil. Steril. 83 (5): 1548–51. doi:10.1016/j.fertnstert.2004.11.063. PMID 15866602.
  6. "File:Adrenal Steroids Pathways.svg - Wikimedia Commons".
  7. Hannah-Shmouni F, Chen W, Merke DP (2017). "Genetics of Congenital Adrenal Hyperplasia". Endocrinol. Metab. Clin. North Am. 46 (2): 435–458. doi:10.1016/j.ecl.2017.01.008. PMID 28476231.
  8. Congenital adrenal hyperplasia. Dr Henry Knipe and Dr M Venkatesh . Radiopaedia.org 2015.http://radiopaedia.org/articles/congenital-adrenal-hyperplasia
  9. Teixeira SR, Elias PC, Andrade MT, Melo AF, Elias Junior J (2014). "The role of imaging in congenital adrenal hyperplasia". Arq Bras Endocrinol Metabol. 58 (7): 701–8. PMID 25372578.
  10. 10.0 10.1 10.2 "Adrenal Gland - Hyperplasia - Nonneoplastic Lesion Atlas".