3 beta-hydroxysteroid dehydrogenase deficiency: Difference between revisions

Jump to navigation Jump to search
 
(8 intermediate revisions by 2 users not shown)
Line 10: Line 10:
==Classification==
==Classification==
There are two types of 3 beta-hydroxysteroid dehydrogenase deficiency:  
There are two types of 3 beta-hydroxysteroid dehydrogenase deficiency:  
* Salt-wasting  
* [[Salt]]-wasting  
* Non-salt-wasting  
* Non-salt-wasting  


==Pathophysiology==
==Pathophysiology==
The pathogenesis of 3 beta-hydroxysteroid dehydrogenase deficiency is characterized by impaired pathway of biosynthesis of [[progestins]], [[mineralocorticoids]], [[glucocorticoids]], and [[androgens]]. As a result of [[cortisol]] absence, [[corticotropin]] ([[ACTH]]) secretion increases and leads to produce 3-hydroxy-delta-5-steroids pregnenolone, [[17-hydroxypregnenolone]], and [[dehydroepiandrosterone]] ([[DHEA]]), also their sulfates. In peripheral tissues the conversion of [[DHEA sulfate]] ([[DHEAS]]) to [[testosterone]], is responsible for [[virilization]] in [[females]].<ref name="pmid13968789">{{cite journal |vauthors=BONGIOVANNI AM |title=The adrenogenital syndrome with deficiency of 3 beta-hydroxysteroid dehydrogenase |journal=J. Clin. Invest. |volume=41 |issue= |pages=2086–92 |year=1962 |pmid=13968789 |pmc=291138 |doi=10.1172/JCI104666 |url=}}</ref>
The pathogenesis of 3 beta-hydroxysteroid dehydrogenase deficiency is characterized by impaired pathway of biosynthesis of [[progestins]], [[mineralocorticoids]], [[glucocorticoids]], and [[androgens]]. As a result of [[cortisol]] absence, [[corticotropin]] ([[ACTH]]) secretion increases the production of 3-hydroxy-delta-5-steroids [[pregnenolone]], [[17-hydroxypregnenolone]], and [[dehydroepiandrosterone]] ([[DHEA]]). [[Adrenocorticotropic hormone|ACTH]] secretion also increases the production of their [[sulfates]]. In peripheral [[tissues]] the conversion of [[DHEA sulfate]] ([[DHEAS]]) to [[testosterone]] is responsible for [[virilization]] in [[females]].<ref name="pmid13968789">{{cite journal |vauthors=BONGIOVANNI AM |title=The adrenogenital syndrome with deficiency of 3 beta-hydroxysteroid dehydrogenase |journal=J. Clin. Invest. |volume=41 |issue= |pages=2086–92 |year=1962 |pmid=13968789 |pmc=291138 |doi=10.1172/JCI104666 |url=}}</ref>
==Causes==
==Causes==
3 beta-hydroxysteroid dehydrogenase deficiency is caused by a [[mutation]] in the HSD3B2 [[gene]].
3 beta-hydroxysteroid dehydrogenase deficiency is caused by a [[mutation]] in the HSD3B2 [[gene]].
==Differentiating 3 beta-hydroxysteroid dehydrogenase deficiency from other Diseases==
==Differentiating 3 Beta-hydroxysteroid Dehydrogenase Deficiency From Other Diseases==
 
=== Differentials of ambiguous genitalia ===
3 beta-hydroxysteroid dehydrogenase deficiency must be differentiated from diseases that cause [[ambiguous genitalia]]:<ref name="pmid17875484">{{cite journal |vauthors=Hughes IA, Nihoul-Fékété C, Thomas B, Cohen-Kettenis PT |title=Consequences of the ESPE/LWPES guidelines for diagnosis and treatment of disorders of sex development |journal=Best Pract. Res. Clin. Endocrinol. Metab. |volume=21 |issue=3 |pages=351–65 |year=2007 |pmid=17875484 |doi=10.1016/j.beem.2007.06.003 |url=}}</ref><ref name="pmid10857554">{{cite journal |vauthors=White PC, Speiser PW |title=Congenital adrenal hyperplasia due to 21-hydroxylase deficiency |journal=Endocr. Rev. |volume=21 |issue=3 |pages=245–91 |year=2000 |pmid=10857554 |doi=10.1210/edrv.21.3.0398 |url=}}</ref>
3 beta-hydroxysteroid dehydrogenase deficiency must be differentiated from diseases that cause [[ambiguous genitalia]]:<ref name="pmid17875484">{{cite journal |vauthors=Hughes IA, Nihoul-Fékété C, Thomas B, Cohen-Kettenis PT |title=Consequences of the ESPE/LWPES guidelines for diagnosis and treatment of disorders of sex development |journal=Best Pract. Res. Clin. Endocrinol. Metab. |volume=21 |issue=3 |pages=351–65 |year=2007 |pmid=17875484 |doi=10.1016/j.beem.2007.06.003 |url=}}</ref><ref name="pmid10857554">{{cite journal |vauthors=White PC, Speiser PW |title=Congenital adrenal hyperplasia due to 21-hydroxylase deficiency |journal=Endocr. Rev. |volume=21 |issue=3 |pages=245–91 |year=2000 |pmid=10857554 |doi=10.1210/edrv.21.3.0398 |url=}}</ref>


Line 27: Line 29:
! align="center" style="background:#4479BA; color: #FFFFFF;" + |Increased
! align="center" style="background:#4479BA; color: #FFFFFF;" + |Increased
! align="center" style="background:#4479BA; color: #FFFFFF;" + |Decreased
! align="center" style="background:#4479BA; color: #FFFFFF;" + |Decreased
|-
|3 beta-hydroxysteroid dehydrogenase deficiency
|
* [[Dehydroepiandrosterone]]
* [[17-hydroxypregnenolone]]
* [[Pregnenolone]]
|
* [[Cortisol]]
* [[Aldosterone]]
|
* [[Vomiting]], [[volume depletion]], [[hyponatremia]], and [[hyperkalemia]]
* 46-XY infants often show [[undervirilization]], due to a block in [[testosterone]] synthesis
|-
|-
|[[21-hydroxylase deficiency|Classic type of 21-hydroxylase deficiency]]
|[[21-hydroxylase deficiency|Classic type of 21-hydroxylase deficiency]]
Line 75: Line 89:


* Minimal [[body hair]]
* Minimal [[body hair]]
|-
|[[3 beta-hydroxysteroid dehydrogenase deficiency]]
|
* [[Dehydroepiandrosterone]]
* [[17-hydroxypregnenolone]]
* [[Pregnenolone]]
|
* [[Cortisol]]
* [[Aldosterone]]
|
* [[Vomiting]], [[volume depletion]], [[hyponatremia]], and [[hyperkalemia]]
* 46-XY infants often show [[undervirilization]], due to a block in [[testosterone]] synthesis
|-
|-
| Gestational [[hyperandrogenism]]
| Gestational [[hyperandrogenism]]
Line 99: Line 101:
|}
|}


=== Differentials based on virilization and hirsutism ===
3 beta-hydroxysteroid dehydrogenase deficiency must be differentiated from diseases that cause [[virilization]] and [[hirsutism]] in female:<ref name="pmid24830586">{{cite journal |vauthors=Hohl A, Ronsoni MF, Oliveira Md |title=Hirsutism: diagnosis and treatment |journal=Arq Bras Endocrinol Metabol |volume=58 |issue=2 |pages=97–107 |year=2014 |pmid=24830586 |doi= |url=}}</ref><ref name="pmid10857554">{{cite journal |vauthors=White PC, Speiser PW |title=Congenital adrenal hyperplasia due to 21-hydroxylase deficiency |journal=Endocr. Rev. |volume=21 |issue=3 |pages=245–91 |year=2000 |pmid=10857554 |doi=10.1210/edrv.21.3.0398 |url=}}</ref><ref name="ISBN:978-0323297387">{{cite book | last = Melmed | first = Shlomo | title = Williams textbook of endocrinology | publisher = Elsevier | location = Philadelphia, PA | year = 2016 | isbn = 978-0323297387 }}=</ref>
3 beta-hydroxysteroid dehydrogenase deficiency must be differentiated from diseases that cause [[virilization]] and [[hirsutism]] in female:<ref name="pmid24830586">{{cite journal |vauthors=Hohl A, Ronsoni MF, Oliveira Md |title=Hirsutism: diagnosis and treatment |journal=Arq Bras Endocrinol Metabol |volume=58 |issue=2 |pages=97–107 |year=2014 |pmid=24830586 |doi= |url=}}</ref><ref name="pmid10857554">{{cite journal |vauthors=White PC, Speiser PW |title=Congenital adrenal hyperplasia due to 21-hydroxylase deficiency |journal=Endocr. Rev. |volume=21 |issue=3 |pages=245–91 |year=2000 |pmid=10857554 |doi=10.1210/edrv.21.3.0398 |url=}}</ref><ref name="ISBN:978-0323297387">{{cite book | last = Melmed | first = Shlomo | title = Williams textbook of endocrinology | publisher = Elsevier | location = Philadelphia, PA | year = 2016 | isbn = 978-0323297387 }}=</ref>


Line 106: Line 109:
! align="center" style="background:#4479BA; color: #FFFFFF;" + |Other laboratory  
! align="center" style="background:#4479BA; color: #FFFFFF;" + |Other laboratory  
! align="center" style="background:#4479BA; color: #FFFFFF;" + |Important clinical findings
! align="center" style="background:#4479BA; color: #FFFFFF;" + |Important clinical findings
|-
|3 beta-hydroxysteroid dehydrogenase deficiency
|Increased:
* [[DHEA]]
* [[17-hydroxypregnenolone]]
* [[Pregnenolone]]
Decreased:
* [[Cortisol]]
* [[Aldosterone]]
|
* Low [[testosterone]] levels
|
* Salt-wasting [[adrenal crisis]] in infancy
* Mild [[virilization]] of genetically female infants
* [[Undervirilization]] of genetically male infants, making it the only form of [[CAH]] which can cause [[ambiguous genitalia]] in both genetic sexes.
|-
|-
|Non-classic type of [[21-hydroxylase deficiency]]
|Non-classic type of [[21-hydroxylase deficiency]]
Line 131: Line 150:
* [[Hypertension]] and [[hypokalemia]]
* [[Hypertension]] and [[hypokalemia]]
* [[Virilization]]
* [[Virilization]]
|-
|3 beta-hydroxysteroid dehydrogenase deficiency
|Increased:
* [[DHEA]]
* [[17-hydroxypregnenolone]]
* [[Pregnenolone]]
Decreased:
* [[Cortisol]]
* [[Aldosterone]]
|
* Low [[testosterone]] levels
|
* Salt-wasting [[adrenal crisis]] in infancy
* Mild [[virilization]] of genetically female infants
* [[Undervirilization]] of genetically male infants, making it the only form of [[CAH]] which can cause [[ambiguous genitalia]] in both genetic sexes.
|-
|-
|[[Polycystic ovary syndrome ]]
|[[Polycystic ovary syndrome ]]
Line 159: Line 162:
* No evidence another diagnosis  
* No evidence another diagnosis  
|-
|-
|[[Adrenal tumors]]
|[[Adrenal tumor|Adrenal tumors]]
|
|
* Variable levels depends on [[tumor]] type
* Variable levels depends on [[tumor]] type
Line 168: Line 171:
* Rapidly progressive symptoms
* Rapidly progressive symptoms
|-
|-
|Ovarian [[virilizing]] tumor
|[[Ovarian]] [[virilizing]] [[tumor]]
|
|
* Variable levels depends on [[tumor]] type
* Variable levels depends on [[tumor]] type
Line 179: Line 182:
|[[Cushing's syndrome]]
|[[Cushing's syndrome]]
|
|
* Increase [[cortisol]] & metabolites
* Increase [[cortisol]] & [[metabolites]]
* Variable other [[steroids]]
* Variable other [[steroids]]
|
|
Line 204: Line 207:
=== Physical Examination ===
=== Physical Examination ===
Physical examination may be remarkable for:
Physical examination may be remarkable for:
* [[undervirilization]] in [[newborn]] [[males]]
* [[Undervirilization]] in [[newborn]] [[males]]
* Mild [[virilization]] and [[clitoromegaly]] in [[newborn]] [[female]].
* Mild [[virilization]] and [[clitoromegaly]] in [[newborn]] [[female]].


=== Laboratory Findings ===
=== Laboratory Findings ===
Diagnosis for 3 beta-hydroxysteroid dehydrogenase deficiency is based on delta-5-17-hydroxypregnenolone high levels. <ref name="pmid12050224">{{cite journal |vauthors=Lutfallah C, Wang W, Mason JI, Chang YT, Haider A, Rich B, Castro-Magana M, Copeland KC, David R, Pang S |title=Newly proposed hormonal criteria via genotypic proof for type II 3beta-hydroxysteroid dehydrogenase deficiency |journal=J. Clin. Endocrinol. Metab. |volume=87 |issue=6 |pages=2611–22 |year=2002 |pmid=12050224 |doi=10.1210/jcem.87.6.8615 |url=}}</ref> Other laboratory findings include: [[hyponatremia]], [[hyperkalemia]].
Diagnosis for 3 beta-hydroxysteroid dehydrogenase deficiency is based on high levels of delta-5-17-hydroxypregnenolone. <ref name="pmid12050224">{{cite journal |vauthors=Lutfallah C, Wang W, Mason JI, Chang YT, Haider A, Rich B, Castro-Magana M, Copeland KC, David R, Pang S |title=Newly proposed hormonal criteria via genotypic proof for type II 3beta-hydroxysteroid dehydrogenase deficiency |journal=J. Clin. Endocrinol. Metab. |volume=87 |issue=6 |pages=2611–22 |year=2002 |pmid=12050224 |doi=10.1210/jcem.87.6.8615 |url=}}</ref> Other laboratory findings incliude, [[hyponatremia]] and [[hyperkalemia]].
 
== Treatment ==
== Treatment ==
=== Medical Therapy ===
=== Medical Therapy ===
The mainstay of therapy for 3 beta-hydroxysteroid dehydrogenase deficiency is [[hydrocortisone]] and [[fludrocortisone acetate]] adiminstration. Gender-appropriate replacement of [[androgens]] or [[estrogens]] with [[progestins]] is necessary at the [[puberty]] time.
The mainstay of therapy for 3 beta-hydroxysteroid dehydrogenase deficiency is [[hydrocortisone]] and [[fludrocortisone acetate]] adiminstration. Gender-appropriate replacement of [[androgens]] or [[estrogens]] with [[progestins]] is necessary at the [[puberty]] time.
The goal of therapy includes the following: <ref name="pmid28576284">{{cite journal |vauthors=El-Maouche D, Arlt W, Merke DP |title=Congenital adrenal hyperplasia |journal=Lancet |volume= |issue= |pages= |year=2017 |pmid=28576284 |doi=10.1016/S0140-6736(17)31431-9 |url=}}</ref><ref name="pmid24622419">{{cite journal |vauthors=Merke DP, Poppas DP |title=Management of adolescents with congenital adrenal hyperplasia |journal=Lancet Diabetes Endocrinol |volume=1 |issue=4 |pages=341–52 |year=2013 |pmid=24622419 |pmc=4163910 |doi=10.1016/S2213-8587(13)70138-4 |url=}}</ref><ref name="pmid3060026">{{cite journal| author=Hughes IA| title=Management of congenital adrenal hyperplasia. | journal=Arch Dis Child | year= 1988 | volume= 63 | issue= 11 | pages= 1399-404 | pmid=3060026 | doi= | pmc=1779155 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3060026  }}</ref>
* Correct the effects of [[mineralocorticoid excess]]
* Prevent [[glucocorticoid]] deficiency
* Restore desired secondary [[sexual characteristics]]
*Treatment for 3 beta-hydroxysteroid dehydrogenase deficiency is by the use of [[glucocorticoids]] such as:
** Preferred regimen (1): [[Hydrocortisone]] 10 to 25 mg/m2 body surface area/day PO.
** Preferred regimen (2): [[Prednisolone]] 0.1 mg/kg/day PO.
** Preferred regimen (3): [[Dexamethasone]] up to 0.5 mg/day PO.
=== Surgery ===
=== Surgery ===
The reconstruction surgery for [[ambiguous genitalia]] in genetically male patients may be applied.<ref name="pmid11344932">{{cite journal |vauthors=Schnitzer JJ, Donahoe PK |title=Surgical treatment of congenital adrenal hyperplasia |journal=Endocrinol. Metab. Clin. North Am. |volume=30 |issue=1 |pages=137–54 |year=2001 |pmid=11344932 |doi= |url=}}</ref>
The reconstruction surgery for [[ambiguous genitalia]] in genetically male patients may be applied.<ref name="pmid11344932">{{cite journal |vauthors=Schnitzer JJ, Donahoe PK |title=Surgical treatment of congenital adrenal hyperplasia |journal=Endocrinol. Metab. Clin. North Am. |volume=30 |issue=1 |pages=137–54 |year=2001 |pmid=11344932 |doi= |url=}}</ref>

Latest revision as of 15:32, 6 November 2017


Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mehrian Jafarizade, M.D [2]

WikiDoc Resources for 3 beta-hydroxysteroid dehydrogenase deficiency

Articles

Most recent articles on 3 beta-hydroxysteroid dehydrogenase deficiency

Most cited articles on 3 beta-hydroxysteroid dehydrogenase deficiency

Review articles on 3 beta-hydroxysteroid dehydrogenase deficiency

Articles on 3 beta-hydroxysteroid dehydrogenase deficiency in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on 3 beta-hydroxysteroid dehydrogenase deficiency

Images of 3 beta-hydroxysteroid dehydrogenase deficiency

Photos of 3 beta-hydroxysteroid dehydrogenase deficiency

Podcasts & MP3s on 3 beta-hydroxysteroid dehydrogenase deficiency

Videos on 3 beta-hydroxysteroid dehydrogenase deficiency

Evidence Based Medicine

Cochrane Collaboration on 3 beta-hydroxysteroid dehydrogenase deficiency

Bandolier on 3 beta-hydroxysteroid dehydrogenase deficiency

TRIP on 3 beta-hydroxysteroid dehydrogenase deficiency

Clinical Trials

Ongoing Trials on 3 beta-hydroxysteroid dehydrogenase deficiency at Clinical Trials.gov

Trial results on 3 beta-hydroxysteroid dehydrogenase deficiency

Clinical Trials on 3 beta-hydroxysteroid dehydrogenase deficiency at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on 3 beta-hydroxysteroid dehydrogenase deficiency

NICE Guidance on 3 beta-hydroxysteroid dehydrogenase deficiency

NHS PRODIGY Guidance

FDA on 3 beta-hydroxysteroid dehydrogenase deficiency

CDC on 3 beta-hydroxysteroid dehydrogenase deficiency

Books

Books on 3 beta-hydroxysteroid dehydrogenase deficiency

News

3 beta-hydroxysteroid dehydrogenase deficiency in the news

Be alerted to news on 3 beta-hydroxysteroid dehydrogenase deficiency

News trends on 3 beta-hydroxysteroid dehydrogenase deficiency

Commentary

Blogs on 3 beta-hydroxysteroid dehydrogenase deficiency

Definitions

Definitions of 3 beta-hydroxysteroid dehydrogenase deficiency

Patient Resources / Community

Patient resources on 3 beta-hydroxysteroid dehydrogenase deficiency

Discussion groups on 3 beta-hydroxysteroid dehydrogenase deficiency

Patient Handouts on 3 beta-hydroxysteroid dehydrogenase deficiency

Directions to Hospitals Treating 3 beta-hydroxysteroid dehydrogenase deficiency

Risk calculators and risk factors for 3 beta-hydroxysteroid dehydrogenase deficiency

Healthcare Provider Resources

Symptoms of 3 beta-hydroxysteroid dehydrogenase deficiency

Causes & Risk Factors for 3 beta-hydroxysteroid dehydrogenase deficiency

Diagnostic studies for 3 beta-hydroxysteroid dehydrogenase deficiency

Treatment of 3 beta-hydroxysteroid dehydrogenase deficiency

Continuing Medical Education (CME)

CME Programs on 3 beta-hydroxysteroid dehydrogenase deficiency

International

3 beta-hydroxysteroid dehydrogenase deficiency en Espanol

3 beta-hydroxysteroid dehydrogenase deficiency en Francais

Business

3 beta-hydroxysteroid dehydrogenase deficiency in the Marketplace

Patents on 3 beta-hydroxysteroid dehydrogenase deficiency

Experimental / Informatics

List of terms related to 3 beta-hydroxysteroid dehydrogenase deficiency

Overview

3 beta-hydroxysteroid dehydrogenase deficiency is a rare disease due to congenital adrenal hyperplasia. It is characterized by impaired biosynthesis pathway of progestins, mineralocorticoids, glucocorticoids, and androgens. As a result of cortisol absence, corticotropin (ACTH) secretion increases and leads to produce 3-hydroxy-delta-5-steroids pregnenolone, 17-hydroxypregnenolone, and dehydroepiandrosterone (DHEA), also their sulfates. In peripheral tissues the conversion of DHEA sulfate (DHEAS) to testosterone, is responsible for virilization in females. 3 beta-hydroxysteroid dehydrogenase deficiency is caused by a mutation in the HSD3B2 gene. Symptoms of 3 beta-hydroxysteroid dehydrogenase deficiency may include symptoms of both cortisol and aldosterone deficiency such as feeding difficulties, vomiting, volume depletion, undervirilization in newborn males, and mild virilization and clitoromegaly in newborn female. Diagnosis for 3 beta-hydroxysteroid dehydrogenase deficiency is based on delta-5-17-hydroxypregnenolone high levels in serum laboratory tests. The mainstay of therapy for this disease is hydrocortisone and fludrocortisone acetate. The reconstruction surgery for ambiguous genitalia in genetically male patients may be applied.

Historical Perspective

3 beta-hydroxysteroid dehydrogenase deficiency was first time described in 1962, in a patient with ambiguous genitalia and salt wasting.[1]

Classification

There are two types of 3 beta-hydroxysteroid dehydrogenase deficiency:

  • Salt-wasting
  • Non-salt-wasting

Pathophysiology

The pathogenesis of 3 beta-hydroxysteroid dehydrogenase deficiency is characterized by impaired pathway of biosynthesis of progestins, mineralocorticoids, glucocorticoids, and androgens. As a result of cortisol absence, corticotropin (ACTH) secretion increases the production of 3-hydroxy-delta-5-steroids pregnenolone, 17-hydroxypregnenolone, and dehydroepiandrosterone (DHEA). ACTH secretion also increases the production of their sulfates. In peripheral tissues the conversion of DHEA sulfate (DHEAS) to testosterone is responsible for virilization in females.[1]

Causes

3 beta-hydroxysteroid dehydrogenase deficiency is caused by a mutation in the HSD3B2 gene.

Differentiating 3 Beta-hydroxysteroid Dehydrogenase Deficiency From Other Diseases

Differentials of ambiguous genitalia

3 beta-hydroxysteroid dehydrogenase deficiency must be differentiated from diseases that cause ambiguous genitalia:[2][3]

Disease name Steroid status Important clinical findings
Increased Decreased
3 beta-hydroxysteroid dehydrogenase deficiency
Classic type of 21-hydroxylase deficiency
11-β hydroxylase deficiency
17-α hydroxylase deficiency
Gestational hyperandrogenism

Differentials based on virilization and hirsutism

3 beta-hydroxysteroid dehydrogenase deficiency must be differentiated from diseases that cause virilization and hirsutism in female:[4][3][5]

Disease name Steroid status Other laboratory Important clinical findings
3 beta-hydroxysteroid dehydrogenase deficiency Increased:

Decreased:

Non-classic type of 21-hydroxylase deficiency Increased:
  • No symptoms in infancy and male
11-β hydroxylase deficiency Increased:

Decreased:

Polycystic ovary syndrome
Adrenal tumors
  • Variable levels depends on tumor type
  • Older age
  • Rapidly progressive symptoms
Ovarian virilizing tumor
  • Variable levels depends on tumor type
  • Older age
  • Rapidly progressive symptoms
Cushing's syndrome
Hyperprolactinemia

Epidemiology and Demographics

The prevalence of 3 beta-hydroxysteroid dehydrogenase deficiency is unknown. At least 60 affected individuals have been reported.[6]

Risk Factors

Common risk factors in the development of 3 beta-hydroxysteroid dehydrogenase deficiency is family history of this disease.

Diagnosis

Symptoms

Symptoms of 3 beta-hydroxysteroid dehydrogenase deficiency may include symptoms of both cortisol and aldosterone deficiency such as feeding difficulties, vomiting, volume depletion, muscle weakness, undervirilization in male newborns, and mild virilization and clitoromegaly in newborn female. [7]

Physical Examination

Physical examination may be remarkable for:

Laboratory Findings

Diagnosis for 3 beta-hydroxysteroid dehydrogenase deficiency is based on high levels of delta-5-17-hydroxypregnenolone. [8] Other laboratory findings incliude, hyponatremia and hyperkalemia.

Treatment

Medical Therapy

The mainstay of therapy for 3 beta-hydroxysteroid dehydrogenase deficiency is hydrocortisone and fludrocortisone acetate adiminstration. Gender-appropriate replacement of androgens or estrogens with progestins is necessary at the puberty time. The goal of therapy includes the following: [9][10][11]

  • Treatment for 3 beta-hydroxysteroid dehydrogenase deficiency is by the use of glucocorticoids such as:

Surgery

The reconstruction surgery for ambiguous genitalia in genetically male patients may be applied.[12]

References

  1. 1.0 1.1 BONGIOVANNI AM (1962). "The adrenogenital syndrome with deficiency of 3 beta-hydroxysteroid dehydrogenase". J. Clin. Invest. 41: 2086–92. doi:10.1172/JCI104666. PMC 291138. PMID 13968789.
  2. Hughes IA, Nihoul-Fékété C, Thomas B, Cohen-Kettenis PT (2007). "Consequences of the ESPE/LWPES guidelines for diagnosis and treatment of disorders of sex development". Best Pract. Res. Clin. Endocrinol. Metab. 21 (3): 351–65. doi:10.1016/j.beem.2007.06.003. PMID 17875484.
  3. 3.0 3.1 White PC, Speiser PW (2000). "Congenital adrenal hyperplasia due to 21-hydroxylase deficiency". Endocr. Rev. 21 (3): 245–91. doi:10.1210/edrv.21.3.0398. PMID 10857554.
  4. Hohl A, Ronsoni MF, Oliveira M (2014). "Hirsutism: diagnosis and treatment". Arq Bras Endocrinol Metabol. 58 (2): 97–107. PMID 24830586. Vancouver style error: initials (help)
  5. Melmed, Shlomo (2016). Williams textbook of endocrinology. Philadelphia, PA: Elsevier. ISBN 978-0323297387.=
  6. "3-beta-hydroxysteroid dehydrogenase deficiency - Genetics Home Reference".
  7. Simard J, Rheaume E, Mebarki F, Sanchez R, New MI, Morel Y, Labrie F (1995). "Molecular basis of human 3 beta-hydroxysteroid dehydrogenase deficiency". J. Steroid Biochem. Mol. Biol. 53 (1–6): 127–38. PMID 7626445.
  8. Lutfallah C, Wang W, Mason JI, Chang YT, Haider A, Rich B, Castro-Magana M, Copeland KC, David R, Pang S (2002). "Newly proposed hormonal criteria via genotypic proof for type II 3beta-hydroxysteroid dehydrogenase deficiency". J. Clin. Endocrinol. Metab. 87 (6): 2611–22. doi:10.1210/jcem.87.6.8615. PMID 12050224.
  9. El-Maouche D, Arlt W, Merke DP (2017). "Congenital adrenal hyperplasia". Lancet. doi:10.1016/S0140-6736(17)31431-9. PMID 28576284.
  10. Merke DP, Poppas DP (2013). "Management of adolescents with congenital adrenal hyperplasia". Lancet Diabetes Endocrinol. 1 (4): 341–52. doi:10.1016/S2213-8587(13)70138-4. PMC 4163910. PMID 24622419.
  11. Hughes IA (1988). "Management of congenital adrenal hyperplasia". Arch Dis Child. 63 (11): 1399–404. PMC 1779155. PMID 3060026.
  12. Schnitzer JJ, Donahoe PK (2001). "Surgical treatment of congenital adrenal hyperplasia". Endocrinol. Metab. Clin. North Am. 30 (1): 137–54. PMID 11344932.

Template:WikiDoc Sources