Sandbox:Cherry: Difference between revisions

Jump to navigation Jump to search
Sudarshana Datta (talk | contribs)
No edit summary
WikiBot (talk | contribs)
m Bot: Removing from Primary care
 
(355 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{| class="wikitable"
==Physical examination==
! style="background:#4479BA; color: #FFFFFF;" align="center" + |ORIGIN
==References==
! style="background:#4479BA; color: #FFFFFF;" align="center" + |DISEASE
{{reflist|2}}
! style="background:#4479BA; color: #FFFFFF;" align="center" + |DIFFERENTIATION BASED ON INVESTIGATIONS
 
{{WH}}
{{WS}}
 
==References==
{{Reflist|2}}
 
 
===Pathophysiology prev===
<div style="-webkit-user-select: none;">
{| class="infobox" style="position: fixed; top: 65%; right: 10px; margin: 0 0 0 0; border: 0; float: right;"
|-
|-
| style="background:#DCDCDC; + " | Pancreas
| {{#ev:youtube|https://https://www.youtube.com/watch?v=5szNmKtyBW4|350}}
|
* Chronic pancreatitis
* Autoimmune pancreatitis
* Pseudocyst of pancreas
* Neuroendocrine tumors of pancreas
** Gastrinoma
** VIPoma
** Somatostatinoma
** Insulinoma
|
* Imaging: Non-contrast helical CT
* Biopsy findings
* Serum IgG4 levels for autoimmune pancreatitis
* For pancreatic NETs:
** Gastrin levels
** Somatostatin levels
** Insulin levels
** Serum electrolytes
|-
|-
| style="background:#DCDCDC; + " | Bile duct
|}
|
__NOTOC__
* Choledocholithiasis
{{Cirrhosis}}
* Cholangiocarcinoma
{{CMG}} {{AE}}
* Bile duct strictures
 
|
 
* Imaging:
===Pathophysiology prev===
** MRI
<div style="-webkit-user-select: none;">
** MRCP
{| class="infobox" style="position: fixed; top: 65%; right: 10px; margin: 0 0 0 0; border: 0; float: right;"
** USG bile duct
** ERCP
* Biopsy findings
|-
|-
| style="background:#DCDCDC; + " | Duodenum
| {{#ev:youtube|https://https://www.youtube.com/watch?v=5szNmKtyBW4|350}}
|
* Ampullary cancer
* Duodenal cancer
|
* Imaging:
** MRI
** ERCP
** Upper GI Endoscopy
* Biopsy findings
|-
|-
| style="background:#DCDCDC; + " | Lymphovascular
|}
tissue
__NOTOC__
|
{{Cirrhosis}}
* Abdominal aortic aneurysm
{{CMG}} {{AE}}
* Intestinal ischemia
 
* Lymphomas
== History and Symptoms ==
** Gastric
 
** Pancreatic
* History should include:
|
** Appearance of bowel movements
* Imaging:  
** Travel history
** MRI
** Associated symptoms
** MR Angiography
** Immune status
** CT Angiography
** Woodland exposure
* Biopsy for lymphoma
==References==
|-
{{reflist|2}}
| style="background:#DCDCDC; + " | Metastasis
 
|
{{WH}}
* Skin(Melanoma)
{{WS}}
* Kidney
 
* Breast
==Other Imaging Findings==
* Colon
* [[Endoscopy]]
* Liver(Hepatocellular carcinoma)
* [[Barium enema]]
* Stomach
* [[Colonoscopy]]
|
* [[Sigmoidoscopy]]
* Imaging:
 
** MRI
==Other diagnostic studies==
** PET scan
== Other Diagnostic Studies ==
** CT
* Biopsy
* Specific markers for different cancers:
** HCC: AFP
** Breast: BRCA 1 and 2
** Colon cancer: CEA
** Melanoma: S100
|}__NOTOC__
{{Pancreatic cancer}}
{{CMG}}; {{AE}} {{Cherry}}


Obstructive jaundice may be painful due to calculous disease. Patients may be younger.
* Breath hydrogen test


Stones can be demonstrated on abdominal ultrasound, both in the gallbladder and in the bile duct. However, stones may also be seen in patients with pancreatic cancer. ERCP will clarify the situation by ruling out stricture (seen in pancreatic cancer) and confirming bile duct stones, which can be cleared at the time of intervention.
* [[HIV test]]ing for those patients suspected of having HIV


==Treatment Options by Stage==
==
===Stages I and II Pancreatic Cancer===
Treatment of stage I and stage II pancreatic cancer may include the following:
* Surgery alone.
* Surgery with chemotherapy and radiation therapy.


===Stage III Pancreatic Cancer===
==Overview==
Treatment of stage III pancreatic cancer may include the following:
* Palliative surgery or stent placement to bypass blocked areas in ducts or the small intestine.
* Chemotherapy with gemcitabine.


===Stage IV Pancreatic Cancer===
==References==
Treatment of stage IV pancreatic cancer may include the following:
{{reflist|2}}
* Chemotherapy with gemcitabine with or without erlotinib.
* Palliative treatments for pain, such as nerve blocks, and other supportive care.
* Palliative surgery or stent placement to bypass blocked areas in ducts or the small intestine.


===Treatment Options for Recurrent Pancreatic Cancer===
{{WH}}
Treatment of recurrent pancreatic cancer may include the following:
{{WS}}
* Chemotherapy.
* Palliative surgery or stent placement to bypass blocked areas in ducts or the small intestine.
* Palliative radiation therapy.
* Other palliative medical care to reduce symptoms, such as nerve blocks to relieve pain.


===prevention===
===Pathophysiology prev===
<div style="-webkit-user-select: none;">
{| class="infobox" style="position: fixed; top: 65%; right: 10px; margin: 0 0 0 0; border: 0; float: right;"
|-
| {{#ev:youtube|https://https://www.youtube.com/watch?v=5szNmKtyBW4|350}}
|-
|}
__NOTOC__
{{Cirrhosis}}
{{CMG}} {{AE}}


Primary
==Video codes==
Cessation of cigarette smoking: The risk of pancreatic cancer falls with cessation of cigarette smoking, which is one of the most important modifiable risk factors.<ref name="pmid25276995">{{cite journal |vauthors=Bochatay L, Girardin M, Bichard P, Frossard JL |title=[Pancreatic cancer in 2014: screening and epidemiology] |language=French |journal=Rev Med Suisse |volume=10 |issue=440 |pages=1582–5 |year=2014 |pmid=25276995 |doi= |url=}}</ref><ref name="pmid16549324">{{cite journal |vauthors=Lowenfels AB, Maisonneuve P |title=Epidemiology and risk factors for pancreatic cancer |journal=Best Pract Res Clin Gastroenterol |volume=20 |issue=2 |pages=197–209 |year=2006 |pmid=16549324 |doi=10.1016/j.bpg.2005.10.001 |url=}}</ref><ref name="pmid23921790">{{cite journal |vauthors=Bosetti C, Bertuccio P, Malvezzi M, Levi F, Chatenoud L, Negri E, La Vecchia C |title=Cancer mortality in Europe, 2005-2009, and an overview of trends since 1980 |journal=Ann. Oncol. |volume=24 |issue=10 |pages=2657–71 |year=2013 |pmid=23921790 |doi=10.1093/annonc/mdt301 |url=}}</ref><ref name="pmid22162227">{{cite journal |vauthors=Bosetti C, Bertuccio P, Negri E, La Vecchia C, Zeegers MP, Boffetta P |title=Pancreatic cancer: overview of descriptive epidemiology |journal=Mol. Carcinog. |volume=51 |issue=1 |pages=3–13 |year=2012 |pmid=22162227 |doi=10.1002/mc.20785 |url=}}</ref><ref name="pmid10616684">{{cite journal |vauthors=Hart AR |title=Pancreatic cancer: any prospects for prevention? |journal=Postgrad Med J |volume=75 |issue=887 |pages=521–6 |year=1999 |pmid=10616684 |pmc=1741344 |doi= |url=}}</ref><ref name="pmid14749618">{{cite journal |vauthors=Vimalachandran D, Ghaneh P, Costello E, Neoptolemos JP |title=Genetics and prevention of pancreatic cancer |journal=Cancer Control |volume=11 |issue=1 |pages=6–14 |year=2004 |pmid=14749618 |doi= |url=}}</ref><ref name="pmid14749618">{{cite journal |vauthors=Vimalachandran D, Ghaneh P, Costello E, Neoptolemos JP |title=Genetics and prevention of pancreatic cancer |journal=Cancer Control |volume=11 |issue=1 |pages=6–14 |year=2004 |pmid=14749618 |doi= |url=}}</ref><ref name="pmid12670518">{{cite journal |vauthors=Ghadirian P, Lynch HT, Krewski D |title=Epidemiology of pancreatic cancer: an overview |journal=Cancer Detect. Prev. |volume=27 |issue=2 |pages=87–93 |year=2003 |pmid=12670518 |doi= |url=}}</ref><ref name="pmid19150414">{{cite journal |vauthors=Landi S |title=Genetic predisposition and environmental risk factors to pancreatic cancer: A review of the literature |journal=Mutat. Res. |volume=681 |issue=2-3 |pages=299–307 |year=2009 |pmid=19150414 |doi=10.1016/j.mrrev.2008.12.001 |url=}}</ref>
Smoking accounts for the incidence of pancreatic cancer in one-fourth of all cases.<ref name="pmid25276995">{{cite journal |vauthors=Bochatay L, Girardin M, Bichard P, Frossard JL |title=[Pancreatic cancer in 2014: screening and epidemiology] |language=French |journal=Rev Med Suisse |volume=10 |issue=440 |pages=1582–5 |year=2014 |pmid=25276995 |doi= |url=}}</ref><ref name="pmid16127228">{{cite journal |vauthors=Qiu D, Kurosawa M, Lin Y, Inaba Y, Matsuba T, Kikuchi S, Yagyu K, Motohashi Y, Tamakoshi A |title=Overview of the epidemiology of pancreatic cancer focusing on the JACC Study |journal=J Epidemiol |volume=15 Suppl 2 |issue= |pages=S157–67 |year=2005 |pmid=16127228 |doi= |url=}}</ref>
Nicotine in cigarettes stimulates tumorigenesis, increasing metastasis and resistance to treatment, hence impacting survival in patients.<ref name="pmid25076322">{{cite journal |vauthors=Toki MI, Syrigos KN, Saif MW |title=Risk determination for pancreatic cancer |journal=JOP |volume=15 |issue=4 |pages=289–91 |year=2014 |pmid=25076322 |doi= |url=}}</ref>
The risk of developing pancreatic cancer becomes almost equivalent to that of a nonsmoker after five years of cessation.<ref name="pmid16549324">{{cite journal |vauthors=Lowenfels AB, Maisonneuve P |title=Epidemiology and risk factors for pancreatic cancer |journal=Best Pract Res Clin Gastroenterol |volume=20 |issue=2 |pages=197–209 |year=2006 |pmid=16549324 |doi=10.1016/j.bpg.2005.10.001 |url=}}</ref><ref name="pmid15051286">{{cite journal |vauthors=Li D, Xie K, Wolff R, Abbruzzese JL |title=Pancreatic cancer |journal=Lancet |volume=363 |issue=9414 |pages=1049–57 |year=2004 |pmid=15051286 |doi=10.1016/S0140-6736(04)15841-8 |url=}}</ref><ref name="pmid22162227">{{cite journal |vauthors=Bosetti C, Bertuccio P, Negri E, La Vecchia C, Zeegers MP, Boffetta P |title=Pancreatic cancer: overview of descriptive epidemiology |journal=Mol. Carcinog. |volume=51 |issue=1 |pages=3–13 |year=2012 |pmid=22162227 |doi=10.1002/mc.20785 |url=}}</ref><ref name="pmid19150414">{{cite journal |vauthors=Landi S |title=Genetic predisposition and environmental risk factors to pancreatic cancer: A review of the literature |journal=Mutat. Res. |volume=681 |issue=2-3 |pages=299–307 |year=2009 |pmid=19150414 |doi=10.1016/j.mrrev.2008.12.001 |url=}}</ref>


===Normal video===
{{#ev:youtube|x6e9Pk6inYI}}
{{#ev:youtube|4uSSvD1BAHg}}
{{#ev:youtube|PQXb5D-5UZw}}
{{#ev:youtube|UVJYQlUm2A8}}


Regular exercise:
===Video in table===
Obesity is considered as a potential risk factor for pancreatic cancer.<ref name="pmid22162231">{{cite journal |vauthors=Bracci PM |title=Obesity and pancreatic cancer: overview of epidemiologic evidence and biologic mechanisms |journal=Mol. Carcinog. |volume=51 |issue=1 |pages=53–63 |year=2012 |pmid=22162231 |pmc=3348117 |doi=10.1002/mc.20778 |url=}}</ref>
<div style="width:350px">{{#ev:youtube|5ucSlgqGAno}}</div>
Regular exercise decreases the risk of pancreatic cancer as compared to people living a sedentary lifestyle.<ref name="pmid22162227">{{cite journal |vauthors=Bosetti C, Bertuccio P, Negri E, La Vecchia C, Zeegers MP, Boffetta P |title=Pancreatic cancer: overview of descriptive epidemiology |journal=Mol. Carcinog. |volume=51 |issue=1 |pages=3–13 |year=2012 |pmid=22162227 |doi=10.1002/mc.20785 |url=}}</ref><ref name="pmid25246281">{{cite journal |vauthors=Kollarova H, Azeem K, Tomaskova H, Horakova D, Prochazka V, Martinek A, Shonova O, Sevcikova J, Sevcikova V, Janout V |title=Is physical activity a protective factor against pancreatic cancer? |journal=Bratisl Lek Listy |volume=115 |issue=8 |pages=474–8 |year=2014 |pmid=25246281 |doi= |url=}}</ref>


The American Cancer Society (ACS) has issued guidelines for diet and physical activity at individual and community levels.
===Floating video===
Diet:
A healthy balanced diet doesn't exceed 2000 calories daily and includes the following:<ref name="pmid10616684">{{cite journal |vauthors=Hart AR |title=Pancreatic cancer: any prospects for prevention? |journal=Postgrad Med J |volume=75 |issue=887 |pages=521–6 |year=1999 |pmid=10616684 |pmc=1741344 |doi= |url=}}</ref><ref name="pmid12670518">{{cite journal |vauthors=Ghadirian P, Lynch HT, Krewski D |title=Epidemiology of pancreatic cancer: an overview |journal=Cancer Detect. Prev. |volume=27 |issue=2 |pages=87–93 |year=2003 |pmid=12670518 |doi= |url=}}</ref><ref name="pmid28435395">{{cite journal |vauthors=Kuroczycki-Saniutycz S, Grzeszczuk A, Zwierz ZW, Kołodziejczyk P, Szczesiul J, Zalewska-Szajda B, Ościłowicz K, Waszkiewicz N, Zwierz K, Szajda SD |title=Prevention of pancreatic cancer |journal=Contemp Oncol (Pozn) |volume=21 |issue=1 |pages=30–34 |year=2017 |pmid=28435395 |pmc=5385470 |doi=10.5114/wo.2016.63043 |url=}}</ref>
plenty of vegetables and fruits- blueberries, spinach, broccoli, tomatoes
lean meat from fowl, fish and plant sources like nuts or whole grains
monounsaturated fats help control insulin levels in type 2 diabetics<ref name="pmid19150414">{{cite journal |vauthors=Landi S |title=Genetic predisposition and environmental risk factors to pancreatic cancer: A review of the literature |journal=Mutat. Res. |volume=681 |issue=2-3 |pages=299–307 |year=2009 |pmid=19150414 |doi=10.1016/j.mrrev.2008.12.001 |url=}}</ref>
Tuna, mackerel, salmon, and sardine are major sources of long-chain omega-3 fatty acids due to anticancer properties 


Poor diet: A poor diet includes the presence of the following:<ref name="pmid22162231">{{cite journal |vauthors=Bracci PM |title=Obesity and pancreatic cancer: overview of epidemiologic evidence and biologic mechanisms |journal=Mol. Carcinog. |volume=51 |issue=1 |pages=53–63 |year=2012 |pmid=22162231 |pmc=3348117 |doi=10.1002/mc.20778 |url=}}</ref><ref name="pmid16549324">{{cite journal |vauthors=Lowenfels AB, Maisonneuve P |title=Epidemiology and risk factors for pancreatic cancer |journal=Best Pract Res Clin Gastroenterol |volume=20 |issue=2 |pages=197–209 |year=2006 |pmid=16549324 |doi=10.1016/j.bpg.2005.10.001 |url=}}</ref><ref name="pmid28435395">{{cite journal |vauthors=Kuroczycki-Saniutycz S, Grzeszczuk A, Zwierz ZW, Kołodziejczyk P, Szczesiul J, Zalewska-Szajda B, Ościłowicz K, Waszkiewicz N, Zwierz K, Szajda SD |title=Prevention of pancreatic cancer |journal=Contemp Oncol (Pozn) |volume=21 |issue=1 |pages=30–34 |year=2017 |pmid=28435395 |pmc=5385470 |doi=10.5114/wo.2016.63043 |url=}}</ref>
{| class="infobox mw-collapsible" id="floatvideo" style="position: fixed; top: 65%; width:361px; right: 10px; margin: 0 0 0 0; border: 0; float: right;"
Food preservatives and additives
| Title
Smoked meat
|-
Heavy alcohol use
|-
High cholesterol
| {{#ev:youtube|https://https://www.youtube.com/watch?v=ypYI_lmLD7g|350}}
Red meat
|-
Low consumption of fruits and vegetables
|}
Saturated fatty acids
Processed foods
high-fat, high-protein diet
Chemicals known as heterocyclic amines, nitrates, and heme iron, found in foods, are capable of damaging cells and DNA, influencing cancerogenic processes


Aging: Aging is associated with the development of pancreatic cancer.<ref name="pmid15051286">{{cite journal |vauthors=Li D, Xie K, Wolff R, Abbruzzese JL |title=Pancreatic cancer |journal=Lancet |volume=363 |issue=9414 |pages=1049–57 |year=2004 |pmid=15051286 |doi=10.1016/S0140-6736(04)15841-8 |url=}}</ref><ref name="pmid15051286">{{cite journal |vauthors=Li D, Xie K, Wolff R, Abbruzzese JL |title=Pancreatic cancer |journal=Lancet |volume=363 |issue=9414 |pages=1049–57 |year=2004 |pmid=15051286 |doi=10.1016/S0140-6736(04)15841-8 |url=}}</ref><ref name="pmid22162227">{{cite journal |vauthors=Bosetti C, Bertuccio P, Negri E, La Vecchia C, Zeegers MP, Boffetta P |title=Pancreatic cancer: overview of descriptive epidemiology |journal=Mol. Carcinog. |volume=51 |issue=1 |pages=3–13 |year=2012 |pmid=22162227 |doi=10.1002/mc.20785 |url=}}</ref>
===Redirect===
#REDIRECT[[Esophageal web]]


===synonym website===
https://mq.b2i.sg/snow-owl/#!terminology/snomed/10743008


Secondary
===Image===
Diet: Exocrine pancreatic insufficiency due to pancreatic duct obstruction by the tumor may lead to malabsorption.
[[Image: Normal versus Abnormal Barium study of esophagus.jpg|thumb|left|200px|Normal versus Abnormal Barium study of esophagus with varices]]
Malabsorption in patients presents with anorexia, weight loss, and diarrhea.
Treatment: based on American Cancer Society(ACS) guidelines<ref name="pmid22237782">{{cite journal |vauthors=Kushi LH, Doyle C, McCullough M, Rock CL, Demark-Wahnefried W, Bandera EV, Gapstur S, Patel AV, Andrews K, Gansler T |title=American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity |journal=CA Cancer J Clin |volume=62 |issue=1 |pages=30–67 |year=2012 |pmid=22237782 |doi=10.3322/caac.20140 |url=}}</ref>
Pancreatic enzyme replacement therapy
avoidance of high-protein/high-fat diets
Individualized dietary prescriptions from a registered dietitian
Supplementation with omega-3 fatty acids


=== Palliative Therapy ===
* [[Pain]]:
** There are various techniques for [[pain]] management as [[Palliative care|palliative therapy]] in patients with advanced stage of [[pancreatic cancer]]:
*** [[Narcotic]] [[Analgesic|analgesics]]
*** [[Narcotic]] [[Analgesic|analgesics]]+ [[Tricyclic antidepressant|tricyclic antidepressants]]/ [[Antiemetic|antiemetics]]
*** [[Radiation therapy]]


==== Pain:  ====
===Image to the right===
* There are various techniques for [[pain]] management as [[Palliative care|palliative therapy]] in patients.
{| style="float: right; width: 350px;"
| [[Image:Coxiella burnetii.JPG|right|400px|C. burnetii, the Q fever causing agent]]
|}


* Surgical techniques used to treat [[pain]] in advanced [[pancreatic cancer]] cases include:
===Image and text to the right===
** [[Endoscopy|Endoscopic]] [[decompression]] with [[stent]] placement in patients with [[Bile duct|biliary]] or [[pancreatic duct]] [[obstruction]]
** [[Neurolysis]] of the [[celiac ganglia]] by many approaches:
*** Intraoperative
*** Transgastric
*** Transthoracic
*** Transabdominal


==== Jaundice:  ====
<figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline>[[File:Global distribution of leptospirosis.jpg|577x577px]]</figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline> Recent out break of leptospirosis is reported in Bronx, New York and found 3 cases in the months January and February, 2017.  
* [[Jaundice|Obstructive jaundice]] can present with features of [[cholangitis]]:
** [[Fever]] and [[Rigor|chills]]  
** [[Nausea and vomiting|Nausea]], [[Nausea and vomiting|vomiting]]
** [[Acholic stools|Clay-colored stools]]
** Dark [[urine]]
** Yellowish discoloration of skin
** [[Itch|Pruritus]]
** [[Abdominal pain|Right upper quadrant pain]]
** [[Anorexia]]
* Preferred treatment in patients: [[Endoscopy|Endoscopic]] [[decompression]] with [[stent]] placement in patients with [[Bile duct|biliary]] [[obstruction]].  
* Techniques of [[Bile duct|biliary]] [[decompression]]:
** ''Cholecystojejunostomy''
** ''Choledochojejunostomy''


*Types of [[Stent|stents]]:
===Gallery===
**Metal- costly, longer lifespan
**Plastic- cheaper, need replacement every three months


==== Duodenal obstruction  ====
<gallery widths="250px">
* Preferred treatment:
 
** [[Endoscopy|Endoscopic]] [[Stent|stenting]] of [[Duodenum|duodenal]] [[obstruction]]
Pancreatic insulinoma histology 2.JPG|Histopathology of a pancreatic endocrine tumor (insulinoma). ''Source:https://librepathology.org/wiki/Neuroendocrine_tumour_of_the_pancreas''<ref name=aaa> Neuroendocrine tumor of the pancreas. Libre Pathology. http://librepathology.org/wiki/index.php/Neuroendocrine_tumour_of_the_pancreas</ref>
** [[Gastrojejunostomy]]
 
<references />
Pancreatic insulinoma histopathology 3.JPG|Histopathology of a pancreatic endocrine tumor (insulinoma). Chromogranin A immunostain. ''Source:https://librepathology.org/wiki/Neuroendocrine_tumour_of_the_pancreas''<ref name=aaa> Neuroendocrine tumour of the pancreas. Libre Pathology. http://librepathology.org/wiki/index.php/Neuroendocrine_tumour_of_the_pancreas</ref>
 
Pancreatic insulinoma histology 4.JPG|Histopathology of a pancreatic endocrine tumor (insulinoma). Insulin immunostain. ''Source:https://librepathology.org/wiki/Neuroendocrine_tumour_of_the_pancreas''<ref name=aaa> Neuroendocrine tumour of the pancreas. Libre Pathology. http://librepathology.org/wiki/index.php/Neuroendocrine_tumour_of_the_pancreas</ref>


</gallery>
==References==
{{Reflist|2}}
{{WS}}
{{WH}}




Approach Considerations
REFERENCES
Management of irritable bowel syndrome consists primarily of providing psychological support and recommending dietary measures. Pharmacologic treatment is adjunctive and should be directed at symptoms, such as modulation of persistent visceral hyperalgesia. [7]
<references />
The 2009 American College of Gastroenterologists (ACG) position statement recommends addressing nongastrointestinal symptoms and comorbidities to improve health-related quality of life as well as to reduce symptom severity. Evidence considered in the position statement was insufficient to recommend exclusion diets or food allergy testing. [3]
The 2014 ACG monograph on the management of irritable bowel syndrome and chronic idiopathic constipation found insufficient evidence to recommend prebiotics or synbiotics, or loperamide, in irritable bowel syndrome, and no evidence that polyethylene glycol improved overall symptoms and pain in affected patients. [22]  There was high quality of evidence to support the use of antidepressants as a class, and moderate quality of evidence of with fiber and psyllium, for overall symptomatic relief in irritable bowel syndrome. Strong recommendations were reported for linaclotide and lubiprostone each being superior to placebo in treating the constipation-predominant disease subtype. [22] 
Successful management relies on a strong patient-provider relationship. Reassure the patient that the absence of an organic pathology indicates a normal life expectancy. Emphasize the expected chronicity of symptoms with periodic exacerbations. Teach the patient to identify stressors and to use avoidance techniques.
Dietary Measures
Fiber supplementation may improve symptoms of constipation and diarrhea. Individualize the treatment because a few patients experience exacerbated bloating and distention with high-fiber diets. Polycarbophil compounds (eg, Citrucel, FiberCon) may produce less flatulence than psyllium compounds (eg, Metamucil).
The data regarding the effectiveness of fiber are controversial because 40-70% of patients improve with placebo. A Cochrane systematic review found no benefit of fiber/bulking agents on irritable bowel syndrome symptoms or global assessment. [4]
Judicious water intake is recommended in patients who predominantly experience constipation.
Caffeine avoidance may limit anxiety and symptom exacerbation. Legume avoidance may decrease abdominal bloating. Lactose and/or fructose should be limited or avoided in patients with these contributing disorders. Take care to supplement calcium in patients limiting their lactose intake.
Gluten intolerance has been associated with irritable bowel syndrome. In a small but important study, patients with irritable bowel syndrome who were well-controlled on a gluten-free diet were rechallenged in a double-blind fashion. [23] Approximately two thirds of these patients had poor symptom control with rechallenge. As with many irritable bowel syndrome studies, the placebo response was high (40%). Notably, neither intestinal inflammation nor permeability was different among the groups, and no difference in the positivity rate for celiac disease–related HLA haplotypes or antibody markers was noted. Volta et al evaluated the current evidence and suggest that patients with gluten/wheat sensitivity may be a subset of those with irritable bowel syndrome. [24]
Many patients are interested in dietary manipulation to decrease their symptoms. Several different diets have been proposed. [25] Diets low in FODMAPs (fermentable oligosaccharides, disaccharides, monosaccharides, and polyols) hold particular interest in reducing symptoms of irritable bowel syndrome. [26]
Probiotics are very interesting for treating symptoms, but it is unclear for which patients probiotics are helpful, and in what form, dose, combination, or strain. [27, 28] A meta-analysis concluded that Bifidobacterium infantis may help alleviate some symptoms of irritable bowel syndrome. [29] 
A systematic review and meta-analysis of 13 articles that assessed the differential expression of intestinal microbiota in 360 patients with this condition compared to 268 healthy controls found downregulation of bacterial colonization of Lactobacillus, Bifidobacterium, and Faecalibacterium prausnitzii in patients with irritable bowel syndrome. [30] Those with the diarrhea-predominant subtype had significantly different expression of Lactobacillus and Bifidobacterium. A different systematic review and meta-analysis evaluated 43 articles on probiotics and showed that probiotics helped relieve pain, bloating, and gas [31] ; however, again, it remains unknown which probiotic is best.
A European multicenter pilot study that evaluated the effectiveness of palmithoylethanolamide/polydatin in 54 patients with irritable bowel syndrome compared to 12 healthy controls did not show any significant changes in modifying the biologic profile of the condition (eg, mast cell count); however, this combination significantly improved the severity of abdominal pain when compared to placebo. [32]
Psychological Therapy
Consider psychiatric referral. Previous evidence supported improvement in gastrointestinal (GI) symptoms with successful treatment of psychiatric comorbidities, but studies by Zijdenbos et al and Ford et al indicate that caution should be used when interpreting such data. [33, 34]
In a meta-analysis by Zijdenbos et al of 25 randomized trials consisting of single psychological interventions with usual care or mock intervention in patients older than 16 years, the authors found that although cognitive-behavioral therapy and interpersonal psychotherapy were effective immediately after treatment completion, there was no convincing evidence for sustained benefits with any treatment modality. Thus, Zijdenbos et al recommended that future research should focus on current irritable bowel syndrome treatment guidelines and their long-term effects. [33]
Ford et al reached similar conclusions regarding the use of psychological interventions in irritable bowel syndrome. The authors concluded that antidepressants are effective in the treatment of irritable bowel syndrome, but although the available data suggest that psychological therapies may be of comparable efficacy, there is less high-quality evidence for the routine use of psychological therapies in patients with IBS. They performed a systematic review and meta-analysis of randomized controlled trials in adults with IBS; however, their selection criteria included trials comparing antidepressants with placebo as well as those comparing psychological therapies with control therapy or usual care. The investigators noted that the quality of studies were generally good for those involving antidepressants but poor for those involving psychological therapy. [34]
A Cochrane systematic review determined that antidepressants improved both irritable bowel symptoms and global assessment scores compared with placebo. Selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants were both shown to be effective in subgroup analyses. [4]
The 2009 American College of Gastroenterologists (ACG) position statement concluded that psychological interventions, cognitive behavioral therapy, dynamic psychotherapy, and hypnotherapy, are more effective than placebo. Relaxation therapy was no more effective than usual care. In agreement with the above analysis, study quality was described as low. [3]
More recent studies suggest targeting the mediating psychological process involved in patients with irritable bowel syndrome, such as illness perceptions, maladaptive coping, and visceral sensitivity. [17]
Long-term Monitoring
Frequent visits with the clinician enhance the patient-provider relationship, especially in patients who were recently diagnosed with irritable bowel syndrome. Visits can become less frequent as patients are educated and reassured.


Medication SummaryInvestigational use
[[Category:Gastroenterology]]
The selection of pharmacologic treatment remains symptom directed. Agents used for the management of symptoms in irritable bowel syndrome (IBS) include anticholinergics, antidiarrheals, tricyclic antidepressants, prokinetics, bulk-forming laxatives, serotonin receptor antagonists, chloride channel activators, and guanylate cyclase C (GC-C) agonists.
[[Category:Needs overview]]
A Cochrane systematic review found that several antispasmodics, including peppermint oil, pinaverium, trimebutine, and cimetropium/dicyclomine, significantly outperformed placebo at improving irritable bowel syndrome symptom and global assessment scores. [4]
[[Category:Hepatology]]
The 2009 American College of Gastroenterologists (ACG) position statement on management of irritable bowel syndrome noted that the antidiarrheal agent loperamide effectively reduced stool frequency and improved stool consistency, but it did not relieve pain, bloating, or other global irritable bowel syndrome symptoms. [3] As noted earlier, The 2014 ACG monograph on the management of irritable bowel syndrome and chronic idiopathic constipation found insufficient evidence to recommend prebiotics or synbiotics, or loperamide, in irritable bowel syndrome, and no evidence that polyethylene glycol improved overall symptoms and pain in affected patients. [22]
[[Category:Disease]]
A Spanish expert consensus panel on functional digestive disorders have made evidence-based recommendations on the use of linaclotide, a GC-C receptor agonist, for the management of the constipation-predominant disease (IBS-C) subtype. [35] Their recommendations include continuous (not sporadic) use of linaclotide therapy for moderate to severe IBS-C, patient education regarding the risk of diarrhea and its management options, and the maintenance of linaclotide therapy for potentially long periods on the basis of the lack of tachyphylaxis or potential risks. [35]
A total of 1260 patients with IBS without constipation were enrolled in the TARGET 1 and TARGET 2 phase III trials at 179 investigative sites in the United States and Canada. Results showed that treatment with rifaximin (550 mg PO tid for 14 d) provided better symptom relief (eg, bloating, abdominal pain, loose/watery stools) compared with placebo, although the placebo effect was tremendous. Similarly, a 2012 meta-analysis of 5 studies, incorporating 1,803 patients, determined that rifaximin is more effective than placebo for global symptom relief and bloating. Adverse event rates were similar to placebo. [36] Rifaximin is not yet approved by the US Food and Drug Administration for IBS. [37]
IBS Agents
Class Summary
Linaclotide and lubiprostone enhance chloride-rich intestinal fluid secretions without altering sodium and potassium concentrations in the serum. Linaclotide was approved by the FDA in August 2012 to treat chronic idiopathic constipation and irritable bowel syndrome with constipation (IBS-C) in adults. [38]
The safety and efficacy of linaclotide in the treatment of IBS-C were evaluated in 2 double-blind, placebo-controlled phase III clinical trials in which linaclotide met all 4 primary endpoints for changes in abdominal pain and constipation in each trial. The trials involved 1,605 patients aged 18-87 years, of which 807 were treated with linaclotide 290 mcg. Both trials showed a significantly higher proportion of responders in the linaclotide group compared with the placebo group. [39, 40]
Lubiprostone (Amitiza)
View full drug information
This agent activates chloride channels on the apical part of the small bowel epithelium. As a result, chloride ions are secreted and sodium and water passively diffuse into the lumen to maintain isotonicity. This medication is FDA approved for use in idiopathic constipation and in irritable bowel syndrome with constipation.
Alosetron (Lotronex)
View full drug information
Alosetron is a 5-HT3 receptor antagonist. This agent controls irritable bowel syndrome symptoms through its potent and selective antagonism of serotonin 5-HT3 receptor type. These receptors are extensively located on the enteric neurons of the GI tract, and stimulation causes hypersensitivity and hyperactivity of the intestine. It is indicated only for women with severe diarrhea-predominant IBS who have: chronic IBS symptoms (generally lasting 6 months or longer), had anatomic or biochemical abnormalities of the GI tract excluded, and have not responded adequately to conventional therapy.
Limiting its use to this severely affected population is intended to maximize the benefit-to-risk ratio. The drug was previously removed from the US market but was reintroduced with new restrictions approved by the FDA on June 7, 2002. Restrictions are because of reports of infrequent but serious GI adverse reactions (eg, ischemic colitis, serious complications of constipation), including some that resulted in hospitalization and, rarely, blood transfusion, surgery, or death. In order to prescribe, physicians must be enrolled in the Prescribing Program for Lotronex.
Under the new management plan, serious adverse events have been few. [28]
Linaclotide (Linzess)
View full drug information
Guanylate cyclase agonist; activation of guanylate cyclase receptors in the intestinal neurons leads to increased cyclic guanosine monophosphate (cGMP), anion secretion, fluid secretion, and intestinal transit; it appears to work topically rather than systemically; when administered PO, linaclotide activates chloride channels in intestinal epithelial cells to increase intestinal fluid secretion; indicated to treat chronic idiopathic constipation and for IBS-C in adults.
Eluxadoline (Viberzi)
View full drug information
Eluxadoline is a mu opioid receptor agonist. It also is a delta opioid receptor antagonist and a kappa opioid receptor agonist. The multiple opioid activity is designed to treat the symptoms of IBS-D while reducing the incidence of constipation that can occur with unopposed mu opioid receptor agonists. It is indicated for IBS-D in adult men and women.
Anticholinergics
Class Summary
Anticholinergic agents are antispasmodics that inhibit intestinal smooth-muscle depolarization at the muscarinic receptor. These agents help relieve symptoms of intestinal spasms in irritable bowel syndrome.
Dicyclomine hydrochloride (Bentyl)
View full drug information
Dicyclomine blocks the action of acetylcholine at parasympathetic sites in secretory glands, smooth muscle, and CNS. This drug decreases fecal urgency and pain. It is useful in patients with diarrhea-predominant symptoms. Adverse effects are dose dependent.
Hyoscyamine sulfate (Levsin)
View full drug information
Like dicyclomine, hyoscyamine is useful in patients with diarrhea-predominant symptoms and blocks the action of acetylcholine at parasympathetic sites in smooth muscle, secretory glands, and the CNS, which, in turn, has antispasmodic effects. The drug decreases fecal urgency and pain.
Antidiarrheals
Class Summary
These agents are nonabsorbable synthetic opioids. They prolong the GI transit time and decrease secretion via peripheral µ-opioid receptors. They reduce visceral nociception via afferent pathway inhibition.
Diphenoxylate hydrochloride 2.5 mg with atropine sulfate 0.025 mg (Lomotil)
View full drug information
This drug combination consists of 2.5 mg of diphenoxylate, which is a constipating meperidine congener, and 0.025 mg of atropine to discourage abuse. The preparation inhibits excessive GI propulsion and motility, but it may exacerbate constipation.
Loperamide (Imodium)
View full drug information
Loperamide, which is available over the counter, acts on intestinal muscles to inhibit peristalsis and to slow intestinal motility. It prolongs the movement of electrolytes and fluid through bowel and increases the viscosity and loss of fluids and electrolytes. Loperamide improves stool frequency and consistency, reduces abdominal pain and fecal urgency, and may exacerbate constipation.
Tricyclic Antidepressants
Class Summary
Tricyclic antidepressants have both antidepressive and analgesic properties. Agents such as imipramine and amitriptyline are efficacious in treating symptoms of irritable bowel syndrome. The use of tricyclic antidepressants in irritable bowel syndrome is off label.
Imipramine (Tofranil)
View full drug information
Imipramine increases pain threshold in the gut, thereby providing a visceral analgesic effect. It prolongs oral-cecal transit time; reduces abdominal pain, mucorrhea, and stool frequency; and increases global well-being variably. It is effective in irritable bowel syndrome in doses subtherapeutic for antidepressive actions, suggesting an independent mechanism of action in this disorder.
Amitriptyline (Elavil)
View full drug information
Like imipramine, amitriptyline provides a visceral analgesic effect at doses subtherapeutic for antidepressive actions. It also prolongs oral-cecal transit time, reduces abdominal pain, mucorrhea, and stool frequency, and increases global well-being variably.
Antibiotics
Class Summary
Antibiotics may play a role in the treatment of irritable bowel syndrome by preventing the overgrowth of intestinal bacteria.
Rifaximin (Xifaxan)
View full drug information
Rifaximin is a semisynthetic derivative of rifampin and acts by binding to the beta-subunit of bacterial DNA-dependent RNA polymerase, blocking one of the steps in transcription. This results in inhibition of bacterial protein synthesis and consequently inhibits the growth of bacteria. The exact mechanism of action for IBS-D is not known, but it is thought to be related to changes in the bacterial content in the gastrointestinal tract and reduction of gas. It is indicated for IBS-D in adult men and women.
Bulk-Forming Laxatives
Class Summary
These products are made of natural and semi-synthetic hydrophilic polysaccharides and cellulose derivatives that dissolve or swell in the intestinal fluid, forming emollient gels that facilitate the passage of intestinal contents and stimulate peristalsis. As fiber supplements, these products may improve symptoms of constipation and diarrhea, but their use in irritable bowel syndrome is controversial.
Methylcellulose (Citrucel)
View full drug information
This agent promotes bowel evacuation by forming a viscous liquid and promoting peristalsis.
Psyllium (Metamucil, Fiberall, Reguloid, Konsyl)
View full drug information
Like methylcellulose, psyllium promotes bowel evacuation by forming a viscous liquid and promoting peristalsis.

Latest revision as of 00:04, 30 July 2020

Physical examination

References

Template:WH Template:WS

References


Pathophysiology prev

https://https://www.youtube.com/watch?v=5szNmKtyBW4%7C350}}

Cirrhosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Cirrhosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Tertiary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case studies

Case #1

Sandbox:Cherry On the Web

Most recent articles

cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Sandbox:Cherry

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Sandbox:Cherry

CDC on Sandbox:Cherry

Sandbox:Cherry in the news

Blogs on Sandbox:Cherry

Directions to Hospitals Treating Cirrhosis

Risk calculators and risk factors for Sandbox:Cherry

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief:


Pathophysiology prev

https://https://www.youtube.com/watch?v=5szNmKtyBW4%7C350}}

Cirrhosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Cirrhosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Tertiary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case studies

Case #1

Sandbox:Cherry On the Web

Most recent articles

cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Sandbox:Cherry

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Sandbox:Cherry

CDC on Sandbox:Cherry

Sandbox:Cherry in the news

Blogs on Sandbox:Cherry

Directions to Hospitals Treating Cirrhosis

Risk calculators and risk factors for Sandbox:Cherry

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [2] Associate Editor(s)-in-Chief:

History and Symptoms

  • History should include:
    • Appearance of bowel movements
    • Travel history
    • Associated symptoms
    • Immune status
    • Woodland exposure

References

Template:WH Template:WS

Other Imaging Findings

Other diagnostic studies

Other Diagnostic Studies

  • Breath hydrogen test

==

Overview

References

Template:WH Template:WS

Pathophysiology prev

https://https://www.youtube.com/watch?v=5szNmKtyBW4%7C350}}

Cirrhosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Cirrhosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Tertiary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case studies

Case #1

Sandbox:Cherry On the Web

Most recent articles

cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Sandbox:Cherry

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Sandbox:Cherry

CDC on Sandbox:Cherry

Sandbox:Cherry in the news

Blogs on Sandbox:Cherry

Directions to Hospitals Treating Cirrhosis

Risk calculators and risk factors for Sandbox:Cherry

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [3] Associate Editor(s)-in-Chief:

Video codes

Normal video

{{#ev:youtube|x6e9Pk6inYI}} {{#ev:youtube|4uSSvD1BAHg}} {{#ev:youtube|PQXb5D-5UZw}} {{#ev:youtube|UVJYQlUm2A8}}

Video in table

{{#ev:youtube|5ucSlgqGAno}}

Floating video

Title
https://https://www.youtube.com/watch?v=ypYI_lmLD7g%7C350}}

Redirect

  1. REDIRECTEsophageal web

synonym website

https://mq.b2i.sg/snow-owl/#!terminology/snomed/10743008

Image

Normal versus Abnormal Barium study of esophagus with varices


Image to the right

C. burnetii, the Q fever causing agent
C. burnetii, the Q fever causing agent

Image and text to the right

<figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline> Recent out break of leptospirosis is reported in Bronx, New York and found 3 cases in the months January and February, 2017.

Gallery

References

  1. 1.0 1.1 1.2 Neuroendocrine tumor of the pancreas. Libre Pathology. http://librepathology.org/wiki/index.php/Neuroendocrine_tumour_of_the_pancreas

Template:WS Template:WH


REFERENCES