LYPLAL1: Difference between revisions
m (Bot: HTTP→HTTPS (v475)) |
imported>Rathfelder (not a stub) |
||
Line 25: | Line 25: | ||
| url = https://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=retrieve&list_uids=127018 | | url = https://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=retrieve&list_uids=127018 | ||
| accessdate = 2013-02-27 <!-- T11:24:33.185939-08:00 --> | | accessdate = 2013-02-27 <!-- T11:24:33.185939-08:00 --> | ||
}}</ref> The protein is a [[Alpha/beta hydrolase superfamily|α/β-hydrolase]] of uncharacterized [[Metabolism|metabolic]] function. [[Genome-wide association study|Genome-wide association studies]] in humans have linked the gene to [[Body shape|fat distribution]]<ref>{{ | }}</ref> The protein is a [[Alpha/beta hydrolase superfamily|α/β-hydrolase]] of uncharacterized [[Metabolism|metabolic]] function. [[Genome-wide association study|Genome-wide association studies]] in humans have linked the gene to [[Body shape|fat distribution]]<ref>{{cite journal | vauthors = Benjamin AM, Suchindran S, Pearce K, Rowell J, Lien LF, Guyton JR, McCarthy JJ | title = Gene by sex interaction for measures of obesity in the framingham heart study | journal = Journal of Obesity | volume = 2011 | pages = 329038 | date = 2011 | pmid = 21253498 | pmc = 3021872 | doi = 10.1155/2011/329038 }}</ref> and [[Waist–hip ratio|waist-to-hip ratio]].<ref>{{cite journal | vauthors = Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V, Thorleifsson G, Zillikens MC, Speliotes EK, Mägi R, Workalemahu T, White CC, Bouatia-Naji N, Harris TB, Berndt SI, Ingelsson E, Willer CJ, Weedon MN, Luan J, Vedantam S, Esko T, Kilpeläinen TO, Kutalik Z, Li S, Monda KL, Dixon AL, Holmes CC, Kaplan LM, Liang L, Min JL, Moffatt MF, Molony C, Nicholson G, Schadt EE, Zondervan KT, Feitosa MF, Ferreira T, Lango Allen H, Weyant RJ, Wheeler E, Wood AR, Estrada K, Goddard ME, Lettre G, Mangino M, Nyholt DR, Purcell S, Smith AV, Visscher PM, Yang J, McCarroll SA, Nemesh J, Voight BF, Absher D, Amin N, Aspelund T, Coin L, Glazer NL, Hayward C, Heard-Costa NL, Hottenga JJ, Johansson A, Johnson T, Kaakinen M, Kapur K, Ketkar S, Knowles JW, Kraft P, Kraja AT, Lamina C, Leitzmann MF, McKnight B, Morris AP, Ong KK, Perry JR, Peters MJ, Polasek O, Prokopenko I, Rayner NW, Ripatti S, Rivadeneira F, Robertson NR, Sanna S, Sovio U, Surakka I, Teumer A, van Wingerden S, Vitart V, Zhao JH, Cavalcanti-Proença C, Chines PS, Fisher E, Kulzer JR, Lecoeur C, Narisu N, Sandholt C, Scott LJ, Silander K, Stark K, Tammesoo ML, Teslovich TM, Timpson NJ, Watanabe RM, Welch R, Chasman DI, Cooper MN, Jansson JO, Kettunen J, Lawrence RW, Pellikka N, Perola M, Vandenput L, Alavere H, Almgren P, Atwood LD, Bennett AJ, Biffar R, Bonnycastle LL, Bornstein SR, Buchanan TA, Campbell H, Day IN, Dei M, Dörr M, Elliott P, Erdos MR, Eriksson JG, Freimer NB, Fu M, Gaget S, Geus EJ, Gjesing AP, Grallert H, Grässler J, Groves CJ, Guiducci C, Hartikainen AL, Hassanali N, Havulinna AS, Herzig KH, Hicks AA, Hui J, Igl W, Jousilahti P, Jula A, Kajantie E, Kinnunen L, Kolcic I, Koskinen S, Kovacs P, Kroemer HK, Krzelj V, Kuusisto J, Kvaloy K, Laitinen J, Lantieri O, Lathrop GM, Lokki ML, Luben RN, Ludwig B, McArdle WL, McCarthy A, Morken MA, Nelis M, Neville MJ, Paré G, Parker AN, Peden JF, Pichler I, Pietiläinen KH, Platou CG, Pouta A, Ridderstråle M, Samani NJ, Saramies J, Sinisalo J, Smit JH, Strawbridge RJ, Stringham HM, Swift AJ, Teder-Laving M, Thomson B, Usala G, van Meurs JB, van Ommen GJ, Vatin V, Volpato CB, Wallaschofski H, Walters GB, Widen E, Wild SH, Willemsen G, Witte DR, Zgaga L, Zitting P, Beilby JP, James AL, Kähönen M, Lehtimäki T, Nieminen MS, Ohlsson C, Palmer LJ, Raitakari O, Ridker PM, Stumvoll M, Tönjes A, Viikari J, Balkau B, Ben-Shlomo Y, Bergman RN, Boeing H, Smith GD, Ebrahim S, Froguel P, Hansen T, Hengstenberg C, Hveem K, Isomaa B, Jørgensen T, Karpe F, Khaw KT, Laakso M, Lawlor DA, Marre M, Meitinger T, Metspalu A, Midthjell K, Pedersen O, Salomaa V, Schwarz PE, Tuomi T, Tuomilehto J, Valle TT, Wareham NJ, Arnold AM, Beckmann JS, Bergmann S, Boerwinkle E, Boomsma DI, Caulfield MJ, Collins FS, Eiriksdottir G, Gudnason V, Gyllensten U, Hamsten A, Hattersley AT, Hofman A, Hu FB, Illig T, Iribarren C, Jarvelin MR, Kao WH, Kaprio J, Launer LJ, Munroe PB, Oostra B, Penninx BW, Pramstaller PP, Psaty BM, Quertermous T, Rissanen A, Rudan I, Shuldiner AR, Soranzo N, Spector TD, Syvanen AC, Uda M, Uitterlinden A, Völzke H, Vollenweider P, Wilson JF, Witteman JC, Wright AF, Abecasis GR, Boehnke M, Borecki IB, Deloukas P, Frayling TM, Groop LC, Haritunians T, Hunter DJ, Kaplan RC, North KE, O'Connell JR, Peltonen L, Schlessinger D, Strachan DP, Hirschhorn JN, Assimes TL, Wichmann HE, Thorsteinsdottir U, van Duijn CM, Stefansson K, Cupples LA, Loos RJ, Barroso I, McCarthy MI, Fox CS, Mohlke KL, Lindgren CM | display-authors = 6 | title = Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution | journal = Nature Genetics | volume = 42 | issue = 11 | pages = 949–60 | date = November 2010 | pmid = 20935629 | pmc = 3000924 | doi = 10.1038/ng.685 }}</ref> The protein's enzymatic function is unclear. LYPLAL1 was reported to act as a [[triglyceride lipase]] in [[adipose tissue]]<ref>{{cite journal | vauthors = Steinberg GR, Kemp BE, Watt MJ | title = Adipocyte triglyceride lipase expression in human obesity | journal = American Journal of Physiology. Endocrinology and Metabolism | volume = 293 | issue = 4 | pages = E958-64 | date = October 2007 | pmid = 17609260 | doi = 10.1152/ajpendo.00235.2007 }}</ref> and another study suggested that the protein may play a role in the depalmitoylation of [[calcium-activated potassium channel]]s.<ref>{{cite journal | vauthors = Tian L, McClafferty H, Knaus HG, Ruth P, Shipston MJ | title = Distinct acyl protein transferases and thioesterases control surface expression of calcium-activated potassium channels | journal = The Journal of Biological Chemistry | volume = 287 | issue = 18 | pages = 14718–25 | date = April 2012 | pmid = 22399288 | pmc = 3340283 | doi = 10.1074/jbc.M111.335547 }}</ref> However, LYPLAL1 does not depalmitoylate the [[oncogene]] [[Ras subfamily|Ras]]<ref>{{cite journal | vauthors = Görmer K, Bürger M, Kruijtzer JA, Vetter I, Vartak N, Brunsveld L, Bastiaens PI, Liskamp RM, Triola G, Waldmann H | title = Chemical-biological exploration of the limits of the Ras de- and repalmitoylating machinery | journal = Chembiochem | volume = 13 | issue = 7 | pages = 1017–23 | date = May 2012 | pmid = 22488913 | doi = 10.1002/cbic.201200078 }}</ref> and a [[X-ray crystallography|structural]] and [[Enzyme kinetics|enzymatic]] study concluded that LYPLAL1 is generally unable to act as a lipase and is instead an [[esterase]] that prefers short-chain substrates, such as [[acetyl group]]s.<ref name=":0">{{cite journal | vauthors = Bürger M, Zimmermann TJ, Kondoh Y, Stege P, Watanabe N, Osada H, Waldmann H, Vetter IR | title = Crystal structure of the predicted phospholipase LYPLAL1 reveals unexpected functional plasticity despite close relationship to acyl protein thioesterases | journal = Journal of Lipid Research | volume = 53 | issue = 1 | pages = 43–50 | date = January 2012 | pmid = 22052940 | pmc = 3243480 | doi = 10.1194/jlr.M019851 }}</ref> | ||
==Model organisms== | == Relationship to acyl-protein thioesterases == | ||
[[Model organism]]s have been used in the study of LYPLAL1 function. A conditional [[knockout mouse]] line called ''Lyplal1<sup>tm1a(KOMP)Wtsi</sup>'' was generated at the [[Wellcome Trust Sanger Institute]].<ref name="mgp_reference">{{cite journal |title=The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice |author=Gerdin AK |year=2010 |journal=Acta Ophthalmologica|volume=88 |pages=925–7|doi=10.1111/j.1755-3768.2010.4142.x }}</ref> Male and female animals underwent a standardized [[phenotypic screen]]<ref name="IMPCsearch_ref">{{cite web |url=http://www.mousephenotype.org/data/search?q=Lyplal1#fq=*:*&facet=gene |title=International Mouse Phenotyping Consortium}}</ref> to determine the effects of deletion.<ref name="pmid21677750">{{cite journal | vauthors = Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A | title = A conditional knockout resource for the genome-wide study of mouse gene function | journal = Nature | volume = 474 | issue = 7351 | pages = 337–42 | date = | [[Conserved sequence|Sequence conservation]] and [[Protein structure|structural homology]] suggest a close relationship of LYPLAL1 proteins to [[Acyl-protein thioesterase|acyl-protein thioesterases]], and, therefore, it has been suggested that LYPLAL1 might be the third human acyl-protein thioesterase.<ref>{{cite journal | vauthors = Zeidman R, Jackson CS, Magee AI | title = Protein acyl thioesterases (Review) | journal = Molecular Membrane Biology | volume = 26 | issue = 1 | pages = 32–41 | date = January 2009 | pmid = 19115143 | doi = 10.1080/09687680802629329 }}</ref> However, the major structural difference between both [[Protein family|protein families]] has been established in the [[Hydrophobic effect|hydrophobic substrate]] binding tunnel, which has been identified in human acyl-protein thioesterases 1<ref>{{cite journal | vauthors = Devedjiev Y, Dauter Z, Kuznetsov SR, Jones TL, Derewenda ZS | title = Crystal structure of the human acyl protein thioesterase I from a single X-ray data set to 1.5 A | journal = Structure | volume = 8 | issue = 11 | pages = 1137–46 | date = November 2000 | pmid = 11080636 }}</ref> and 2,<ref>{{cite journal | vauthors = Won SJ, Davda D, Labby KJ, Hwang SY, Pricer R, Majmudar JD, Armacost KA, Rodriguez LA, Rodriguez CL, Chong FS, Torossian KA, Palakurthi J, Hur ES, Meagher JL, Brooks CL, Stuckey JA, Martin BR | title = Molecular Mechanism for Isoform-Selective Inhibition of Acyl Protein Thioesterases 1 and 2 (APT1 and APT2) | journal = ACS Chemical Biology | volume = 11 | issue = 12 | pages = 3374–3382 | date = December 2016 | pmid = 27748579 | pmc = 5359770 | doi = 10.1021/acschembio.6b00720 }}</ref> as well as in ''Zea mays'' acyl-protein thioesterase 2.<ref>{{cite journal | vauthors = Bürger M, Willige BC, Chory J | title = A hydrophobic anchor mechanism defines a deacetylase family that suppresses host response against YopJ effectors | journal = Nature Communications | volume = 8 | issue = 1 | pages = 2201 | date = December 2017 | pmid = 29259199 | pmc = 5736716 | doi = 10.1038/s41467-017-02347-w }}</ref> In LYPLAL1, this tunnel is closed due to a different [[Protein secondary structure|loop]] conformation, changing the enzyme's [[Substrate (chemistry)|substrate]] specificity to short [[Acyl group|acyl chains]].<ref name=":0" /> | ||
[[File:LYLPLAL1 tunnel.png|center|thumb|Protein surface of human LYPLAL1 (PDB code [http://www.rcsb.org/pdb/explore/explore.do?structureId=3U0V 3u0v]), showing [[Surface charge#Proteins|electrostatic charges]] (red = negative, blue = positive, white = hydrophobic. On the right, the tunnel-closing loop is shown.|376x376px]] | |||
== Model organisms == | |||
[[Model organism]]s have been used in the study of LYPLAL1 function. A conditional [[knockout mouse]] line called ''Lyplal1<sup>tm1a(KOMP)Wtsi</sup>'' was generated at the [[Wellcome Trust Sanger Institute]].<ref name="mgp_reference">{{cite journal |title=The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice |author=Gerdin AK |year=2010 |journal=Acta Ophthalmologica|volume=88 |pages=925–7|doi=10.1111/j.1755-3768.2010.4142.x }}</ref> Male and female animals underwent a standardized [[phenotypic screen]]<ref name="IMPCsearch_ref">{{cite web |url=http://www.mousephenotype.org/data/search?q=Lyplal1#fq=*:*&facet=gene |title=International Mouse Phenotyping Consortium}}</ref> to determine the effects of deletion.<ref name="pmid21677750">{{cite journal | vauthors = Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A | title = A conditional knockout resource for the genome-wide study of mouse gene function | journal = Nature | volume = 474 | issue = 7351 | pages = 337–42 | date = June 2011 | pmid = 21677750 | pmc = 3572410 | doi = 10.1038/nature10163 }}</ref><ref name="mouse_library">{{cite journal | vauthors = Dolgin E | title = Mouse library set to be knockout | journal = Nature | volume = 474 | issue = 7351 | pages = 262–3 | date = June 2011 | pmid = 21677718 | doi = 10.1038/474262a }}</ref><ref name="mouse_for_all_reasons">{{cite journal | vauthors = Collins FS, Rossant J, Wurst W | title = A mouse for all reasons | journal = Cell | volume = 128 | issue = 1 | pages = 9–13 | date = January 2007 | pmid = 17218247 | doi = 10.1016/j.cell.2006.12.018 }}</ref><ref name="pmid23870131">{{cite journal | vauthors = White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP | display-authors = 6 | title = Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes | journal = Cell | volume = 154 | issue = 2 | pages = 452–64 | date = July 2013 | pmid = 23870131 | pmc = 3717207 | doi = 10.1016/j.cell.2013.06.022 }}</ref> Additional screens performed: - In-depth immunological phenotyping<ref name="iii_ref">{{cite web |url= http://www.immunophenotyping.org/data/search?keys=Lyplal1&field_gene_construct_tid=All |title=Infection and Immunity Immunophenotyping (3i) Consortium}}</ref> | |||
{| class="wikitable sortable collapsible collapsed" border="1" cellpadding="2" style="float: left;" | | {| class="wikitable sortable collapsible collapsed" border="1" cellpadding="2" style="float: left;" | | ||
|+ ''Lyplal1'' knockout mouse phenotype | |+ ''Lyplal1'' knockout mouse phenotype | ||
Line 93: | Line 98: | ||
|- | |- | ||
|} | |} | ||
{{clear|left}} | |||
==References== | == References == | ||
{{reflist}} | {{reflist}} | ||
Line 106: | Line 111: | ||
[[Category:Genes on human chromosome 1]] | [[Category:Genes on human chromosome 1]] | ||
Latest revision as of 17:18, 18 March 2018
File:Human LYPLAL1.png Crystal structure of human LYPLAL1, PDB code 3u0v. Alpha helices are in red, beta strands in gold, catalytic site residues in black. | |||||||||
Identifiers | |||||||||
---|---|---|---|---|---|---|---|---|---|
Symbol | Lysophospholipase-like protein 1 | ||||||||
Pfam | PF02230 | ||||||||
InterPro | IPR029058 | ||||||||
CATH | 3u0v | ||||||||
SCOP | 3u0v | ||||||||
SUPERFAMILY | 3u0v | ||||||||
|
Lysophospholipase-like 1 is a protein in humans that is encoded by the LYPLAL1 gene. [1] The protein is a α/β-hydrolase of uncharacterized metabolic function. Genome-wide association studies in humans have linked the gene to fat distribution[2] and waist-to-hip ratio.[3] The protein's enzymatic function is unclear. LYPLAL1 was reported to act as a triglyceride lipase in adipose tissue[4] and another study suggested that the protein may play a role in the depalmitoylation of calcium-activated potassium channels.[5] However, LYPLAL1 does not depalmitoylate the oncogene Ras[6] and a structural and enzymatic study concluded that LYPLAL1 is generally unable to act as a lipase and is instead an esterase that prefers short-chain substrates, such as acetyl groups.[7]
Relationship to acyl-protein thioesterases
Sequence conservation and structural homology suggest a close relationship of LYPLAL1 proteins to acyl-protein thioesterases, and, therefore, it has been suggested that LYPLAL1 might be the third human acyl-protein thioesterase.[8] However, the major structural difference between both protein families has been established in the hydrophobic substrate binding tunnel, which has been identified in human acyl-protein thioesterases 1[9] and 2,[10] as well as in Zea mays acyl-protein thioesterase 2.[11] In LYPLAL1, this tunnel is closed due to a different loop conformation, changing the enzyme's substrate specificity to short acyl chains.[7]
Model organisms
Model organisms have been used in the study of LYPLAL1 function. A conditional knockout mouse line called Lyplal1tm1a(KOMP)Wtsi was generated at the Wellcome Trust Sanger Institute.[12] Male and female animals underwent a standardized phenotypic screen[13] to determine the effects of deletion.[14][15][16][17] Additional screens performed: - In-depth immunological phenotyping[18]
Characteristic | Phenotype |
---|---|
All data available at.[13][18] | |
Insulin | Normal |
Homozygous viability at P14 | Normal |
Homozygous Fertility | Normal |
Body weight | Normal |
Neurological assessment | Normal |
Grip strength | Normal |
Dysmorphology | Normal |
Indirect calorimetry | Normal |
Glucose tolerance test | Normal |
Auditory brainstem response | Normal |
DEXA | Normal |
Radiography | Normal |
Eye morphology | Normal |
Clinical chemistry | Normal |
Haematology 16 Weeks | Normal |
Peripheral blood leukocytes 16 Weeks | Normal |
Heart weight | Normal |
Salmonella infection | Normal |
Epidermal Immune Composition | Normal |
References
- ↑ "Entrez Gene: Lysophospholipase-like 1". Retrieved 2013-02-27.
- ↑ Benjamin AM, Suchindran S, Pearce K, Rowell J, Lien LF, Guyton JR, McCarthy JJ (2011). "Gene by sex interaction for measures of obesity in the framingham heart study". Journal of Obesity. 2011: 329038. doi:10.1155/2011/329038. PMC 3021872. PMID 21253498.
- ↑ Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V, et al. (November 2010). "Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution". Nature Genetics. 42 (11): 949–60. doi:10.1038/ng.685. PMC 3000924. PMID 20935629.
- ↑ Steinberg GR, Kemp BE, Watt MJ (October 2007). "Adipocyte triglyceride lipase expression in human obesity". American Journal of Physiology. Endocrinology and Metabolism. 293 (4): E958–64. doi:10.1152/ajpendo.00235.2007. PMID 17609260.
- ↑ Tian L, McClafferty H, Knaus HG, Ruth P, Shipston MJ (April 2012). "Distinct acyl protein transferases and thioesterases control surface expression of calcium-activated potassium channels". The Journal of Biological Chemistry. 287 (18): 14718–25. doi:10.1074/jbc.M111.335547. PMC 3340283. PMID 22399288.
- ↑ Görmer K, Bürger M, Kruijtzer JA, Vetter I, Vartak N, Brunsveld L, Bastiaens PI, Liskamp RM, Triola G, Waldmann H (May 2012). "Chemical-biological exploration of the limits of the Ras de- and repalmitoylating machinery". Chembiochem. 13 (7): 1017–23. doi:10.1002/cbic.201200078. PMID 22488913.
- ↑ 7.0 7.1 Bürger M, Zimmermann TJ, Kondoh Y, Stege P, Watanabe N, Osada H, Waldmann H, Vetter IR (January 2012). "Crystal structure of the predicted phospholipase LYPLAL1 reveals unexpected functional plasticity despite close relationship to acyl protein thioesterases". Journal of Lipid Research. 53 (1): 43–50. doi:10.1194/jlr.M019851. PMC 3243480. PMID 22052940.
- ↑ Zeidman R, Jackson CS, Magee AI (January 2009). "Protein acyl thioesterases (Review)". Molecular Membrane Biology. 26 (1): 32–41. doi:10.1080/09687680802629329. PMID 19115143.
- ↑ Devedjiev Y, Dauter Z, Kuznetsov SR, Jones TL, Derewenda ZS (November 2000). "Crystal structure of the human acyl protein thioesterase I from a single X-ray data set to 1.5 A". Structure. 8 (11): 1137–46. PMID 11080636.
- ↑ Won SJ, Davda D, Labby KJ, Hwang SY, Pricer R, Majmudar JD, Armacost KA, Rodriguez LA, Rodriguez CL, Chong FS, Torossian KA, Palakurthi J, Hur ES, Meagher JL, Brooks CL, Stuckey JA, Martin BR (December 2016). "Molecular Mechanism for Isoform-Selective Inhibition of Acyl Protein Thioesterases 1 and 2 (APT1 and APT2)". ACS Chemical Biology. 11 (12): 3374–3382. doi:10.1021/acschembio.6b00720. PMC 5359770. PMID 27748579.
- ↑ Bürger M, Willige BC, Chory J (December 2017). "A hydrophobic anchor mechanism defines a deacetylase family that suppresses host response against YopJ effectors". Nature Communications. 8 (1): 2201. doi:10.1038/s41467-017-02347-w. PMC 5736716. PMID 29259199.
- ↑ Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
- ↑ 13.0 13.1 "International Mouse Phenotyping Consortium".
- ↑ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (June 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
- ↑ Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
- ↑ Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
- ↑ White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, et al. (July 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207. PMID 23870131.
- ↑ 18.0 18.1 "Infection and Immunity Immunophenotyping (3i) Consortium".