Cathepsin E: Difference between revisions
m (Bot: HTTP→HTTPS (v477)) |
imported>Boghog (consistent citation formatting) |
||
Line 1: | Line 1: | ||
{{Infobox_gene}} | {{Infobox_gene}} | ||
'''Cathepsin E''' is an [[enzyme]] that in humans is encoded by the ''CTSE'' [[gene]].<ref name="pmid2369841">{{cite journal | vauthors = Couvreur JM, Azuma T, Miller DA, Rocchi M, Mohandas TK, Boudi FA, Taggart RT | title = Assignment of cathepsin E (CTSE) to human chromosome region 1q31 by in situ hybridization and analysis of somatic cell hybrids | journal = Cytogenetics and Cell Genetics | volume = 53 | issue = 2-3 | pages = 137–9 | date = Aug 1990 | pmid = 2369841 | pmc = | doi = 10.1159/000132914 }}</ref><ref name="pmid2674141">{{cite journal | vauthors = Azuma T, Pals G, Mohandas TK, Couvreur JM, Taggart RT | title = Human gastric cathepsin E. Predicted sequence, localization to chromosome 1, and sequence homology with other aspartic proteinases | journal = The Journal of Biological Chemistry | volume = 264 | issue = 28 | pages = 16748–53 | date = October 1989 | pmid = 2674141 | pmc = | doi = }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: CTSE cathepsin E| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1510| | {{Infobox enzyme | ||
| Name = Cathepsin E | |||
| EC_number = 3.4.23.34 | |||
| CAS_number = 110910-42-4 | |||
| IUBMB_EC_number = 3/4/23/34 | |||
| GO_code = | |||
| image = | |||
| width = | |||
| caption = | |||
}} | |||
'''Cathepsin E''' is an [[enzyme]] ({{EC number|3.4.23.34}}) that in humans is encoded by the ''CTSE'' [[gene]].<ref name="pmid2369841">{{cite journal | vauthors = Couvreur JM, Azuma T, Miller DA, Rocchi M, Mohandas TK, Boudi FA, Taggart RT | title = Assignment of cathepsin E (CTSE) to human chromosome region 1q31 by in situ hybridization and analysis of somatic cell hybrids | journal = Cytogenetics and Cell Genetics | volume = 53 | issue = 2-3 | pages = 137–9 | date = Aug 1990 | pmid = 2369841 | pmc = | doi = 10.1159/000132914 }}</ref><ref name="pmid2674141">{{cite journal | vauthors = Azuma T, Pals G, Mohandas TK, Couvreur JM, Taggart RT | title = Human gastric cathepsin E. Predicted sequence, localization to chromosome 1, and sequence homology with other aspartic proteinases | journal = The Journal of Biological Chemistry | volume = 264 | issue = 28 | pages = 16748–53 | date = October 1989 | pmid = 2674141 | pmc = | doi = }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: CTSE cathepsin E| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1510| access-date = }}</ref> The enzyme is also known as ''slow-moving proteinase'', ''erythrocyte membrane aspartic proteinase'', ''SMP'', ''EMAP'', ''non-pepsin proteinase'', ''cathepsin D-like acid proteinase'', ''cathepsin E-like acid proteinase'', ''cathepsin D-type proteinase'') is an [[enzyme]].<ref>{{cite journal | vauthors = Lapresle C, Puizdar V, Porchon-Bertolotto C, Joukoff E, Turk V | title = Structural differences between rabbit cathepsin E and cathepsin D | journal = Biological Chemistry Hoppe-Seyler | volume = 367 | issue = 6 | pages = 523–6 | date = June 1986 | pmid = 3741628 | doi = 10.1515/bchm3.1986.367.1.523 }}</ref><ref>{{cite journal | vauthors = Yonezawa S, Fujii K, Maejima Y, Tamoto K, Mori Y, Muto N | title = Further studies on rat cathepsin E: subcellular localization and existence of the active subunit form | journal = Archives of Biochemistry and Biophysics | volume = 267 | issue = 1 | pages = 176–83 | date = November 1988 | pmid = 3058036 | doi = 10.1016/0003-9861(88)90021-5 }}</ref><ref>{{cite journal | vauthors = Jupp RA, Richards AD, Kay J, Dunn BM, Wyckoff JB, Samloff IM, Yamamoto K | title = Identification of the aspartic proteinases from human erythrocyte membranes and gastric mucosa (slow-moving proteinase) as catalytically equivalent to cathepsin E | journal = The Biochemical Journal | volume = 254 | issue = 3 | pages = 895–8 | date = September 1988 | pmid = 3058118 | pmc = 1135167 }}</ref><ref>{{cite journal | vauthors = Azuma T, Pals G, Mohandas TK, Couvreur JM, Taggart RT | title = Human gastric cathepsin E. Predicted sequence, localization to chromosome 1, and sequence homology with other aspartic proteinases | journal = The Journal of Biological Chemistry | volume = 264 | issue = 28 | pages = 16748–53 | date = October 1989 | pmid = 2674141 }}</ref> | |||
Cathepsin E is a [[protease]] found in animals, as well as various other organisms, that belongs to the [[aspartic protease]] group. In humans it is encoded by the CTSE [[gene]] located at 1q32 on [[chromosome 1]].<ref>{{Cite web|url=https://www.ncbi.nlm.nih.gov/gene/1510|title=CTSE cathepsin E [Homo sapiens (human)] - Gene - NCBI|website=www.ncbi.nlm.nih.gov|access-date=2016-10-16}}</ref><ref>{{cite journal | vauthors = Couvreur JM, Azuma T, Miller DA, Rocchi M, Mohandas TK, Boudi FA, Taggart RT | title = Assignment of cathepsin E (CTSE) to human chromosome region 1q31 by in situ hybridization and analysis of somatic cell hybrids | journal = Cytogenetics and Cell Genetics | volume = 53 | issue = 2-3 | pages = | Cathepsin E is a [[protease]] found in animals, as well as various other organisms, that belongs to the [[aspartic protease]] group. In humans it is encoded by the CTSE [[gene]] located at 1q32 on [[chromosome 1]].<ref>{{Cite web|url=https://www.ncbi.nlm.nih.gov/gene/1510|title=CTSE cathepsin E [Homo sapiens (human)] - Gene - NCBI|website=www.ncbi.nlm.nih.gov|access-date=2016-10-16}}</ref><ref>{{cite journal | vauthors = Couvreur JM, Azuma T, Miller DA, Rocchi M, Mohandas TK, Boudi FA, Taggart RT | title = Assignment of cathepsin E (CTSE) to human chromosome region 1q31 by in situ hybridization and analysis of somatic cell hybrids | journal = Cytogenetics and Cell Genetics | volume = 53 | issue = 2-3 | pages = 137–9 | pmid = 2369841 | doi = 10.1159/000132914 }}</ref><ref>{{cite journal | vauthors = Azuma T, Pals G, Mohandas TK, Couvreur JM, Taggart RT | title = Human gastric cathepsin E. Predicted sequence, localization to chromosome 1, and sequence homology with other aspartic proteinases | journal = The Journal of Biological Chemistry | volume = 264 | issue = 28 | pages = 16748–53 | date = October 1989 | pmid = 2674141 }}</ref><ref name=":3">{{cite journal | vauthors = Zaidi N, Kalbacher H | title = Cathepsin E: a mini review | journal = Biochemical and Biophysical Research Communications | volume = 367 | issue = 3 | pages = 517–22 | date = March 2008 | pmid = 18178150 | doi = 10.1016/j.bbrc.2007.12.163 }}</ref> It is an [[intracellular]] non-lysosomal [[glycoprotein]] that is mainly found in the skin and in immune cells.<ref name=":0">{{cite journal | vauthors = Yasuda Y, Kageyama T, Akamine A, Shibata M, Kominami E, Uchiyama Y, Yamamoto K | title = Characterization of new fluorogenic substrates for the rapid and sensitive assay of cathepsin E and cathepsin D | journal = Journal of Biochemistry | volume = 125 | issue = 6 | pages = 1137–43 | date = June 1999 | pmid = 10348917 | doi = 10.1093/oxfordjournals.jbchem.a022396 }}</ref> The protein is an aspartyl protease that functions as a disulfide-linked homodimer, and has an oligosaccharide chain of the high-mannose type.<ref name=":1">{{cite journal | vauthors = Saku T, Sakai H, Shibata Y, Kato Y, Yamamoto K | title = An immunocytochemical study on distinct intracellular localization of cathepsin E and cathepsin D in human gastric cells and various rat cells | journal = Journal of Biochemistry | volume = 110 | issue = 6 | pages = 956–64 | date = December 1991 | pmid = 1794985 }}</ref> It is a member of the peptidase A1 family, and therefore observes specificity similar to that of [[Pepsin A]] and [[Cathepsin D]]. Cathepsin E is an intracellular enzyme and does not appear to be involved in dietary protein digestion. It is found at highest abundance on the stomach’s epithelial mucus producing cell surfaces. It is the first aspartic protease present in the fetal stomach and is found in more than half of gastric cancers, leading to it appearing to be an [[oncofetal antigen]]. Transcript variants utilizing alternative [[polyadenylation]] signals and two transcript variants encoding different [[Protein isoform|isoforms]] exist for this gene.<ref name=":3" /><ref name=":0" /> | ||
A deficiency in the levels of Cathepsin E in the body may play a part in inflammatory skin diseases such as [[atopic dermatitis]], for which treatment would rely on fixing functionality and levels of the protein in the body.<ref name=":4">{{cite journal | vauthors = Chou KC | title = Modeling the tertiary structure of human cathepsin-E | journal = Biochemical and Biophysical Research Communications | volume = 331 | issue = 1 | pages = 56–60 | date = May 2005 | pmid = 15845357 | doi = 10.1016/j.bbrc.2005.03.123 }}</ref> Along with [[renin]] and Cathepsin D, Cathepsin E is one of the only few aspartic proteases known to be made in human tissues other than those of gastrointestinal and reproductive tracts.<ref>{{cite journal | vauthors = Lees WE, Kalinka S, Meech J, Capper SJ, Cook ND, Kay J | title = Generation of human endothelin by cathepsin E | journal = FEBS Letters | volume = 273 | issue = 1-2 | pages = 99–102 | date = October 1990 | pmid = 2226872 | doi=10.1016/0014-5793(90)81060-2}}</ref> | A deficiency in the levels of Cathepsin E in the body may play a part in inflammatory skin diseases such as [[atopic dermatitis]], for which treatment would rely on fixing functionality and levels of the protein in the body.<ref name=":4">{{cite journal | vauthors = Chou KC | title = Modeling the tertiary structure of human cathepsin-E | journal = Biochemical and Biophysical Research Communications | volume = 331 | issue = 1 | pages = 56–60 | date = May 2005 | pmid = 15845357 | doi = 10.1016/j.bbrc.2005.03.123 }}</ref> Along with [[renin]] and Cathepsin D, Cathepsin E is one of the only few aspartic proteases known to be made in human tissues other than those of gastrointestinal and reproductive tracts.<ref>{{cite journal | vauthors = Lees WE, Kalinka S, Meech J, Capper SJ, Cook ND, Kay J | title = Generation of human endothelin by cathepsin E | journal = FEBS Letters | volume = 273 | issue = 1-2 | pages = 99–102 | date = October 1990 | pmid = 2226872 | doi = 10.1016/0014-5793(90)81060-2 }}</ref> | ||
== Structure == | == Structure == | ||
Line 11: | Line 20: | ||
== Location == | == Location == | ||
The enzyme is distributed in cells of the [[Human gastrointestinal tract|gastrointestinal tracts]], [[Lymphatic system|lymphoid]] tissues, blood cells, urinary organs and [[microglia]]. Its intracellular localization in different mammalian cells is different to that of its analog Cathepsin D. Cathepsin E associates with the membrane tissue in the intracellular canaliculi of gastric [[parietal cell]]s, bile canaliculi of hepatic cells, cells of the rinal [[proximal tubule]] in the kidney, epithelial cells in the intestine, trachea and bronchi, [[osteoclast]]s and even in erythrocytes. Its localization in the endosome structures can be seen in many different cell types such as antigen-presenting B cell [[lymphoblast]]s, gastric cells and microglia. Its presence is also detected in the [[cisterna]]e of the cell’s [[endoplasmic reticulum]].<ref name=":1" /><ref name=":2">{{cite journal | vauthors = Tsukuba T, Okamoto K, Yasuda Y, Morikawa W, Nakanishi H, Yamamoto K | title = New functional aspects of cathepsin D and cathepsin E | journal = Molecules and Cells | volume = 10 | issue = 6 | pages = 601–11 | date = December 2000 | pmid = 11211863 | doi=10.1007/s10059-000-0601-8}}</ref> | The enzyme is distributed in cells of the [[Human gastrointestinal tract|gastrointestinal tracts]], [[Lymphatic system|lymphoid]] tissues, blood cells, urinary organs and [[microglia]]. Its intracellular localization in different mammalian cells is different to that of its analog Cathepsin D. Cathepsin E associates with the membrane tissue in the intracellular canaliculi of gastric [[parietal cell]]s, bile canaliculi of hepatic cells, cells of the rinal [[proximal tubule]] in the kidney, epithelial cells in the intestine, trachea and bronchi, [[osteoclast]]s and even in erythrocytes. Its localization in the endosome structures can be seen in many different cell types such as antigen-presenting B cell [[lymphoblast]]s, gastric cells and microglia. Its presence is also detected in the [[cisterna]]e of the cell’s [[endoplasmic reticulum]].<ref name=":1" /><ref name=":2">{{cite journal | vauthors = Tsukuba T, Okamoto K, Yasuda Y, Morikawa W, Nakanishi H, Yamamoto K | title = New functional aspects of cathepsin D and cathepsin E | journal = Molecules and Cells | volume = 10 | issue = 6 | pages = 601–11 | date = December 2000 | pmid = 11211863 | doi = 10.1007/s10059-000-0601-8 }}</ref> | ||
== Function == | == Function == | ||
Cathepsin E plays a vital role in protein degradation, antigen processing via the [[MHC class II]] pathway<ref name=":3" /> and bioactive protein generation. The enzyme is also thought to be involved in age induced neuronal death pathway execution as well as the excessive stimulation of glutamate receptors with excitotoxins and transient forebrain [[ischemia]]. In an experiment carried out on rats, Cathepsin E was barely detected in the brain tissues of young rats, however in older rats its level was greatly increased in the [[Striatum|neostriatum]] and [[cerebral cortex]]. The enzyme was also expressed at high levels in the activated microglia of the hippocampal CA1 region and in degenerating neurons for a week after transient forebrain ischemia.<ref name=":2" /> Cathepsin E has a possible role in the development of well differentiated [[adenocarcinoma]] from intestinal [[metaplasia]].<ref name=":1" /> The enzyme also plays a part in association with dendritic cells where it generates the CD4 repertoire in response to self and foreign proteins.<ref>{{cite journal | vauthors = Chain BM, Free P, Medd P, Swetman C, Tabor AB, Terrazzini N | title = The expression and function of cathepsin E in dendritic cells | journal = Journal of Immunology | volume = 174 | issue = 4 | pages = 1791–800 | date = February 2005 | pmid = 15699105 | doi=10.4049/jimmunol.174.4.1791}}</ref> | Cathepsin E plays a vital role in protein degradation, antigen processing via the [[MHC class II]] pathway<ref name=":3" /> and bioactive protein generation. The enzyme is also thought to be involved in age induced neuronal death pathway execution as well as the excessive stimulation of glutamate receptors with excitotoxins and transient forebrain [[ischemia]]. In an experiment carried out on rats, Cathepsin E was barely detected in the brain tissues of young rats, however in older rats its level was greatly increased in the [[Striatum|neostriatum]] and [[cerebral cortex]]. The enzyme was also expressed at high levels in the activated microglia of the hippocampal CA1 region and in degenerating neurons for a week after transient forebrain ischemia.<ref name=":2" /> Cathepsin E has a possible role in the development of well differentiated [[adenocarcinoma]] from intestinal [[metaplasia]].<ref name=":1" /> The enzyme also plays a part in association with dendritic cells where it generates the CD4 repertoire in response to self and foreign proteins.<ref>{{cite journal | vauthors = Chain BM, Free P, Medd P, Swetman C, Tabor AB, Terrazzini N | title = The expression and function of cathepsin E in dendritic cells | journal = Journal of Immunology | volume = 174 | issue = 4 | pages = 1791–800 | date = February 2005 | pmid = 15699105 | doi = 10.4049/jimmunol.174.4.1791 }}</ref> | ||
== Post-translational modification == | == Post-translational modification == | ||
The enzyme is [[Glycosylation|glycosylated]]. Different cell types contribute to the differences in the nature of the carbohydrate chain. A high mannose-type oligosaccharide is observed in the proenzyme in fibroblasts, however the mature enzyme can be seen with a complex-type oligosaccharide. In the membranes of erythrocytes, the mature enzyme and the pro-enzyme both have a complex-type oligosaccharide. Auto catalytic cleavage produces two forms of the enzyme, with Form 1 beginning at residue Ile 54 and Form 2 at Thr 57.<ref>{{Cite web|url= | The enzyme is [[Glycosylation|glycosylated]]. Different cell types contribute to the differences in the nature of the carbohydrate chain. A high mannose-type oligosaccharide is observed in the proenzyme in fibroblasts, however the mature enzyme can be seen with a complex-type oligosaccharide. In the membranes of erythrocytes, the mature enzyme and the pro-enzyme both have a complex-type oligosaccharide. Auto catalytic cleavage produces two forms of the enzyme, with Form 1 beginning at residue Ile 54 and Form 2 at Thr 57.<ref>{{Cite web|url=https://www.uniprot.org/uniprot/P14091|title=CTSE - Cathepsin E precursor - Homo sapiens (Human) - CTSE gene & protein|website=www.uniprot.org|access-date=2016-10-16}}</ref> | ||
== See also == | |||
*[[Cathepsin]] | |||
== References == | == References == | ||
Line 40: | Line 52: | ||
* {{cite journal | vauthors = Bernstein HG, Reichenbach A, Wiederanders B | title = Cathepsin E immunoreactivity in human ocular tissues: influence of aging and pathological states | journal = Neuroscience Letters | volume = 240 | issue = 3 | pages = 135–8 | date = January 1998 | pmid = 9502222 | doi = 10.1016/S0304-3940(97)00946-4 }} | * {{cite journal | vauthors = Bernstein HG, Reichenbach A, Wiederanders B | title = Cathepsin E immunoreactivity in human ocular tissues: influence of aging and pathological states | journal = Neuroscience Letters | volume = 240 | issue = 3 | pages = 135–8 | date = January 1998 | pmid = 9502222 | doi = 10.1016/S0304-3940(97)00946-4 }} | ||
* {{cite journal | vauthors = Cook M, Caswell RC, Richards RJ, Kay J, Tatnell PJ | title = Regulation of human and mouse procathepsin E gene expression | journal = European Journal of Biochemistry | volume = 268 | issue = 9 | pages = 2658–68 | date = May 2001 | pmid = 11322887 | doi = 10.1046/j.1432-1327.2001.02159.x }} | * {{cite journal | vauthors = Cook M, Caswell RC, Richards RJ, Kay J, Tatnell PJ | title = Regulation of human and mouse procathepsin E gene expression | journal = European Journal of Biochemistry | volume = 268 | issue = 9 | pages = 2658–68 | date = May 2001 | pmid = 11322887 | doi = 10.1046/j.1432-1327.2001.02159.x }} | ||
* {{cite journal | vauthors = Suzuki Y, Tsunoda T, Sese J, Taira H, Mizushima-Sugano J, Hata H, Ota T, Isogai T, Tanaka T, Nakamura Y, Suyama A, Sakaki Y, Morishita S, Okubo K, Sugano S | title = Identification and characterization of the potential promoter regions of 1031 kinds of human genes | journal = Genome Research | volume = 11 | issue = 5 | pages = 677–84 | date = May 2001 | pmid = 11337467 | pmc = 311086 | doi = 10.1101/gr. | * {{cite journal | vauthors = Suzuki Y, Tsunoda T, Sese J, Taira H, Mizushima-Sugano J, Hata H, Ota T, Isogai T, Tanaka T, Nakamura Y, Suyama A, Sakaki Y, Morishita S, Okubo K, Sugano S | title = Identification and characterization of the potential promoter regions of 1031 kinds of human genes | journal = Genome Research | volume = 11 | issue = 5 | pages = 677–84 | date = May 2001 | pmid = 11337467 | pmc = 311086 | doi = 10.1101/gr.gr-1640r }} | ||
{{refend}} | {{refend}} | ||
== External links == | == External links == | ||
* The [[MEROPS]] online database for peptidases and their inhibitors: [http://merops.sanger.ac.uk/cgi-bin/pepsum?id=A01.010 A01.010] | *The [[MEROPS]] online database for peptidases and their inhibitors: [http://merops.sanger.ac.uk/cgi-bin/pepsum?id=A01.010 A01.010] | ||
*{{MeshName|Cathepsin+E}} | |||
{{PDB Gallery|geneid=1510}} | {{PDB Gallery|geneid=1510}} | ||
Line 51: | Line 64: | ||
{{Enzymes}} | {{Enzymes}} | ||
{{Portal bar|Molecular and Cellular Biology|border=no}} | {{Portal bar|Molecular and Cellular Biology|border=no}} | ||
[[Category:Peptidase]] | [[Category:Peptidase]] | ||
[[Category:EC 3.4.23]] | [[Category:EC 3.4.23]] | ||
[[Category:Cathepsins]] | [[Category:Cathepsins]] |
Latest revision as of 16:00, 1 April 2018
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Cathepsin E | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC number | 3.4.23.34 | ||||||||
CAS number | 110910-42-4 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
|
Cathepsin E is an enzyme (EC 3.4.23.34) that in humans is encoded by the CTSE gene.[1][2][3] The enzyme is also known as slow-moving proteinase, erythrocyte membrane aspartic proteinase, SMP, EMAP, non-pepsin proteinase, cathepsin D-like acid proteinase, cathepsin E-like acid proteinase, cathepsin D-type proteinase) is an enzyme.[4][5][6][7]
Cathepsin E is a protease found in animals, as well as various other organisms, that belongs to the aspartic protease group. In humans it is encoded by the CTSE gene located at 1q32 on chromosome 1.[8][9][10][11] It is an intracellular non-lysosomal glycoprotein that is mainly found in the skin and in immune cells.[12] The protein is an aspartyl protease that functions as a disulfide-linked homodimer, and has an oligosaccharide chain of the high-mannose type.[13] It is a member of the peptidase A1 family, and therefore observes specificity similar to that of Pepsin A and Cathepsin D. Cathepsin E is an intracellular enzyme and does not appear to be involved in dietary protein digestion. It is found at highest abundance on the stomach’s epithelial mucus producing cell surfaces. It is the first aspartic protease present in the fetal stomach and is found in more than half of gastric cancers, leading to it appearing to be an oncofetal antigen. Transcript variants utilizing alternative polyadenylation signals and two transcript variants encoding different isoforms exist for this gene.[11][12]
A deficiency in the levels of Cathepsin E in the body may play a part in inflammatory skin diseases such as atopic dermatitis, for which treatment would rely on fixing functionality and levels of the protein in the body.[14] Along with renin and Cathepsin D, Cathepsin E is one of the only few aspartic proteases known to be made in human tissues other than those of gastrointestinal and reproductive tracts.[15]
Structure
The structure of Cathepsin E is very similar to those of Cathepsin D and BACE1, and all 3 have almost identical active site regions. The differences between them lie in the microenvironments that surround their active sites. Residues DTG 96-98 and DTG 281-283 contribute to the formation of the enzyme’s active site. There are also two pairs of disulfide bonds at residues Cys 272-276 and Cys 314-351. Two other Cys residues at positions 109 and 114 on the amino acid chain reside close to teach other in three dimensional space, however the distance between their sulfur atoms is 3.53 Å which is too large for the formation of a proper disulfide bond. The structure also has four hydrogen bonds between the Asp residues of the active site and the surrounding residues. A distinguishing factor of Cathepsin E in comparison with the structure of Cathepsin D and BACE1 can be seen at the formation of an extra hydrogen bond between the Asp 96 and Ser 99 residues, and absence of a hydrogen bond with Leu/Met at Asp 281.[14]
Location
The enzyme is distributed in cells of the gastrointestinal tracts, lymphoid tissues, blood cells, urinary organs and microglia. Its intracellular localization in different mammalian cells is different to that of its analog Cathepsin D. Cathepsin E associates with the membrane tissue in the intracellular canaliculi of gastric parietal cells, bile canaliculi of hepatic cells, cells of the rinal proximal tubule in the kidney, epithelial cells in the intestine, trachea and bronchi, osteoclasts and even in erythrocytes. Its localization in the endosome structures can be seen in many different cell types such as antigen-presenting B cell lymphoblasts, gastric cells and microglia. Its presence is also detected in the cisternae of the cell’s endoplasmic reticulum.[13][16]
Function
Cathepsin E plays a vital role in protein degradation, antigen processing via the MHC class II pathway[11] and bioactive protein generation. The enzyme is also thought to be involved in age induced neuronal death pathway execution as well as the excessive stimulation of glutamate receptors with excitotoxins and transient forebrain ischemia. In an experiment carried out on rats, Cathepsin E was barely detected in the brain tissues of young rats, however in older rats its level was greatly increased in the neostriatum and cerebral cortex. The enzyme was also expressed at high levels in the activated microglia of the hippocampal CA1 region and in degenerating neurons for a week after transient forebrain ischemia.[16] Cathepsin E has a possible role in the development of well differentiated adenocarcinoma from intestinal metaplasia.[13] The enzyme also plays a part in association with dendritic cells where it generates the CD4 repertoire in response to self and foreign proteins.[17]
Post-translational modification
The enzyme is glycosylated. Different cell types contribute to the differences in the nature of the carbohydrate chain. A high mannose-type oligosaccharide is observed in the proenzyme in fibroblasts, however the mature enzyme can be seen with a complex-type oligosaccharide. In the membranes of erythrocytes, the mature enzyme and the pro-enzyme both have a complex-type oligosaccharide. Auto catalytic cleavage produces two forms of the enzyme, with Form 1 beginning at residue Ile 54 and Form 2 at Thr 57.[18]
See also
References
- ↑ Couvreur JM, Azuma T, Miller DA, Rocchi M, Mohandas TK, Boudi FA, Taggart RT (Aug 1990). "Assignment of cathepsin E (CTSE) to human chromosome region 1q31 by in situ hybridization and analysis of somatic cell hybrids". Cytogenetics and Cell Genetics. 53 (2–3): 137–9. doi:10.1159/000132914. PMID 2369841.
- ↑ Azuma T, Pals G, Mohandas TK, Couvreur JM, Taggart RT (October 1989). "Human gastric cathepsin E. Predicted sequence, localization to chromosome 1, and sequence homology with other aspartic proteinases". The Journal of Biological Chemistry. 264 (28): 16748–53. PMID 2674141.
- ↑ "Entrez Gene: CTSE cathepsin E".
- ↑ Lapresle C, Puizdar V, Porchon-Bertolotto C, Joukoff E, Turk V (June 1986). "Structural differences between rabbit cathepsin E and cathepsin D". Biological Chemistry Hoppe-Seyler. 367 (6): 523–6. doi:10.1515/bchm3.1986.367.1.523. PMID 3741628.
- ↑ Yonezawa S, Fujii K, Maejima Y, Tamoto K, Mori Y, Muto N (November 1988). "Further studies on rat cathepsin E: subcellular localization and existence of the active subunit form". Archives of Biochemistry and Biophysics. 267 (1): 176–83. doi:10.1016/0003-9861(88)90021-5. PMID 3058036.
- ↑ Jupp RA, Richards AD, Kay J, Dunn BM, Wyckoff JB, Samloff IM, Yamamoto K (September 1988). "Identification of the aspartic proteinases from human erythrocyte membranes and gastric mucosa (slow-moving proteinase) as catalytically equivalent to cathepsin E". The Biochemical Journal. 254 (3): 895–8. PMC 1135167. PMID 3058118.
- ↑ Azuma T, Pals G, Mohandas TK, Couvreur JM, Taggart RT (October 1989). "Human gastric cathepsin E. Predicted sequence, localization to chromosome 1, and sequence homology with other aspartic proteinases". The Journal of Biological Chemistry. 264 (28): 16748–53. PMID 2674141.
- ↑ "CTSE cathepsin E [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2016-10-16.
- ↑ Couvreur JM, Azuma T, Miller DA, Rocchi M, Mohandas TK, Boudi FA, Taggart RT. "Assignment of cathepsin E (CTSE) to human chromosome region 1q31 by in situ hybridization and analysis of somatic cell hybrids". Cytogenetics and Cell Genetics. 53 (2–3): 137–9. doi:10.1159/000132914. PMID 2369841.
- ↑ Azuma T, Pals G, Mohandas TK, Couvreur JM, Taggart RT (October 1989). "Human gastric cathepsin E. Predicted sequence, localization to chromosome 1, and sequence homology with other aspartic proteinases". The Journal of Biological Chemistry. 264 (28): 16748–53. PMID 2674141.
- ↑ 11.0 11.1 11.2 Zaidi N, Kalbacher H (March 2008). "Cathepsin E: a mini review". Biochemical and Biophysical Research Communications. 367 (3): 517–22. doi:10.1016/j.bbrc.2007.12.163. PMID 18178150.
- ↑ 12.0 12.1 Yasuda Y, Kageyama T, Akamine A, Shibata M, Kominami E, Uchiyama Y, Yamamoto K (June 1999). "Characterization of new fluorogenic substrates for the rapid and sensitive assay of cathepsin E and cathepsin D". Journal of Biochemistry. 125 (6): 1137–43. doi:10.1093/oxfordjournals.jbchem.a022396. PMID 10348917.
- ↑ 13.0 13.1 13.2 Saku T, Sakai H, Shibata Y, Kato Y, Yamamoto K (December 1991). "An immunocytochemical study on distinct intracellular localization of cathepsin E and cathepsin D in human gastric cells and various rat cells". Journal of Biochemistry. 110 (6): 956–64. PMID 1794985.
- ↑ 14.0 14.1 Chou KC (May 2005). "Modeling the tertiary structure of human cathepsin-E". Biochemical and Biophysical Research Communications. 331 (1): 56–60. doi:10.1016/j.bbrc.2005.03.123. PMID 15845357.
- ↑ Lees WE, Kalinka S, Meech J, Capper SJ, Cook ND, Kay J (October 1990). "Generation of human endothelin by cathepsin E". FEBS Letters. 273 (1–2): 99–102. doi:10.1016/0014-5793(90)81060-2. PMID 2226872.
- ↑ 16.0 16.1 Tsukuba T, Okamoto K, Yasuda Y, Morikawa W, Nakanishi H, Yamamoto K (December 2000). "New functional aspects of cathepsin D and cathepsin E". Molecules and Cells. 10 (6): 601–11. doi:10.1007/s10059-000-0601-8. PMID 11211863.
- ↑ Chain BM, Free P, Medd P, Swetman C, Tabor AB, Terrazzini N (February 2005). "The expression and function of cathepsin E in dendritic cells". Journal of Immunology. 174 (4): 1791–800. doi:10.4049/jimmunol.174.4.1791. PMID 15699105.
- ↑ "CTSE - Cathepsin E precursor - Homo sapiens (Human) - CTSE gene & protein". www.uniprot.org. Retrieved 2016-10-16.
Further reading
- Tsukuba T, Yamamoto K (July 2003). "[Atopic dermatitis and cathepsin E]". Nihon Yakurigaku Zasshi. Folia Pharmacologica Japonica. 122 (1): 15–20. doi:10.1254/fpj.122.15. PMID 12843568.
- Flynn TJ, Deshmukh DS, Pieringer RA (August 1977). "Effects of altered thyroid function on galactosyl diacylglycerol metabolism in myelinating rat brain". The Journal of Biological Chemistry. 252 (16): 5864–70. PMID 195962.
- Azuma T, Liu WG, Vander Laan DJ, Bowcock AM, Taggart RT (January 1992). "Human gastric cathepsin E gene. Multiple transcripts result from alternative polyadenylation of the primary transcripts of a single gene locus at 1q31-q32". The Journal of Biological Chemistry. 267 (3): 1609–14. PMID 1370478.
- Saku T, Sakai H, Shibata Y, Kato Y, Yamamoto K (December 1991). "An immunocytochemical study on distinct intracellular localization of cathepsin E and cathepsin D in human gastric cells and various rat cells". Journal of Biochemistry. 110 (6): 956–64. PMID 1794985.
- Athauda SB, Takahashi T, Inoue H, Ichinose M, Takahashi K (November 1991). "Proteolytic activity and cleavage specificity of cathepsin E at the physiological pH as examined towards the B chain of oxidized insulin". FEBS Letters. 292 (1–2): 53–6. doi:10.1016/0014-5793(91)80832-N. PMID 1959628.
- Lees WE, Kalinka S, Meech J, Capper SJ, Cook ND, Kay J (October 1990). "Generation of human endothelin by cathepsin E". FEBS Letters. 273 (1–2): 99–102. doi:10.1016/0014-5793(90)81060-2. PMID 2226872.
- Athauda SB, Matsuzaki O, Kageyama T, Takahashi K (April 1990). "Structural evidence for two isozymic forms and the carbohydrate attachment site of human gastric cathepsin E". Biochemical and Biophysical Research Communications. 168 (2): 878–85. doi:10.1016/0006-291X(90)92403-M. PMID 2334440.
- Fowler SD, Kay J, Dunn BM, Tatnell PJ (June 1995). "Monomeric human cathepsin E". FEBS Letters. 366 (1): 72–4. doi:10.1016/0014-5793(95)00501-Y. PMID 7789521.
- Finley EM, Kornfeld S (December 1994). "Subcellular localization and targeting of cathepsin E". The Journal of Biological Chemistry. 269 (49): 31259–66. PMID 7983070.
- Takeda-Ezaki M, Yamamoto K (August 1993). "Isolation and biochemical characterization of procathepsin E from human erythrocyte membranes". Archives of Biochemistry and Biophysics. 304 (2): 352–8. doi:10.1006/abbi.1993.1361. PMID 8346912.
- Schulz TF, Reeves JD, Hoad JG, Tailor C, Stephens P, Clements G, Ortlepp S, Page KA, Moore JP, Weiss RA (February 1993). "Effect of mutations in the V3 loop of HIV-1 gp120 on infectivity and susceptibility to proteolytic cleavage". AIDS Research and Human Retroviruses. 9 (2): 159–66. doi:10.1089/aid.1993.9.159. PMID 8457383.
- Finzi G, Cornaggia M, Capella C, Fiocca R, Bosi F, Solcia E, Samloff IM (March 1993). "Cathepsin E in follicle associated epithelium of intestine and tonsils: localization to M cells and possible role in antigen processing". Histochemistry. 99 (3): 201–11. doi:10.1007/BF00269138. PMID 8491674.
- Azuma T, Hirai M, Ito S, Yamamoto K, Taggart RT, Matsuba T, Yasukawa K, Uno K, Hayakumo T, Nakajima M (August 1996). "Expression of cathepsin E in pancreas: a possible tumor marker for pancreas, a preliminary report". International Journal of Cancer. 67 (4): 492–7. doi:10.1002/(SICI)1097-0215(19960807)67:4<492::AID-IJC5>3.0.CO;2-N. PMID 8759606.
- Sealy L, Mota F, Rayment N, Tatnell P, Kay J, Chain B (August 1996). "Regulation of cathepsin E expression during human B cell differentiation in vitro". European Journal of Immunology. 26 (8): 1838–43. doi:10.1002/eji.1830260826. PMID 8765029.
- Bernstein HG, Reichenbach A, Wiederanders B (January 1998). "Cathepsin E immunoreactivity in human ocular tissues: influence of aging and pathological states". Neuroscience Letters. 240 (3): 135–8. doi:10.1016/S0304-3940(97)00946-4. PMID 9502222.
- Cook M, Caswell RC, Richards RJ, Kay J, Tatnell PJ (May 2001). "Regulation of human and mouse procathepsin E gene expression". European Journal of Biochemistry. 268 (9): 2658–68. doi:10.1046/j.1432-1327.2001.02159.x. PMID 11322887.
- Suzuki Y, Tsunoda T, Sese J, Taira H, Mizushima-Sugano J, Hata H, Ota T, Isogai T, Tanaka T, Nakamura Y, Suyama A, Sakaki Y, Morishita S, Okubo K, Sugano S (May 2001). "Identification and characterization of the potential promoter regions of 1031 kinds of human genes". Genome Research. 11 (5): 677–84. doi:10.1101/gr.gr-1640r. PMC 311086. PMID 11337467.
External links
- The MEROPS online database for peptidases and their inhibitors: A01.010
- Cathepsin+E at the US National Library of Medicine Medical Subject Headings (MeSH)