Mesenteric ischemia pathophysiology: Difference between revisions

Jump to navigation Jump to search
No edit summary
 
(52 intermediate revisions by 5 users not shown)
Line 1: Line 1:
<div style="-webkit-user-select: none;">
 
{| class="infobox" style="position: fixed; top: 65%; right: 10px; margin: 0 0 0 0; border: 0; float: right;"
|-
| {{#ev:youtube|41lkkomjBH0|450}}
|-
|}
__NOTOC__
__NOTOC__
{{Mesenteric ischemia}}
{{Mesenteric ischemia}}
{{CMG}} {{AE}} {{FT}}
{{CMG}}; {{AE}} {{FT}}
==Overview==
==Overview==
The factors that regulate the intestinal blood flow play a vital role in the development of mesenteric ischemia. Mucosa of the intestines has a high metabolic activity and accordingly a high blood flow requirement. The majority of blood supply of the intestine comes from the superior mesenteric artery, with a collateral blood supply from superior and inferior pancreaticoduodenal arteries (branches of the celiac artery) as well as the inferior mesenteric artery. The splanchnic circulation (arteries supplying the viscera) receives 15-35% of the cardiac output, making it sensitive to the effects of decreased perfusion. Mesenteric ischemia occurs when intestinal blood supply is compromised by more than 50% of the original blood flow without activation of adaptive responses. This can lead to disruption of mucosal barrier, allowing the release of bacterial toxins (present in the intestinal lumen) and vasoactive mediators which ultimately lead to complete necrosis (cell death) of the intestinal mucosa. This can further progress to  depression in myocardial activity, sepsis, multiorgan failure, and without prompt intervention, even death.
The factors that regulate the [[intestinal]] blood flow play a vital role in the development of mesenteric ischemia. [[Mucosa]] of the [[intestines]] has high metabolic activity and therefore requires high blood flow. The majority of blood supply of the [[intestine]] comes from the [[superior mesenteric artery]], with a collateral blood supply from superior and inferior [[Pancreaticoduodenal artery|pancreaticoduodenal arteries]] (branches of the [[celiac artery]]) as well as the [[inferior mesenteric artery]]. The [[splanchnic]] circulation ([[arteries]] supplying the [[viscera]]) receives 15-35% of the [[cardiac output]], making it sensitive to the effects of decreased [[perfusion]]. Mesenteric ischemia occurs when [[intestinal]] blood supply is compromised by more than 50% of the original blood flow without activation of adaptive responses. This can lead to disruption of [[mucosal]] barrier, allowing the release of [[Bacterial toxin|bacterial toxins]] (present in the [[intestinal]] lumen) and [[vasoactive]] mediators which ultimately lead to complete [[necrosis]] (cell death) of the intestinal mucosa. This can further progress to  depression in [[myocardial]] activity, [[sepsis]], [[multiorgan failure]], and without prompt intervention, death.


==Pathophysiology==
==Pathophysiology==


=== '''Pathogenesis''' ===
=== '''Pathogenesis''' ===
Intestinal mucosal damage occurs in response to ischemic insult. In response to providing protection from ischemia, mesenteric vessels undergo intrinsic auto regulation, which is an adaptive response to ischemia. In order to compensate for the ischemia, there is vasoconstriction of mesenteric vessels resulting in increased tissue oxygen extraction along with vasodilation of the collateral vessels. Owing to this mechanism, intestine is able to compensate for around 75% reduction in blood flow.<ref name="pmid11464607">{{cite journal| author=Sánchez-Fernández P, Mier y Díaz J, Blanco-Benavides R| title=[Acute mesenteric ischemia. Profile of an aggressive disease]. | journal=Rev Gastroenterol Mex | year= 2000 | volume= 65 | issue= 3 | pages= 134-40 | pmid=11464607 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11464607  }} </ref><ref name="pmid27901324">{{cite journal| author=Savlania A, Tripathi RK| title=Acute mesenteric ischemia: current multidisciplinary approach. | journal=J Cardiovasc Surg (Torino) | year= 2017 | volume= 58 | issue= 2 | pages= 339-350 | pmid=27901324 | doi=10.23736/S0021-9509.16.09751-2 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27901324}} </ref><ref name="pmid: 15772787">{{cite journal| author=Yasuhara H| title=Acute mesenteric ischemia: the challenge of gastroenterology. | journal=Surg Today | year= 2005 | volume= 35 | issue= 3 | pages= 185-95 | pmid=: 15772787 | doi=10.1007/s00595-004-2924-0 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15772787  }} </ref><ref name="Deitch2012">{{cite journal|last1=Deitch|first1=Edwin A.|title=Gut-origin sepsis: Evolution of a concept|journal=The Surgeon|volume=10|issue=6|year=2012|pages=350–356|issn=1479666X|doi=10.1016/j.surge.2012.03.003}}</ref><ref name="pmid7065183">{{cite journal| author=Kvietys PR, Granger DN| title=Relation between intestinal blood flow and oxygen uptake. | journal=Am J Physiol | year= 1982 | volume= 242 | issue= 3 | pages= G202-8 | pmid=7065183 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7065183  }} </ref><ref name="pmid6660300">{{cite journal| author=Granger DN, Granger HJ| title=Systems analysis of intestinal hemodynamics and oxygenation. | journal=Am J Physiol | year= 1983 | volume= 245 | issue= 6 | pages= G786-96 | pmid=6660300 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6660300  }} </ref>
* [[Intestinal]] [[mucosal]] damage occurs in response to [[ischemic]] insult.  
* In response to providing protection from [[ischemia]], mesenteric vessels undergo intrinsic [[autoregulation]], which is an adaptive response to [[ischemia]].  
* In order to compensate for the [[ischemia]], there is [[vasoconstriction]] of mesenteric vessels resulting in increased tissue oxygen extraction along with [[vasodilation]] of the collateral vessels. Owing to this mechanism, intestine is able to compensate for around 75% reduction in blood flow.<ref name="pmid11464607">{{cite journal| author=Sánchez-Fernández P, Mier y Díaz J, Blanco-Benavides R| title=[Acute mesenteric ischemia. Profile of an aggressive disease]. | journal=Rev Gastroenterol Mex | year= 2000 | volume= 65 | issue= 3 | pages= 134-40 | pmid=11464607 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11464607  }} </ref><ref name="pmid27901324">{{cite journal| author=Savlania A, Tripathi RK| title=Acute mesenteric ischemia: current multidisciplinary approach. | journal=J Cardiovasc Surg (Torino) | year= 2017 | volume= 58 | issue= 2 | pages= 339-350 | pmid=27901324 | doi=10.23736/S0021-9509.16.09751-2 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27901324}} </ref><ref name="pmid: 15772787">{{cite journal| author=Yasuhara H| title=Acute mesenteric ischemia: the challenge of gastroenterology. | journal=Surg Today | year= 2005 | volume= 35 | issue= 3 | pages= 185-95 | pmid=: 15772787 | doi=10.1007/s00595-004-2924-0 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15772787  }} </ref><ref name="Deitch2012">{{cite journal|last1=Deitch|first1=Edwin A.|title=Gut-origin sepsis: Evolution of a concept|journal=The Surgeon|volume=10|issue=6|year=2012|pages=350–356|issn=1479666X|doi=10.1016/j.surge.2012.03.003}}</ref><ref name="pmid7065183">{{cite journal| author=Kvietys PR, Granger DN| title=Relation between intestinal blood flow and oxygen uptake. | journal=Am J Physiol | year= 1982 | volume= 242 | issue= 3 | pages= G202-8 | pmid=7065183 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7065183  }} </ref><ref name="pmid6660300">{{cite journal| author=Granger DN, Granger HJ| title=Systems analysis of intestinal hemodynamics and oxygenation. | journal=Am J Physiol | year= 1983 | volume= 245 | issue= 6 | pages= G786-96 | pmid=6660300 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6660300  }} </ref>


Disturbance in the following factors play a role in the development of mesenteric ischemia:<ref name="pmid6101568">{{cite journal| author=Granger DN, Richardson PD, Kvietys PR, Mortillaro NA| title=Intestinal blood flow. | journal=Gastroenterology | year= 1980 | volume= 78 | issue= 4 | pages= 837-63 | pmid=6101568 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6101568  }} </ref><ref name="pmid9146713">{{cite journal| author=Rosenblum JD, Boyle CM, Schwartz LB| title=The mesenteric circulation. Anatomy and physiology. | journal=Surg Clin North Am | year= 1997 | volume= 77 | issue= 2 | pages= 289-306 | pmid=9146713 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9146713  }} </ref>
==== Factors contributing in the pathogenesis of mesenteric ischemia:<ref name="pmid6101568">{{cite journal| author=Granger DN, Richardson PD, Kvietys PR, Mortillaro NA| title=Intestinal blood flow. | journal=Gastroenterology | year= 1980 | volume= 78 | issue= 4 | pages= 837-63 | pmid=6101568 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6101568  }} </ref><ref name="pmid9146713">{{cite journal| author=Rosenblum JD, Boyle CM, Schwartz LB| title=The mesenteric circulation. Anatomy and physiology. | journal=Surg Clin North Am | year= 1997 | volume= 77 | issue= 2 | pages= 289-306 | pmid=9146713 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9146713  }} </ref> ====
* Mesenteric blood supply (general circulation)


*(a) Mesenteric blood supply (General circulation)
*Collateral circulation
*(b) Collateral circulation
*Response of [[mesenteric]] vasculature to [[ischemia]]
*(c) Response of mesenteric vasculature to ischemia
*[[Vasoactive]] and [[humoral]] factors
*(d) Vasoactive and humoral factors


===(A) Mesenteric blood supply (General circulation)===
===(A) Mesenteric blood supply (General circulation)===
* The mesenteric circulation recevies approximately 25% of the resting and 35% of the postprandial cardiac output.
* The [[mesenteric]] circulation receives approximately 25% of the resting and 35% of the [[postprandial]] [[cardiac output]].
* Mucosal and submucosal layers of the intestine receive 70% of the mesenteric blood flow, with the rest supplying the muscularis and serosal layers.
* Mucosal and [[submucosal]] layers of the [[intestine]] receive 70% of the [[mesenteric]] blood flow, with the rest supplying the [[muscularis]] and serosal layers.


* The arterial supply of the intestine originates from three major arteries which include superior mesenteric artery, inferior mesenteric artery and celiac artery:<ref name="pmid11759648">{{cite journal| author=Kumar S, Sarr MG, Kamath PS| title=Mesenteric venous thrombosis. | journal=N Engl J Med | year= 2001 | volume= 345 | issue= 23 | pages= 1683-8 | pmid=11759648 | doi=10.1056/NEJMra010076 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11759648  }} </ref><ref name="pmid19491858">{{cite journal| author=Ha C, Magowan S, Accortt NA, Chen J, Stone CD| title=Risk of arterial thrombotic events in inflammatory bowel disease. | journal=Am J Gastroenterol | year= 2009 | volume= 104 | issue= 6 | pages= 1445-51 | pmid=19491858 | doi=10.1038/ajg.2009.81 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19491858  }} </ref><ref name="pmid6101568">{{cite journal| author=Granger DN, Richardson PD, Kvietys PR, Mortillaro NA| title=Intestinal blood flow. | journal=Gastroenterology | year= 1980 | volume= 78 | issue= 4 | pages= 837-63 | pmid=6101568 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6101568  }} </ref>
* The arterial supply of the [[intestine]] originates from three major arteries which include [[superior mesenteric artery]], [[inferior mesenteric artery]], and [[celiac artery]]:<ref name="pmid11759648">{{cite journal| author=Kumar S, Sarr MG, Kamath PS| title=Mesenteric venous thrombosis. | journal=N Engl J Med | year= 2001 | volume= 345 | issue= 23 | pages= 1683-8 | pmid=11759648 | doi=10.1056/NEJMra010076 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11759648  }} </ref><ref name="pmid19491858">{{cite journal| author=Ha C, Magowan S, Accortt NA, Chen J, Stone CD| title=Risk of arterial thrombotic events in inflammatory bowel disease. | journal=Am J Gastroenterol | year= 2009 | volume= 104 | issue= 6 | pages= 1445-51 | pmid=19491858 | doi=10.1038/ajg.2009.81 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19491858  }} </ref><ref name="pmid6101568">{{cite journal| author=Granger DN, Richardson PD, Kvietys PR, Mortillaro NA| title=Intestinal blood flow. | journal=Gastroenterology | year= 1980 | volume= 78 | issue= 4 | pages= 837-63 | pmid=6101568 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6101568  }} </ref>
{| class="wikitable"
{| class="wikitable"
!Arterial  
! align="center" style="background:#4479BA; color: #FFFFFF;" | Arterial supply
!Region supplied
! align="center" style="background:#4479BA; color: #FFFFFF;" | Region supplied
|-
|-
|Superior mesenteric artery (SMA)
|[[Superior mesenteric artery]] ([[SMA]])
|Small intestine, proximal and mid colon upto the splenic flexure.
|[[Small intestine]], [[proximal]] and mid [[colon]] up to the [[splenic flexure]].
|-
|-
|Inferior mesenteric artery (IMA)
|[[Inferior mesenteric artery|Inferior mesenteric artery (IMA)]]
|hind gut starting from the splenic flexure to the rectum.
|[[Hindgut]] starting from the [[splenic flexure]] to the [[rectum]].
|-
|-
|Celiac artery (CA)
|[[Celiac artery|Celiac artery (CA)]]
|foregut, hepatobiliary system and spleen.
|[[Foregut]], [[hepatobiliary system]] and [[spleen]].
|-
|-
! colspan="2" |Venous supply
! colspan="2" style="background:#4479BA; color: #FFFFFF;" |Venous drainage
|-
|-
| colspan="2" |The venous system parallels the arterial branches and drains into the portal venous system.
| colspan="2" |The venous system parallels the arterial branches and drains into the [[portal venous system]].
|}
|}
'''Commonly affected arteries:'''
 
* Embolus can typically lodge into points of normal anatomic narrowing.  
[[Image: Colonic blood supply1.gif|thumb|center|300px|Blood supply to the intestines includes the celiac artery, superior mesenteric artery (SMA), inferior mesenteric artery (IMA), and branches of the internal iliac artery (IIA). <br>Source: By Anpol42 (Own work) [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons]]
* This makes [[superior mesenteric artery]] the most vulnerable site because of its relatively larger diameter (more blood flow) and low take off angle (more likely to from the aorta.
 
*The majority of emboli lodge 3-10cm distal to the origin of [[superior mesenteric artery]], classically sparing the proximal jejunum and colon.
'''Commonly affected arteries:'''<ref name="Wyers2010">{{cite journal|last1=Wyers|first1=Mark C.|title=Acute Mesenteric Ischemia: Diagnostic Approach and Surgical Treatment|journal=Seminars in Vascular Surgery|volume=23|issue=1|year=2010|pages=9–20|issn=08957967|doi=10.1053/j.semvascsurg.2009.12.002}}</ref>
 
* [[Embolus]] can typically lodge into points of normal [[anatomic]] narrowing.  
* This makes [[superior mesenteric artery]] the most vulnerable site because of its relatively larger diameter (more blood flow) and low take off angle (more likely to from the [[aorta]].
*The majority of [[emboli]] lodge 3-10 cm distal to the origin of [[superior mesenteric artery]], classically sparing the proximal [[jejunum]] and [[colon]].
 
===(B) Collateral circulation===
===(B) Collateral circulation===
The role of collateral circulation in the development of mesenteric ischemia is as follows:<ref name="pmid9146714">{{cite journal| author=McKinsey JF, Gewertz BL| title=Acute mesenteric ischemia. | journal=Surg Clin North Am | year= 1997 | volume= 77 | issue= 2 | pages= 307-18 | pmid=9146714 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9146714  }} </ref><ref name="pmid21326561">{{cite journal| author=Walker TG| title=Mesenteric vasculature and collateral pathways. | journal=Semin Intervent Radiol | year= 2009 | volume= 26 | issue= 3 | pages= 167-74 | pmid=21326561 | doi=10.1055/s-0029-1225663 | pmc=3036491 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21326561  }} </ref><ref name="pmid3554567">{{cite journal| author=Fisher DF, Fry WJ| title=Collateral mesenteric circulation. | journal=Surg Gynecol Obstet | year= 1987 | volume= 164 | issue= 5 | pages= 487-92 | pmid=3554567 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3554567  }} </ref><ref name="pmid4025549">{{cite journal| author=Bulkley GB, Womack WA, Downey JM, Kvietys PR, Granger DN| title=Characterization of segmental collateral blood flow in the small intestine. | journal=Am J Physiol | year= 1985 | volume= 249 | issue= 2 Pt 1 | pages= G228-35 | pmid=4025549 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=4025549  }} </ref><ref name="pmid: 3738747">{{cite journal| author=Bulkley GB, Womack WA, Downey JM, Kvietys PR, Granger DN| title=Collateral blood flow in segmental intestinal ischemia: effects of vasoactive agents. | journal=Surgery | year= 1986 | volume= 100 | issue= 2 | pages= 157-66 | pmid=: 3738747 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3738747 }} </ref><ref name="pmid4025549">{{cite journal| author=Bulkley GB, Womack WA, Downey JM, Kvietys PR, Granger DN| title=Characterization of segmental collateral blood flow in the small intestine. | journal=Am J Physiol | year= 1985 | volume= 249 | issue= 2 Pt 1 | pages= G228-35 | pmid=4025549 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=4025549 }} </ref>
The role of collateral circulation in the development of mesenteric ischemia is as follows:<ref name="pmid9146714">{{cite journal| author=McKinsey JF, Gewertz BL| title=Acute mesenteric ischemia. | journal=Surg Clin North Am | year= 1997 | volume= 77 | issue= 2 | pages= 307-18 | pmid=9146714 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9146714  }} </ref><ref name="pmid21326561">{{cite journal| author=Walker TG| title=Mesenteric vasculature and collateral pathways. | journal=Semin Intervent Radiol | year= 2009 | volume= 26 | issue= 3 | pages= 167-74 | pmid=21326561 | doi=10.1055/s-0029-1225663 | pmc=3036491 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21326561  }} </ref><ref name="pmid3554567">{{cite journal| author=Fisher DF, Fry WJ| title=Collateral mesenteric circulation. | journal=Surg Gynecol Obstet | year= 1987 | volume= 164 | issue= 5 | pages= 487-92 | pmid=3554567 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3554567  }} </ref><ref name="pmid4025549">{{cite journal| author=Bulkley GB, Womack WA, Downey JM, Kvietys PR, Granger DN| title=Characterization of segmental collateral blood flow in the small intestine. | journal=Am J Physiol | year= 1985 | volume= 249 | issue= 2 Pt 1 | pages= G228-35 | pmid=4025549 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=4025549  }} </ref><ref name="pmid: 3738747">{{cite journal| author=Bulkley GB, Womack WA, Downey JM, Kvietys PR, Granger DN| title=Collateral blood flow in segmental intestinal ischemia: effects of vasoactive agents. | journal=Surgery | year= 1986 | volume= 100 | issue= 2 | pages= 157-66 | pmid=: 3738747 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3738747  }} </ref>
* Intestines receive collateral blood supply at all levels from the superior and inferior pancreaticoduodenal arteries, branches of the celiac artery, which provides protection from ischemia.  
* [[Intestines]] receive collateral blood supply at all levels from the superior and inferior pancreaticoduodenal arteries, branches of the [[celiac artery]], which provide protection from [[ischemia]].  
* These arteries can compensate for 75% reduction in mesenteric blood flow for upto 12 hours, without substanial injury.
* These arteries can compensate for 75% reduction in [[mesenteric]] blood flow for up to 12 hours, without substanial injury.
*  An extensive collateral circulation protects the intestines from transient periods of inadequate perfusion. However, prolonged reduction in splanchnic blood flow leads to vasoconstriction in the affected vascular bed, and eventually reduces collateral blood flow.  
*  An extensive [[collateral circulation]] protects the [[intestines]] from transient periods of inadequate [[perfusion]]. However, prolonged reduction in [[splanchnic]] blood flow leads to [[vasoconstriction]] in the affected [[vascular bed]], and eventually reduces collateral blood flow.  
* The SMA and IMA communicate via the marginal artery of Drummond and the meandering mesenteric artery.  
* The [[Superior mesenteric artery|SMA]] and [[Inferior mesenteric artery|IMA]] communicate via the marginal artery of Drummond and the meandering [[mesenteric artery]].  
* Collateralization between the IMA and systemic circulation occurs in the rectum as the superior rectal (hemorrhoidal) vessels merge with the middle rectal vessels from the internal iliac arteries.
* [[Collateralization]] between the [[Inferior mesenteric artery|IMA]] and [[systemic circulation]] occurs in the [[rectum]] as the [[Superior rectal plexus|superior rectal]] ([[Hemorrhoidal plexus|hemorrhoidal]]) vessels merge with the [[Middle rectal plexus|middle rectal]] vessels from the [[internal iliac arteries]].
* The areas lacking this collateralization are prone towards ischemia.
* The areas lacking this [[collateralization]] are prone to [[ischemia]].
===(C) Response of mesenteric vasculature to ischemia===
===(C) Response of mesenteric vasculature to ischemia===
* Mesenteric ischemia occurs when the blood supply to mesentery is reduced leading to disruption of cellular metabolism owing to oxygen and nutrient deficiency.<ref name="pmid26909235">{{cite journal| author=Mastoraki A, Mastoraki S, Tziava E, Touloumi S, Krinos N, Danias N et al.| title=Mesenteric ischemia: Pathogenesis and challenging diagnostic and therapeutic modalities. | journal=World J Gastrointest Pathophysiol | year= 2016 | volume= 7 | issue= 1 | pages= 125-30 | pmid=26909235 | doi=10.4291/wjgp.v7.i1.125 | pmc=4753178 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26909235  }} </ref><ref name="CorcosNuzzo2013">{{cite journal|last1=Corcos|first1=Olivier|last2=Nuzzo|first2=Alexandre|title=Gastro-Intestinal Vascular Emergencies|journal=Best Practice & Research Clinical Gastroenterology|volume=27|issue=5|year=2013|pages=709–725|issn=15216918|doi=10.1016/j.bpg.2013.08.006}}</ref>
* Mesenteric ischemia occurs when the blood supply to [[mesentery]] is reduced leading to disruption of [[cellular metabolism]] owing to [[oxygen]] and [[nutrient]] deficiency.<ref name="pmid26909235">{{cite journal| author=Mastoraki A, Mastoraki S, Tziava E, Touloumi S, Krinos N, Danias N et al.| title=Mesenteric ischemia: Pathogenesis and challenging diagnostic and therapeutic modalities. | journal=World J Gastrointest Pathophysiol | year= 2016 | volume= 7 | issue= 1 | pages= 125-30 | pmid=26909235 | doi=10.4291/wjgp.v7.i1.125 | pmc=4753178 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26909235  }} </ref><ref name="CorcosNuzzo2013">{{cite journal|last1=Corcos|first1=Olivier|last2=Nuzzo|first2=Alexandre|title=Gastro-Intestinal Vascular Emergencies|journal=Best Practice & Research Clinical Gastroenterology|volume=27|issue=5|year=2013|pages=709–725|issn=15216918|doi=10.1016/j.bpg.2013.08.006}}</ref>
* In the first 4 hours following ischemia, necrosis of the mucosal villi occurs.  
* In the first 4 hours following [[ischemia]], [[necrosis]] of the [[mucosal]] [[villi]] occurs.  
* Persistent ischemia for more than 6 hours results in transmural, mural or mucosal infarction, ultimately leading to bowel perforation.
* Persistent [[ischemia]] for more than 6 hours results in transmural, mural or [[mucosal]] [[infarction]], ultimately leading to [[bowel perforation]].
* Prolonged ischemia leads to progressive vasoconstriction of the mesenetric vessels which raises the pressure in them resulting in lowering the collateral flow.
* Prolonged [[ischemia]] leads to progressive [[vasoconstriction]] of the mesenetric vessels which raises the pressure in them resulting in lowering the collateral flow.
* This is followed by vasodilation, trying to restore blood flow to the area of ischemic insult.
* This is followed by [[vasodilation]], trying to restore blood flow to the area of [[ischemic]] insult.
* The sequence of events that take place in the small intestine subsequent to decreased blood flow:
 
==== The sequence of events that take place in the [[small intestine]] subsequent to decreased blood flow: ====
<br><br>
<br><br>
{{Family tree/start}}
{{Family tree/start}}
{{familytree | boxstyle= text-align: Center; | | | |B01| | | | |B01= Ischemic insult  
{{familytree | boxstyle= text-align: Center; | | | |B01| | | | |B01= [[Ischemic]] insult  
| boxstyle_B02= text-align: Center;  
| boxstyle_B02= text-align: Center;  
| boxstyle_B03= text-align: left;  
| boxstyle_B03= text-align: left;  
}}
}}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | |!| | | | | }}
{{familytree | boxstyle= text-align: Center; | | | |B01| | | | |B01= Decreased delivery of oxygen and nutrients
{{familytree | boxstyle= text-align: Center; | | | |B01| | | | |B01= Decreased delivery of [[oxygen]] and nutrients
| boxstyle_B02= text-align: Center;  
| boxstyle_B02= text-align: Center;  
| boxstyle_B03= text-align: left;  
| boxstyle_B03= text-align: left;  
}}
}}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | |!| | | | | }}
{{familytree | boxstyle= text-align: Center; | | | |B01| | | | |B01= Disruption in cellular metabolism
{{familytree | boxstyle= text-align: Center; | | | |B01| | | | |B01= Disruption in cellular [[metabolism]]
| boxstyle_B02= text-align: Center;  
| boxstyle_B02= text-align: Center;  
| boxstyle_B03= text-align: left;  
| boxstyle_B03= text-align: left;  
}}
}}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | |!| | | | | }}
{{familytree | boxstyle= text-align: Center; | | | |B01| | | | |B01= Tissue injury due to hypoxia and reperfusion
{{familytree | boxstyle= text-align: Center; | | | |B01| | | | |B01= Tissue injury due to [[hypoxia]] and [[reperfusion]]
}}
}}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | |!| | | | | }}
{{familytree | boxstyle= text-align: Center; | | | |B01| | | | |B01= Full thickness necrosis of the bowel}}
{{familytree | boxstyle= text-align: Center; | | | |B01| | | | |B01= Full thickness [[necrosis]] of the [[bowel]]}}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | |!| | | | | }}
{{familytree | boxstyle= text-align: Center; | | | |B01| | | | |B01= Perforation of the bowel wall}}
{{familytree | boxstyle= text-align: Center; | | | |B01| | | | |B01= [[Perforation]] of the [[bowel wall]]}}
{{familytree/end}}
{{familytree/end}}
<br>
<br>


{| class="wikitable"
{| class="wikitable"
! colspan="2" |'''Post ischemic cellular changes''':
! colspan="2" style="background:#4479BA; color: #FFFFFF;" |'''Post [[ischemic]] cellular changes''':
|-
|-
!Time duration since ischemia
! style="background:#4479BA; color: #FFFFFF;" |Time duration since [[ischemia]]
!Pathological changes in the small intestine
! style="background:#4479BA; color: #FFFFFF;" |Pathological changes in the [[small intestine]]
|-
|-
|3-4 hours
|3-4 hours
|Necrosis of the mucosal villi
|[[Necrosis]] of the [[mucosal]] [[villi]]
|-
|-
|6 hours
|6 hours
|Transmural, mural or mucosal infarction  
|Transmural, mural or [[mucosal]] infarction  
|-
|-
|1-4 days
|1-4 days
|Bowel hemorrhage
|[[Bowel]] [[hemorrhage]]
|}
|}
'''Reperfusion injury:'''
'''[[Reperfusion]] injury:'''
* Restoration of blood flow to the area of ischemic insult results in reperfusion injury.
* Restoration of blood flow to the area of [[ischemic]] insult results in [[reperfusion]] injury.
* This leads to release of oxygen free radicals, toxic byproducts of ischemic injury and neutrophil activation.
* This leads to release of [[oxygen free radicals]], toxic byproducts of [[ischemic]] injury and [[neutrophil]] activation.
* Immune cells remove dead and damaged cells releasing cytokines such as TNF-alpha
* [[Immune]] cells remove dead and damaged cells releasing [[cytokines]] such as [[TNF-alpha]].
* Blood vessels become more permeable leading to edema of the small intestine.
* Blood vessels become more permeable leading to [[edema]] of the [[small intestine]].
* As the ischemia progresses from mucosa to all the layers beneath (transmural), it leads to breaks in the epithelial lining.
* As the [[ischemia]] progresses from [[mucosa]] to all the layers beneath (transmural), it leads to breaks in the [[epithelial]] lining.
* This allows bacteria in the intestinal lumen to enter into the peritoneal cavity causing peritonitis.
* This allows [[bacteria]] in the [[intestinal]] lumen to enter into the [[peritoneal cavity]] causing [[peritonitis]].
* If bacteria enters into the blood stream, it results in systemic inflammatory response syndrome, which ultimately results in sepsis and septic shock.
* If [[bacteria]] enter into the blood stream, it results in [[systemic inflammatory response syndrome]], which ultimately results in [[sepsis]] and [[septic shock]].


===(D) Vasoactive and humoral factors regulating the mesenteric blood flow===
===(D) Vasoactive and humoral factors regulating the mesenteric blood flow===
* Vasoactive and humoral factors control the regulation of vascular tone of mesenteric circulation in response to periods of stress such as systemic hypotension or postprandial state.
* [[Vasoactive]] and [[humoral]] factors control the regulation of [[vascular]] tone of [[mesenteric]] circulation in response to periods of stress such as [[systemic hypotension]] or [[postprandial]] state.


* Physiologically mesenteric circulation is affected by:<ref name="pmid10052599">{{cite journal| author=Hansen MB, Dresner LS, Wait RB| title=Profile of neurohumoral agents on mesenteric and intestinal blood flow in health and disease. | journal=Physiol Res | year= 1998 | volume= 47 | issue= 5 | pages= 307-27 | pmid=10052599 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10052599  }} </ref><ref name="pmid8370303">{{cite journal| author=Schoenberg MH, Beger HG| title=Reperfusion injury after intestinal ischemia. | journal=Crit Care Med | year= 1993 | volume= 21 | issue= 9 | pages= 1376-86 | pmid=8370303 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8370303  }} </ref><ref name="PatelKaleya1992">{{cite journal|last1=Patel|first1=Amit|last2=Kaleya|first2=Ronald N.|last3=Sammartano|first3=Robert J.|title=Pathophysiology of Mesenteric Ischemia|journal=Surgical Clinics of North America|volume=72|issue=1|year=1992|pages=31–41|issn=00396109|doi=10.1016/S0039-6109(16)45626-4}}</ref><ref name="pmid8703630">{{cite journal| author=Takala J| title=Determinants of splanchnic blood flow. | journal=Br J Anaesth | year= 1996 | volume= 77 | issue= 1 | pages= 50-8 | pmid=8703630 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8703630  }} </ref><ref name="pmid7386643">{{cite journal| author=Granger HJ, Norris CP| title=Intrinsic regulation of intestinal oxygenation in the anesthetized dog. | journal=Am J Physiol | year= 1980 | volume= 238 | issue= 6 | pages= H836-43 | pmid=7386643 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7386643  }} </ref><ref name="pmid4684756">{{cite journal| author=Granger HJ, Shepherd AP| title=Intrinsic microvascular control of tissue oxygen delivery. | journal=Microvasc Res | year= 1973 | volume= 5 | issue= 1 | pages= 49-72 | pmid=4684756 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=4684756  }} </ref>
* Physiologically [[mesenteric]] circulation is affected by:<ref name="pmid10052599">{{cite journal| author=Hansen MB, Dresner LS, Wait RB| title=Profile of neurohumoral agents on mesenteric and intestinal blood flow in health and disease. | journal=Physiol Res | year= 1998 | volume= 47 | issue= 5 | pages= 307-27 | pmid=10052599 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10052599  }} </ref><ref name="pmid8370303">{{cite journal| author=Schoenberg MH, Beger HG| title=Reperfusion injury after intestinal ischemia. | journal=Crit Care Med | year= 1993 | volume= 21 | issue= 9 | pages= 1376-86 | pmid=8370303 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8370303  }} </ref><ref name="PatelKaleya1992">{{cite journal|last1=Patel|first1=Amit|last2=Kaleya|first2=Ronald N.|last3=Sammartano|first3=Robert J.|title=Pathophysiology of Mesenteric Ischemia|journal=Surgical Clinics of North America|volume=72|issue=1|year=1992|pages=31–41|issn=00396109|doi=10.1016/S0039-6109(16)45626-4}}</ref><ref name="pmid8703630">{{cite journal| author=Takala J| title=Determinants of splanchnic blood flow. | journal=Br J Anaesth | year= 1996 | volume= 77 | issue= 1 | pages= 50-8 | pmid=8703630 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8703630  }} </ref><ref name="pmid7386643">{{cite journal| author=Granger HJ, Norris CP| title=Intrinsic regulation of intestinal oxygenation in the anesthetized dog. | journal=Am J Physiol | year= 1980 | volume= 238 | issue= 6 | pages= H836-43 | pmid=7386643 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7386643  }} </ref><ref name="pmid4684756">{{cite journal| author=Granger HJ, Shepherd AP| title=Intrinsic microvascular control of tissue oxygen delivery. | journal=Microvasc Res | year= 1973 | volume= 5 | issue= 1 | pages= 49-72 | pmid=4684756 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=4684756  }} </ref>
** '''Intrinsic regulatory system''' that includes metabolic and myogenic factors.
** '''Intrinsic regulatory system''' that includes [[metabolic]] and [[myogenic]] factors.
** '''Extrinsic regulatory system''' that includes neural and humoral factors.
** '''Extrinsic regulatory system''' that includes [[neural]] and [[humoral]] factors.
'''<u>Intrinsic regulation:</u>'''
'''<u>Intrinsic regulation:</u>'''
* '''Metabolic factors:''' 
** Reduction in blood supply to the mesentery causes adaptive changes in the splanchnic circulation. 
** A discrepancy between tissue oxyegn demand and supply raises the concentration of local metabolites such as hydrogen, potassium, carbon dioxide, and adenosine, resulting in vasodilation and hyperemia.


* '''Myogenic factors:'''  
'''(a) Metabolic factors:''' 
** Myogenic theory suggests that arteriolar tension receptors act to regulate vascular resistance in accordance with the transmural pressure.  
* Reduction in blood supply to the [[mesentery]] causes adaptive changes in the [[splanchnic]] circulation. 
** An acute decrease in perfusion pressure is compensated for by a reduction in arteriolar wall tension, thereby maintaining splanchnic blood flow.
* A discrepancy between tissue oxyegn demand and supply raises the concentration of local [[metabolites]] such as [[hydrogen]], [[potassium]], [[carbon dioxide]], and [[adenosine]], resulting in [[vasodilation]], and [[hyperemia]].
'''(b) Myogenic factors:'''  
* Myogenic theory suggests that arteriolar wall tension [[receptors]] act to regulate [[vascular resistance]] in accordance with the transmural pressure.  
* An [[acute]] decrease in [[perfusion pressure]] is compensated for by a reduction in arteriolar wall tension, thereby maintaining [[splanchnic]] blood flow.
'''<u>Extrinsic regulation:</u>'''
'''<u>Extrinsic regulation:</u>'''
* Neural component:
** The extrinsic neural component of splanchnic circulatory regulation comprises the alpha-activated vasoconstrictor fibers.
** Intense activation of vasoconstrictor fibers through alpha-adrenergic stimulation results in vasoconstriction of small vessels and a decrease in mesenteric blood flow.
** After periods of prolonged alpha-adrenergic vasoconstriction, blood flow increases, presumably through β-adrenergic stimulation, which acts as a protective response.
** Although numerous types of neural stimulation (e.g. vagal, cholinergic, histaminergic, and sympathetic) can affect the blood supply of the gut, the adrenergic limb of the autonomic nervous system is the predominant neural influence on splanchnic circulation.


* Humoral component:  
==== (a) [[Neural]] component: ====
** Numerous endogenous and exogenous humoral factors affect the splanchnic circulation.  
* The extrinsic [[neural]] component of [[splanchnic]] [[circulatory]] regulation comprises the alpha-activated [[vasoconstrictor]] fibers.
** Norepinephrine and high doses of epinephrine produce intense vasoconstriction by stimulating the adrenergic receptors.  
* Intense activation of [[vasoconstrictor]] fibers through alpha-[[adrenergic]] stimulation results in [[vasoconstriction]] of small vessels and a decrease in [[mesenteric]] blood flow.
** Other pharmacologic compounds that decrease splanchnic blood flow include:  
* After periods of prolonged [[Alpha adrenergic|alpha-adrenergic]] [[vasoconstriction]], blood flow increases, presumably through β-adrenergic stimulation, which acts as a protective response.
*** Vasopressin
* Although numerous types of neural stimulation (e.g. [[vagal]], [[cholinergic]], histaminergic, and [[sympathetic]]) can affect the blood supply of the gut, the [[adrenergic]] limb of the [[autonomic nervous system]] is the predominant neural influence on [[splanchnic]] circulation.
*** Phenylephrine
 
*** Digoxin
==== (b) [[Humoral]] component: ====
** Low-dose dopamine causes splanchnic vasodilation, whereas higher doses lead to vasoconstriction by stimulating alpha adrenergic receptors.
* Numerous [[endogenous]] and [[exogenous]] [[humoral]] factors affect the [[splanchnic]] circulation.  
** Exogenous agents that increase mesenteric blood flow include:
* [[Norepinephrine]] and high doses of [[epinephrine]] produce intense [[vasoconstriction]] by stimulating the [[adrenergic]] receptors.  
*** Papaverine
* Other pharmacologic compounds that decrease [[splanchnic]] blood flow include:  
*** Adenosine
** [[Vasopressin]]
*** Dobutamine
** [[Phenylephrine]]
*** Fenoldopam  
** [[Digoxin]]
*** Sodium nitroprusside
* Low-dose [[dopamine]] causes [[splanchnic]] [[vasodilation]], whereas higher doses lead to [[vasoconstriction]] by stimulating alpha [[adrenergic receptors]].
** In addition, numerous natural neurotransmitters can serve as splanchnic vasodilators, including acetylcholine, histamine, nitric oxide, leukotrienes, thromboxane analogues, glucagon, and a couple of gastrointestinal hormones.
* [[Exogenous]] agents that increase [[mesenteric]] blood flow include:
** [[Papaverine]]
** [[Adenosine]]
** [[Dobutamine]]
** [[Fenoldopam]]
** [[Sodium nitroprusside]]
* In addition, numerous natural [[neurotransmitters]] can serve as [[splanchnic]] [[vasodilators]], such as:
** [[Acetylcholine]]
** [[Histamine]]
** [[Nitric oxide]]
** [[Leukotrienes]]
** [[Thromboxane]] analogues
** [[Glucagon]]
{| class="wikitable"
{| class="wikitable"
! colspan="4" |Factors regulating mesenteric blood flow
! colspan="4" style="background:#4479BA; color: #FFFFFF;" |Factors regulating mesenteric blood flow
|-
|-
! colspan="4" |'''Extrinsic reguatory system'''
! colspan="4" style="background:#4479BA; color: #FFFFFF;" |'''Extrinsic reguatory system'''
|-
|-
! colspan="2" |'''Humoral (endogenous and exogenous)'''
! colspan="2" style="background:#4479BA; color: #FFFFFF;" |'''Humoral (endogenous and exogenous)'''
! colspan="2" |'''Neural component'''
! colspan="2" style="background:#4479BA; color: #FFFFFF;" |'''Neural component'''
|-
|-
|'''Decrease blood flow'''
! align="center" style="background:#4479BA; color: #FFFFFF;" |'''Decrease blood flow'''
|'''Increase blood flow'''
! align="center" style="background:#4479BA; color: #FFFFFF;" |'''Increase blood flow'''
|''Decrease blood flow''
! align="center" style="background:#4479BA; color: #FFFFFF;" |'''Decrease blood flow'''
|'''Increase blood flow'''
! align="center" style="background:#4479BA; color: #FFFFFF;" |'''Increase blood flow'''
|-
|-
|
|
* Epinephrine (high dose)
* [[Epinephrine]] (high dose)
* Norepinephrine (moderate to high dose)
* [[Norepinephrine]] (moderate to high dose)
* Dopamine (high dose)
* [[Dopamine]] (high dose)
* Phenylephrine
* [[Phenylephrine]]
* Vasopressin
* [[Vasopressin]]
* Angiotensin  
* [[Angiotensin]]
* Digoxin  
* [[Digoxin]]
|
|
* Epinephrine (low dose)
* [[Epinephrine]] (low dose)
* Norepinephrine (low dose)
* [[Norepinephrine]] (low dose)
* Dopamine (low dose)
* [[Dopamine]] (low dose)
* Dobutamine
* [[Dobutamine]]
* Sodium nitroprusside
* [[Sodium nitroprusside]]
* Papaverine
* [[Papaverine]]
* Nitric oxide
* [[Nitric oxide]]
* Acetylcholine  
* [[Acetylcholine]]
* Histamine
* [[Histamine]]
|
|
* Alpha-adrenergic receptors
* [[Alpha adrenergic|Alpha-adrenergic]] receptors
* Dopamenergic receptors
* [[Dopaminergic]] receptors
|
|
* Beta adrenergic receptors
* Beta [[adrenergic]] receptors
|-
|-
! colspan="4" |'''Intrinsic regulatory component'''
! colspan="4" style="background:#4479BA; color: #FFFFFF;" |'''Intrinsic regulatory component'''
|-
|-
| colspan="2" |'''Decrease blood flow'''
| colspan="2" style="background:#4479BA; color: #FFFFFF;" |'''Decrease blood flow (Myogenic factors)'''
| colspan="2" |'''Increase blood flow'''
| colspan="2" style="background:#4479BA; color: #FFFFFF;" |'''Increase blood flow (Metabolic factors)'''
|-
|-
| colspan="2" |
| colspan="2" |
* Arteriolar tension receptors
* Arteriolar tension receptors
| colspan="2" |
| colspan="2" |
* Hydrogen
* [[Hydrogen]]
* Potasssium
* [[Potassium]]
* Carbon dioxide
* [[Carbon dioxide]]
* Adenosine  
* [[Adenosine]]
|}
|}
'''Areas prone to ischemia:'''
===Areas prone to ischemia===


{| class="wikitable"
{| class="wikitable"
!Areas prone to ischemia  
! align="center" style="background:#4479BA; color: #FFFFFF;" | Areas prone to ischemia  
! colspan="3" |Blood supply
! style="background:#4479BA; color: #FFFFFF;" | Blood supply
|-
|-
|
|[[Splenic flexure]]
* Splenic flexure
|End arteries of [[superior mesenteric artery]]
| colspan="3" |End arteries of superior mesenteric artery
|-
|Rectosigmoid junction
|End arteries of [[inferior mesenteric artery]]
|-
|-
|Middle segment of [[jejunum]]
|
|
* Rectosigmoid junction
| colspan="3" |End arteries of inferior mesenteric artery
|}
|}
* The watershed areas that lack collateralization are as follows:


* Splenic flexure
==== Watershed areas lacking collateralization: ====
** Supplied by the end arteries of SMA with no collateral circulation.
* [[Splenic flexure]]
** Supplied by the end arteries of [[Superior mesenteric artery|SMA]] with no collateral circulation.
* Rectosigmoid junction
* Rectosigmoid junction
Supplied by the end arteries of IMA with no collateral circulation.
** Supplied by the end arteries of [[Inferior mesenteric artery|IMA]] with no collateral circulation.


* Middle segment of [[jejunum]]<ref name="pmid9890114">{{cite journal| author=Cappell MS| title=Intestinal (mesenteric) vasculopathy. I. Acute superior mesenteric arteriopathy and venopathy. | journal=Gastroenterol Clin North Am | year= 1998 | volume= 27 | issue= 4 | pages= 783-825, vi | pmid=9890114 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9890114  }} </ref>
** This area is the farthest from collateral circulation and hence prone to [[ischemia]] as compared to other segments of [[jejunum]].


===Pathogenesis of occlusive mesenteric ischemia:===
===Pathogenesis of occlusive mesenteric ischemia:===
Line 226: Line 239:


{{familytree/start|summary=Sample 1}}
{{familytree/start|summary=Sample 1}}
{{familytree| | | | | | | | | |B01| | | | | | | | |B01= Vascular occlusion|}}
{{familytree| | | | | | | | | |B01| | | | | | | | |B01= [[Vascular]] [[occlusion]]|}}
{{familytree| | | | | | | | | | |!| | | | | | | | |}}
{{familytree| | | | | | | | | | |!| | | | | | | | |}}
{{familytree| | | | | | | | | |C01| | | | | | | | |C01= Blood flow<metabolic demand|}}
{{familytree| | | | | | | | | |C01| | | | | | | | |C01= Blood flow<metabolic demand|}}
{{familytree| | | |,|-|-|-|-|-|-|+|-|-|-|-|-|-|-|.| |}}
{{familytree| | | |,|-|-|-|-|-|-|+|-|-|-|-|-|-|-|.| |}}
{{familytree| | |D01| | | | |D02| | | | | | |D03|D01= Mucosal barrier disruption and bacterial translocation into the circulation|D02= Anerobic glycolysis in mucosa and lactate production|D03= Activation of vascular and humoral factors leading to vasoconstriction|}}
{{familytree| | |D01| | | | |D02| | | | | | |D03|D01= [[Mucosal]] barrier disruption and [[bacterial]] translocation into the circulation|D02= Anaerobic [[glycolysis]] in [[mucosa]] and [[lactate]] production|D03= Activation of [[vascular]] and [[humoral]] factors leading to [[vasoconstriction]]|}}
{{familytree| | | |!| | | | | | |!| | | | | | | |!|}}
{{familytree| | | |!| | | | | | |!| | | | | | | |!|}}
{{familytree| | |E01| | | | |E02| | | | | | |E03|E01= Systemic activation of inflammatory response|E02= Lactic acidosis|E03= Intestinal necrosis|}}
{{familytree| | |E01| | | | |E02| | | | | | |E03|E01= Systemic activation of [[inflammatory]] response|E02= [[Lactic acidosis]]|E03= [[Intestinal]] [[necrosis]]|}}
{{familytree| | | |`|-|-|-|-|-|-|+|-|-|-|-|-|-|-|'| |}}
{{familytree| | | |`|-|-|-|-|-|-|+|-|-|-|-|-|-|-|'| |}}
{{familytree| | | | | | | | | | |!| | | | | | | | |}}
{{familytree| | | | | | | | | | |!| | | | | | | | |}}
{{familytree| | | | | | | | | |F01| | | | | | | | |F01= Multiorgan failure|}}
{{familytree| | | | | | | | | |F01| | | | | | | | |F01= [[Multiorgan failure]]|}}
{{familytree/end}}
{{familytree/end}}


Line 241: Line 254:
<br><br>
<br><br>
{{familytree/start|summary=Sample 1}}
{{familytree/start|summary=Sample 1}}
{{familytree| | | | X01 | | | | | | | | | | | X02 |X01=Hypovolemia|X02= Cardiac failure|}}
{{familytree| | | | X01 | | | | | | | | | | | X02 |X01=[[Hypovolemia]]|X02= [[Cardiac failure]]|}}
{{familytree| | | |`|-|-|-|-|-|-|v|-|-|-|-|-|-|-|'| |}}
{{familytree| | | |`|-|-|-|-|-|-|v|-|-|-|-|-|-|-|'| |}}
{{familytree| | | | | | | | | |A01| | | | | | | | |A01= Endogenous vasoconstriction|}}
{{familytree| | | | | | | | | |A01| | | | | | | | |A01= [[Endogenous]] [[vasoconstriction]]|}}
{{familytree| | | | | | | | | | |!| | | | | | | | |}}
{{familytree| | | | | | | | | | |!| | | | | | | | |}}
{{familytree| | | | | | | | | |B01| | | | | | | | |B01= Splanchnic vasoconstriction|}}
{{familytree| | | | | | | | | |B01| | | | | | | | |B01= [[Splanchnic]] [[vasoconstriction]]|}}
{{familytree| | | | | | | | | | |!| | | | | | | | |}}
{{familytree| | | | | | | | | | |!| | | | | | | | |}}
{{familytree| | | | | | | | | |C01| | | | | | | | |C01= Gut mucosal hypoperfusion|}}
{{familytree| | | | | | | | | |C01| | | | | | | | |C01= Gut mucosal hypoperfusion|}}
{{familytree| | | |,|-|-|-|-|-|-|^|-|-|-|-|-|-|-|.| |}}
{{familytree| | | |,|-|-|-|-|-|-|^|-|-|-|-|-|-|-|.| |}}
{{familytree| | |D01| | | | | | | | | | | | | |D02|D01= Restoration of blood by vasodialtion of collaterals|D02= Gut mucosal barrier disruption|}}
{{familytree| | |D01| | | | | | | | | | | | | |D02|D01= Restoration of blood by [[vasodilation]] of collaterals|D02= Gut [[mucosal]] barrier disruption|}}
{{familytree| | | |!| | | | | | | | | | | | | | |!|}}
{{familytree| | | |!| | | | | | | | | | | | | | |!|}}
{{familytree| | |E01| | | | | | | | | | | | | |E02|E01= Ischemia-reperfusion injury|E02= Increased mucosal perfusion to bacterial toxins|}}
{{familytree| | |E01| | | | | | | | | | | | | |E02|E01= [[Ischemia]]-reperfusion injury|E02= Increased [[mucosal]] [[perfusion]] to [[bacterial]] [[toxins]]|}}
{{familytree| | | |`|-|-|-|-|-|-|v|-|-|-|-|-|-|-|'| |}}
{{familytree| | | |`|-|-|-|-|-|-|v|-|-|-|-|-|-|-|'| |}}
{{familytree| | | | | | | | | | |!| | | | | | | | |}}
{{familytree| | | | | | | | | | |!| | | | | | | | |}}
{{familytree| | | | | | | | | |F01| | | | | | | | |F01= Activation of inflammatory response|}}
{{familytree| | | | | | | | | |F01| | | | | | | | |F01= Activation of [[inflammatory]] response|}}
{{familytree/end}}
{{familytree/end}}


==Gross Pathology==
==Gross Pathology==
Gross pathology shows following changes:
Gross pathology shows following changes:
*Early stage of ischemia: Intestinal wall in congested.
*Early stage of [[ischemia]]
*Late stage of ischemia: Edematous, friable and hemorrhagic bowel wall.
**[[Intestinal wall]] in [[congested]].
*Late stage of [[ischemia]]
**[[Edema|Edematous]], friable and [[hemorrhagic]] [[bowel]] wall.
 
== Microscopic pathology ==
Mesenteric ischemia is classified histopathologically into five grades:<ref name="pmid16332482">{{cite journal| author=Rosow DE, Sahani D, Strobel O, Kalva S, Mino-Kenudson M, Holalkere NS et al.| title=Imaging of acute mesenteric ischemia using multidetector CT and CT angiography in a porcine model. | journal=J Gastrointest Surg | year= 2005 | volume= 9 | issue= 9 | pages= 1262-74; discussion 1274-5 | pmid=16332482 | doi=10.1016/j.gassur.2005.07.034 | pmc=3807105 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16332482  }} </ref>
* Grade 1. Normal. [[Vascular]] [[congestion]] is absent, and both the villous architecture and [[Muscle|muscular]] layer are preserved. 
 
* Grade 2. Villous architecture is preserved, with some mucosal congestion and dilated [[Capillary|capillaries]]. 
 
* Grade 3. There is [[congestion]] of mucosa with loss of superficial [[Gland|glandular]] architecture, but deep villous architecture is preserved.
 
* Grade 4. [[Muscle|Muscular]] layer is preserved, but the mucosa is completely involved, with loss of all superficial and deep [[Gland|glandular]] architecture. 
 
* Grade 5. There is total loss of [[Gland|glandular]] architecture, and the muscularis propria shows degeneration, fragmentation, and [[Skeletal muscle|myocyte]] death, all of which indicate transmural [[infarction]].


==References==
==References==
Line 266: Line 293:
{{Reflist|2}}
{{Reflist|2}}


[[Category:Needs content]]
[[Category:Gastroenterology]]
[[Category:Up-To-Date]]

Latest revision as of 12:41, 14 April 2021


Mesenteric ischemia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Mesenteric ischemia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Guidelines for Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRA

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Mesenteric ischemia pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Mesenteric ischemia pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Mesenteric ischemia pathophysiology

CDC on Mesenteric ischemia pathophysiology

Mesenteric ischemia pathophysiology in the news

Blogs on Mesenteric ischemia pathophysiology

Directions to Hospitals Treating Mesenteric ischemia

Risk calculators and risk factors for Mesenteric ischemia pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Feham Tariq, MD [2]

Overview

The factors that regulate the intestinal blood flow play a vital role in the development of mesenteric ischemia. Mucosa of the intestines has high metabolic activity and therefore requires high blood flow. The majority of blood supply of the intestine comes from the superior mesenteric artery, with a collateral blood supply from superior and inferior pancreaticoduodenal arteries (branches of the celiac artery) as well as the inferior mesenteric artery. The splanchnic circulation (arteries supplying the viscera) receives 15-35% of the cardiac output, making it sensitive to the effects of decreased perfusion. Mesenteric ischemia occurs when intestinal blood supply is compromised by more than 50% of the original blood flow without activation of adaptive responses. This can lead to disruption of mucosal barrier, allowing the release of bacterial toxins (present in the intestinal lumen) and vasoactive mediators which ultimately lead to complete necrosis (cell death) of the intestinal mucosa. This can further progress to depression in myocardial activity, sepsis, multiorgan failure, and without prompt intervention, death.

Pathophysiology

Pathogenesis

Factors contributing in the pathogenesis of mesenteric ischemia:[7][8]

  • Mesenteric blood supply (general circulation)

(A) Mesenteric blood supply (General circulation)

Arterial supply Region supplied
Superior mesenteric artery (SMA) Small intestine, proximal and mid colon up to the splenic flexure.
Inferior mesenteric artery (IMA) Hindgut starting from the splenic flexure to the rectum.
Celiac artery (CA) Foregut, hepatobiliary system and spleen.
Venous drainage
The venous system parallels the arterial branches and drains into the portal venous system.
Blood supply to the intestines includes the celiac artery, superior mesenteric artery (SMA), inferior mesenteric artery (IMA), and branches of the internal iliac artery (IIA).
Source: By Anpol42 (Own work) [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons

Commonly affected arteries:[11]

(B) Collateral circulation

The role of collateral circulation in the development of mesenteric ischemia is as follows:[12][13][14][15][16]

(C) Response of mesenteric vasculature to ischemia

The sequence of events that take place in the small intestine subsequent to decreased blood flow:



 
 
 
Ischemic insult
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Decreased delivery of oxygen and nutrients
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Disruption in cellular metabolism
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tissue injury due to hypoxia and reperfusion
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Full thickness necrosis of the bowel
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Perforation of the bowel wall
 
 
 
 


Post ischemic cellular changes:
Time duration since ischemia Pathological changes in the small intestine
3-4 hours Necrosis of the mucosal villi
6 hours Transmural, mural or mucosal infarction
1-4 days Bowel hemorrhage

Reperfusion injury:

(D) Vasoactive and humoral factors regulating the mesenteric blood flow

Intrinsic regulation:

(a) Metabolic factors:

(b) Myogenic factors:

Extrinsic regulation:

(a) Neural component:

(b) Humoral component:

Factors regulating mesenteric blood flow
Extrinsic reguatory system
Humoral (endogenous and exogenous) Neural component
Decrease blood flow Increase blood flow Decrease blood flow Increase blood flow
Intrinsic regulatory component
Decrease blood flow (Myogenic factors) Increase blood flow (Metabolic factors)
  • Arteriolar tension receptors

Areas prone to ischemia

Areas prone to ischemia Blood supply
Splenic flexure End arteries of superior mesenteric artery
Rectosigmoid junction End arteries of inferior mesenteric artery
Middle segment of jejunum

Watershed areas lacking collateralization:

  • Splenic flexure
    • Supplied by the end arteries of SMA with no collateral circulation.
  • Rectosigmoid junction
    • Supplied by the end arteries of IMA with no collateral circulation.
  • Middle segment of jejunum[25]
    • This area is the farthest from collateral circulation and hence prone to ischemia as compared to other segments of jejunum.

Pathogenesis of occlusive mesenteric ischemia:



 
 
 
 
 
 
 
 
 
Vascular occlusion
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Blood flow<metabolic demand
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mucosal barrier disruption and bacterial translocation into the circulation
 
 
 
 
Anaerobic glycolysis in mucosa and lactate production
 
 
 
 
 
 
Activation of vascular and humoral factors leading to vasoconstriction
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Systemic activation of inflammatory response
 
 
 
 
Lactic acidosis
 
 
 
 
 
 
Intestinal necrosis
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Multiorgan failure
 
 
 
 
 
 
 
 

Pathogenesis of non-occlusive mesenteric ischemia:



 
 
 
Hypovolemia
 
 
 
 
 
 
 
 
 
 
Cardiac failure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Endogenous vasoconstriction
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Splanchnic vasoconstriction
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gut mucosal hypoperfusion
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Restoration of blood by vasodilation of collaterals
 
 
 
 
 
 
 
 
 
 
 
 
 
Gut mucosal barrier disruption
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ischemia-reperfusion injury
 
 
 
 
 
 
 
 
 
 
 
 
 
Increased mucosal perfusion to bacterial toxins
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Activation of inflammatory response
 
 
 
 
 
 
 
 

Gross Pathology

Gross pathology shows following changes:

Microscopic pathology

Mesenteric ischemia is classified histopathologically into five grades:[26]

  • Grade 2. Villous architecture is preserved, with some mucosal congestion and dilated capillaries
  • Grade 3. There is congestion of mucosa with loss of superficial glandular architecture, but deep villous architecture is preserved.
  • Grade 4. Muscular layer is preserved, but the mucosa is completely involved, with loss of all superficial and deep glandular architecture. 
  • Grade 5. There is total loss of glandular architecture, and the muscularis propria shows degeneration, fragmentation, and myocyte death, all of which indicate transmural infarction.

References

  1. Sánchez-Fernández P, Mier y Díaz J, Blanco-Benavides R (2000). "[Acute mesenteric ischemia. Profile of an aggressive disease]". Rev Gastroenterol Mex. 65 (3): 134–40. PMID 11464607.
  2. Savlania A, Tripathi RK (2017). "Acute mesenteric ischemia: current multidisciplinary approach". J Cardiovasc Surg (Torino). 58 (2): 339–350. doi:10.23736/S0021-9509.16.09751-2. PMID 27901324.
  3. Yasuhara H (2005). "Acute mesenteric ischemia: the challenge of gastroenterology". Surg Today. 35 (3): 185–95. doi:10.1007/s00595-004-2924-0. PMID 15772787 : 15772787 Check |pmid= value (help).
  4. Deitch, Edwin A. (2012). "Gut-origin sepsis: Evolution of a concept". The Surgeon. 10 (6): 350–356. doi:10.1016/j.surge.2012.03.003. ISSN 1479-666X.
  5. Kvietys PR, Granger DN (1982). "Relation between intestinal blood flow and oxygen uptake". Am J Physiol. 242 (3): G202–8. PMID 7065183.
  6. Granger DN, Granger HJ (1983). "Systems analysis of intestinal hemodynamics and oxygenation". Am J Physiol. 245 (6): G786–96. PMID 6660300.
  7. 7.0 7.1 Granger DN, Richardson PD, Kvietys PR, Mortillaro NA (1980). "Intestinal blood flow". Gastroenterology. 78 (4): 837–63. PMID 6101568.
  8. Rosenblum JD, Boyle CM, Schwartz LB (1997). "The mesenteric circulation. Anatomy and physiology". Surg Clin North Am. 77 (2): 289–306. PMID 9146713.
  9. Kumar S, Sarr MG, Kamath PS (2001). "Mesenteric venous thrombosis". N Engl J Med. 345 (23): 1683–8. doi:10.1056/NEJMra010076. PMID 11759648.
  10. Ha C, Magowan S, Accortt NA, Chen J, Stone CD (2009). "Risk of arterial thrombotic events in inflammatory bowel disease". Am J Gastroenterol. 104 (6): 1445–51. doi:10.1038/ajg.2009.81. PMID 19491858.
  11. Wyers, Mark C. (2010). "Acute Mesenteric Ischemia: Diagnostic Approach and Surgical Treatment". Seminars in Vascular Surgery. 23 (1): 9–20. doi:10.1053/j.semvascsurg.2009.12.002. ISSN 0895-7967.
  12. McKinsey JF, Gewertz BL (1997). "Acute mesenteric ischemia". Surg Clin North Am. 77 (2): 307–18. PMID 9146714.
  13. Walker TG (2009). "Mesenteric vasculature and collateral pathways". Semin Intervent Radiol. 26 (3): 167–74. doi:10.1055/s-0029-1225663. PMC 3036491. PMID 21326561.
  14. Fisher DF, Fry WJ (1987). "Collateral mesenteric circulation". Surg Gynecol Obstet. 164 (5): 487–92. PMID 3554567.
  15. Bulkley GB, Womack WA, Downey JM, Kvietys PR, Granger DN (1985). "Characterization of segmental collateral blood flow in the small intestine". Am J Physiol. 249 (2 Pt 1): G228–35. PMID 4025549.
  16. Bulkley GB, Womack WA, Downey JM, Kvietys PR, Granger DN (1986). "Collateral blood flow in segmental intestinal ischemia: effects of vasoactive agents". Surgery. 100 (2): 157–66. PMID 3738747 : 3738747 Check |pmid= value (help).
  17. Mastoraki A, Mastoraki S, Tziava E, Touloumi S, Krinos N, Danias N; et al. (2016). "Mesenteric ischemia: Pathogenesis and challenging diagnostic and therapeutic modalities". World J Gastrointest Pathophysiol. 7 (1): 125–30. doi:10.4291/wjgp.v7.i1.125. PMC 4753178. PMID 26909235.
  18. Corcos, Olivier; Nuzzo, Alexandre (2013). "Gastro-Intestinal Vascular Emergencies". Best Practice & Research Clinical Gastroenterology. 27 (5): 709–725. doi:10.1016/j.bpg.2013.08.006. ISSN 1521-6918.
  19. Hansen MB, Dresner LS, Wait RB (1998). "Profile of neurohumoral agents on mesenteric and intestinal blood flow in health and disease". Physiol Res. 47 (5): 307–27. PMID 10052599.
  20. Schoenberg MH, Beger HG (1993). "Reperfusion injury after intestinal ischemia". Crit Care Med. 21 (9): 1376–86. PMID 8370303.
  21. Patel, Amit; Kaleya, Ronald N.; Sammartano, Robert J. (1992). "Pathophysiology of Mesenteric Ischemia". Surgical Clinics of North America. 72 (1): 31–41. doi:10.1016/S0039-6109(16)45626-4. ISSN 0039-6109.
  22. Takala J (1996). "Determinants of splanchnic blood flow". Br J Anaesth. 77 (1): 50–8. PMID 8703630.
  23. Granger HJ, Norris CP (1980). "Intrinsic regulation of intestinal oxygenation in the anesthetized dog". Am J Physiol. 238 (6): H836–43. PMID 7386643.
  24. Granger HJ, Shepherd AP (1973). "Intrinsic microvascular control of tissue oxygen delivery". Microvasc Res. 5 (1): 49–72. PMID 4684756.
  25. Cappell MS (1998). "Intestinal (mesenteric) vasculopathy. I. Acute superior mesenteric arteriopathy and venopathy". Gastroenterol Clin North Am. 27 (4): 783–825, vi. PMID 9890114.
  26. Rosow DE, Sahani D, Strobel O, Kalva S, Mino-Kenudson M, Holalkere NS; et al. (2005). "Imaging of acute mesenteric ischemia using multidetector CT and CT angiography in a porcine model". J Gastrointest Surg. 9 (9): 1262–74, discussion 1274-5. doi:10.1016/j.gassur.2005.07.034. PMC 3807105. PMID 16332482.