Sandbox:Mazia: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
 
(42 intermediate revisions by the same user not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
==Overview==
History
Patients with Pancoast syndrome may present with referred pain over the scapula to the shoulder as the result of damage to the afferent pain fibers of the sympathetic trunk. The symptoms are typical of the location of the tumor in the superior sulcus or thoracic inlet adjacent to the eighth cervical nerve roots, the first and second thoracic trunk distribution, the sympathetic chain, and the stellate ganglion.


{{CMG}}; {{AE}} {{Mazia}}
Initially, localized pain occurs in the shoulder and vertebral border of the scapula. Pain may later extend along an ulnar nerve distribution of the arm to the elbow and, ultimately, to the ulnar surface of the forearm and to the small and ring fingers of the hand (C8). If the tumor extends to the sympathetic chain and stellate ganglion, Horner syndrome and anhidrosis develop on the ipsilateral side of the face and upper extremity.


===GI LYMPHOMA===
The pain is frequently relentless and unremitting, and adequate relief often requires administration of narcotics. The patient usually supports the elbow of the affected arm in the hand of the opposite upper extremity to ease the tension on the shoulder and upper arm.
==Overveiw==
GI lymphomas typically present with nonspecific signs and symptoms attributable to the site of involvement. This topic review will discuss the salient clinical features and diagnostic evaluation of GI lymphomas. The management of GI lymphoma is presented separately.
Stomach is the most commonly involved site (60%-75%) in gastrointestinal tract followed by small bowel, ileocecal region and rectum[25]. Gastric lymphoma accounts for 3%-5% of all malignant tumors of the stomach[26]. Although the incidence of gastric carcinoma has been reduced, the incidence of primary gastric lymphoma is increasing[27]. H. pylori play a role in the development of most MALT lymphomas. However, its exact mechanism has not been fully understood, although a chronic inflammation may enhance the probability of malignant transformation via B cell proliferation in response to H. pylori mediated by tumor-infiltrating T cells[28]. H. pylori may play a similar role in development of DLBCL and few studies have shown complete remission after eradication therapy alone[28]. It has been shown that individuals with positive HBsAg have an increased risk of developing NHL[29]. It was reported that HBV plays a role in the development of B-cell NHL[30]. In contrast, primary gastric lymphoma with a T-cell phenotype is relatively rare, accounting for only 7% of primary gastric lymphomas in HTLV-1 infected endemic areas and a relatively large number of such cases are secondary gastric involvement of adult T-cell leukemia. Primary gastric T-cell lymphoma without HTLV-1 infection is rare, and sporadic cases have been reported[31]. The age of most gastric lymphoma patients is over 50 years with a relative predilection in males. Clinical symptoms of gastric lymphoma are nonspecific and indistinguishable from other benign and malignant conditions. The most common complaints of gastric lymphoma patients are epigastric pain, weight loss, nausea and vomiting. Occasionally, an abdominal mass is palpable. Lymphadenopathy is rare and its patients often have no physical signs. Perforation, bleeding, or obstruction is very uncommon. Unlike nodal lymphoma, B constitutional symptom is not common.


Although all histological kinds of nodal lymphoma can arise from th
The hand muscles may become weak and atrophic, and the triceps reflex may be absent. The first or second rib or vertebrae may be involved by tumor extension and intensify the severity of pain. The spinal canal and spinal cord may be invaded or compressed, with subsequent symptoms of spinal cord tumor or cervical disk disease.
Gastrointestinal tract is the most common extranodal site involved by lymphoma accounting for 5%-20% of all cases[1]. Primary gastrointestinal lymphoma, however, is very rare, constituting only about 1%-4% of all gastrointestinal malignancies. Gastrointestinal lymphoma is usually secondary to the widespread nodal diseases. Although virtually lymphoma can arise from any region of the gastrointestinal tract, the most commonly involved sites in term of its occurrence are the stomach followed by small intestine and ileocecal region[2]. Histopathologically, almost 90% of the primary gastrointestinal lymphomas are of B cell lineage with very few T-cell lymphomas and Hodgkin lymphoma. Certain histological subtypes have been noted to have a relative predilection site as mucosa-associated lymphoid tissue (MALT) lymphoma in stomach, mantle cell lymphoma (MCL) in terminal ileum, jejunum and colon, as well as enteropathy-associated T-cell lymphoma (EATL) in jejunum, and follicular lymphoma (FL) in duodenum with a geographic variation in its distribution[3]. Multifocality, however, has been noticed particularly in MALT lymphoma and follicular lymphoma. Certain risk factors have been implicated in the pathogenesis of gastrointestinal lymphoma including Helicobacter pylori (H. pylori) infection, human immunodeficiency virus (HIV), celiac disease, Campylobacter jejuni (C. jejuni), Epstein-Barr virus (EBV), hepatitis B virus (HBV), human T-cell lymphotropic virus-1 (HTLV-1), inflammatory bowel disease and immunosuppression[4,5]. Marker expression and translocations of common histological types of gastrointestinal lymphoma are depicted in Table ​Table11


The head and neck region is the second most common site for extra-nodal lymphoma accounting for 10%-15% of all cancers in this region. Approximately 2.5% of all malignant lymphomas originate from the oral and paraoral region, and the majority of them in the Waldeyer’s ring include adenoids, palatine tonsils, base of tongue and oropharyngeal walls. Tonsil is the most frequently involved site (> 50%) of tumors, followed by nasopharynx and base of tongue[10]. Several factors are known to increase the risk of oropharyngeal lymphoma including EBV. The affected patients are usually at the age of over 50 years with a predilection of males. The most common clinical presentations of oropharyngeal lymphoma include airway obstruction, hearing pain, progressive enlarging painless local mass, dysphagia and foreign body sensation in the throat. Cervical lymphadenopathy is present in over 50% patients with tonsillar lymphoma[11].
Many patients are initially treated for presumed local musculoskeletal conditions such as bursitis and vertebral osteoarthritis with radicular pain. Symptoms may persist for many months before evaluation for progression reveals the cause. In a 1994 series by Maggi et al, symptoms lasted 2-36 months, with a mean of 9.7 months. [7] In 1997, Muscolino described plexopathy or radicular symptoms in 53% of 15 patients. [24]


More than 80%-90% of oropharyngeal lymphomas belong to the B-cell lineage of non-Hodgkin lymphoma (NHL)[12]. Diffuse large B-cell lymphoma (DLBCL) is the most common type of primary oral and paraoral NHL with a small percentage of thymic T-cell type. Histologically, DLBCL, composed of intermediate-large cells which may be noncleaved, cleaved and immunoblastic, shows B-cell lineage with expression of pan-B-cell antigens (CD19, CD20, CD22, CD79A, and PAX5/BSAP), and is less commonly positive for germinal centre cell markers (CD10 and BCL6) and negative for T-cell antigens. A small number of cases show a translocation between the BCL-2 gene on chromosome 18 and the IgH gene on chromosome 14, t (14;18)[13]. Other lymphomas involving the Waldeyer’s ring include 15% B-cell lymphomas in extranodal marginal zone of MALT, 8% peripheral T-cell lymphomas, 6% follicular lymphomas, and 3% MCLs. Hodgkin lymphoma (HL) involving the oropharynx is very rare accounting for about 1%-5% of all Hodgkin diseases. The majority of oropharyngeal HL are of lymphocyte predominant and nodular sclerosis type on histopathology with a common immunophenotype of Reed Sternberg cells positive for CD15, CD30 and negative for CD45, CD20, and EMA, which can rule out the diagnosis of NHL[14].


Radiologically, oropharyngeal lymphoma typically appears in barium studies as a lobular mass near the base of tongue in the palatine fossa with the overlying mucosa usually being nodular. The appearance of oropharyngeal lymphoma can be hard to differentiate from more common pharyngeal carcinomas. Because the signal intensity of lymphoma is similar to that of normal tissue, the MR signal characteristics cannot reliably show the early lymphomatous involvement at these sites. CT or PET with FDG and CT (PET/CT) has proved their usefulness both in diagnosis and staging of the disease and in assessment of its response to therapies[15]. Certain features that may favor the diagnosis of NHL on imaging are the short clinical history and a large homogeneous mass which displaces rather than invades local structures and large homogeneous non-necrotic cervical nodes[16].
==Historical Perspective==
*[Disease name] was first discovered by [scientist name], a [nationality + occupation], in [year] during/following [event].
*In [year], [gene] mutations were first identified in the pathogenesis of [disease name].
*In [year], the first [discovery] was developed by [scientist] to treat/diagnose [disease name].
==Classification==
*[Disease name] may be classified according to [classification method] into [number] subtypes/groups:
:*[group1]
:*[group2]
:*[group3]
*Other variants of [disease name] include [disease subtype 1], [disease subtype 2], and [disease subtype 3].
==Pathophysiology==
*The pathogenesis of [disease name] is characterized by [feature1], [feature2], and [feature3].
*The [gene name] gene/Mutation in [gene name] has been associated with the development of [disease name], involving the [molecular pathway] pathway.
*On gross pathology, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].
*On microscopic histopathological analysis, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].
==Causes==
* [Disease name] may be caused by either [cause1], [cause2], or [cause3].
* [Disease name] is caused by a mutation in the [gene1], [gene2], or [gene3] gene[s].
* There are no established causes for [disease name].
==Differentiating [disease name] from other Diseases==
*[Disease name] must be differentiated from other diseases that cause [clinical feature 1], [clinical feature 2], and [clinical feature 3], such as:
:*[Differential dx1]
:*[Differential dx2]
:*[Differential dx3]
==Epidemiology and Demographics==
* The prevalence of [disease name] is approximately [number or range] per 100,000 individuals worldwide.
* In [year], the incidence of [disease name] was estimated to be [number or range] cases per 100,000 individuals in [location].
===Age===
*Patients of all age groups may develop [disease name].
*[Disease name] is more commonly observed among patients aged [age range] years old.
*[Disease name] is more commonly observed among [elderly patients/young patients/children].
===Gender===
*[Disease name] affects men and women equally.
*[Gender 1] are more commonly affected with [disease name] than [gender 2].
* The [gender 1] to [Gender 2] ratio is approximately [number > 1] to 1.
===Race===
*There is no racial predilection for [disease name].
*[Disease name] usually affects individuals of the [race 1] race.
*[Race 2] individuals are less likely to develop [disease name].
==Risk Factors==
*Common risk factors in the development of [disease name] are [risk factor 1], [risk factor 2], [risk factor 3], and [risk factor 4].
== Natural History, Complications and Prognosis==
*The majority of patients with [disease name] remain asymptomatic for [duration/years].
*Early clinical features include [manifestation 1], [manifestation 2], and [manifestation 3].
*If left untreated, [#%] of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].
*Common complications of [disease name] include [complication 1], [complication 2], and [complication 3].
*Prognosis is generally [excellent/good/poor], and the [1/5/10­year mortality/survival rate] of patients with [disease name] is approximately [#%].
== Diagnosis ==
===Diagnostic Criteria===
*The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met:
:*[criterion 1]
:*[criterion 2]
:*[criterion 3]
:*[criterion 4]
=== Symptoms ===
*[Disease name] is usually asymptomatic.
*Symptoms of [disease name] may include the following:
:*[symptom 1]
:*[symptom 2]
:*[symptom 3]
:*[symptom 4]
:*[symptom 5]
:*[symptom 6]
=== Physical Examination ===
*Patients with [disease name] usually appear [general appearance].
*Physical examination may be remarkable for:
:*[finding 1]
:*[finding 2]
:*[finding 3]
:*[finding 4]
:*[finding 5]
:*[finding 6]
=== Laboratory Findings ===
*There are no specific laboratory findings associated with [disease name].


Esophageal lymphoma
*A  [positive/negative] [test name] is diagnostic of [disease name].
The esophagus is a rarely involved site, accounting for < 1% of all gastrointestinal lymphomas. Esophageal involvement usually results from metastasis from cervical or mediastinal lymph nodes or extension from gastric lymphoma. Primary esophageal lymphoma is extremely rare, with less than 30 cases reported in the literature[17-19]. The majority are the DLBCL type of NHL. Only few cases of MALT lymphoma, MCL, T-cell lymphoma and HL involving the esophagus have been reported[19-22]. The etiology of esophageal lymphoma is unknown and the role of EBV in its pathogenesis is controversial. It has been shown that esophageal lymphoma is most common in immunocompromised patients, with HIV infection as a probable risk factor[17]. The age of presentation is variable. The common symptoms of patients with esophageal lymphoma include dysphagia, odynophagia, weight loss, chest pain or present as a result of complications such as hemorrhage, obstruction or perforation with a tracheoesophageal fistula. Constitutional B symptoms (fever, night sweats) are not typically present.
*An [elevated/reduced] concentration of [serum/blood/urinary/CSF/other] [lab test] is diagnostic of [disease name].
*Other laboratory findings consistent with the diagnosis of [disease name] include [abnormal test 1], [abnormal test 2], and [abnormal test 3].
===Imaging Findings===
*There are no [imaging study] findings associated with [disease name].
*[Imaging study 1] is the imaging modality of choice for [disease name].
*On [imaging study 1], [disease name] is characterized by [finding 1], [finding 2], and [finding 3].
*[Imaging study 2] may demonstrate [finding 1], [finding 2], and [finding 3].
=== Other Diagnostic Studies ===
*[Disease name] may also be diagnosed using [diagnostic study name].
*Findings on [diagnostic study name] include [finding 1], [finding 2], and [finding 3].
== Treatment ==
=== Medical Therapy ===
*There is no treatment for [disease name]; the mainstay of therapy is supportive care.
*The mainstay of therapy for [disease name] is [medical therapy 1] and [medical therapy 2].
*[Medical therapy 1] acts by [mechanism of action 1].
*Response to [medical therapy 1] can be monitored with [test/physical finding/imaging] every [frequency/duration].
=== Surgery ===
*Surgery is the mainstay of therapy for [disease name].
*[Surgical procedure] in conjunction with [chemotherapy/radiation] is the most common approach to the treatment of [disease name].
*[Surgical procedure] can only be performed for patients with [disease stage] [disease name].
=== Prevention ===
*There are no primary preventive measures available for [disease name].
*Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].


Almost all cases of primary esophageal lymphoma are DLBCLs with positive surface markers of tumor cells on immunofluorescent staining for immunoglobulin G and κ light chain. MALT lymphoma of the esophagus, however, unlike that of stomach, is not associated with H. pylori. HL of the esophagus is extremely rare. Follicular lymphoma affecting the esophagus is a part of multifocal presentation in the gastrointestinal tract.
*Once diagnosed and successfully treated, patients with [disease name] are followed-up every [duration]. Follow-up testing includes [test 1], [test 2], and [test 3].  
==References==
Pancoast syndrome (Pancoast’s syndrome) typically  results when a malignant neoplasm of the superior sulcus of the lung (lung cancer) leads to destructive lesions of the thoracic inlet and involvement of the brachial plexus and cervical sympathetic nerves (stellate ganglion). [1, 2, 3] This is accompanied by the following:


Radiological and endoscopic findings in esophageal lymphoma vary greatly and are nonspecific, which poses diagnostic challenges when it is differentiated from other benign and malignant lesions. Radiographic patterns of esophageal lymphoma, described in the literature[18-20], include stricture, ulcerated mass, multiple submucosal nodules, varicoid pattern, achalasia-like pattern, progressive aneurysmal dilatation, and tracheoesophageal fistula formation, and none of them is diagnostic. The morphological features seen at endoscopy are nodular, polypoidal, ulcerated or stenotic[21]. EUS has gained clinical acceptance for the assessment of lymphoma and preoperative staging, because it can accurately depict the structural abnormalities and depth of invasion of the lesions. EUS findings, however, are not pathognomonic, with presentation varied as anechoic, hypoechoic or even hyperechoic masses[22]. CT findings in esophageal lymphoma are nonspecific and not diagnostic, with features such as thickening of the wall mimicking other common tumors, such as esophageal carcinoma. CT, however, they are valuable for the evaluation of the extraluminal component of esophageal mass, its mediastinal extension, fistula formation, and status of lymph nodes, thus playing a role in staging disease, assisting in stratification of available treatment modalities, evaluating treatment responses, monitoring disease progression, and detecting relapses[23]. Recently, incorporation of PET/CT has emerged as an indispensable tool in staging the disease and following up the patients with extranodal involvement of Hodgkin’s and non-Hodgkin’s lymphoma, with an increased sensitivity and specificity. Diffuse large B-cell non-Hodgkin lymphoma of the esophagus is manifested as circumferential thickening of the wall, with diffuse increased FDG uptake. However, the intensity of FDG uptake in lymphoma is influenced by various intrinsic tumor factors such as histological features and grade, as well as various extrinsic factors. FDG PET/CT can also detect the indolent lesions that are undetectable on conventional cross-sectional imaging[24].
Severe pain in the shoulder region radiating toward the axilla and scapula, with later extension along the ulnar aspect of the arm to the hand
Atrophy of hand and arm muscles
Horner syndrome ( ptosis, miosis, hemianhidrosis, enophthalmos)
Compression of the blood vessels with edema
Most Pancoast tumors are squamous cell carcinomas (SCCs) or adenocarcinomas; only 3-5% are small cell carcinomas. Squamous cell carcinoma occurs more frequently, although large cell and undifferentiated types are also common. Adenocarcinoma is sometimes found in this location and can even be metastatic. Involvement of the phrenic or recurrent laryngeal nerve or superior vena cava obstruction is not representative of the classic Pancoast tumor.
 
Once universally fatal, Pancoast tumors are currently treatable with outcomes similar to those of other stage-matched non–small cell lung cancers. [4] Careful assessment and appropriate staging are performed before surgery, and selected patients are administered preoperative irradiation of 30 Gy over 2 weeks. After an interval of 2-4 weeks, surgical resection of the chest wall and lower brachial plexus and en bloc lung resection produces a 5-year survival rate of 30%. Contraindications to surgical management include the following:
 
Extension of the tumor into the neck or vertebrae
Presence of substantial mediastinal lymph nodes
Peripheral tumor dissemination
Protocols that use combinations of radiation therapy, chemotherapy, and surgery are currently being studied to determine the best therapy.
 
Pathophysiology
Pancoast tumors are a subset of lung cancers that invade the apical chest wall. Because of their location in the pleural apex, they invade adjoining tissue. Although other tumors may have a similar clinical presentation because of their location at the thoracic inlet, the most common cause is believed to be a bronchogenic carcinoma arising in or near the superior sulcus and invading adjacent extrathoracic structures by direct extension. Location, rather than pathology or histology of origin, is significant in producing the tumor’s characteristic clinical pattern. [5]
 
The bulk of a true Pancoast tumor is extrathoracic, originating in an extreme peripheral location with a plaquelike extension over the lung apex and principally involving the chest wall structures rather than the underlying lung parenchyma. Bronchogenic carcinomas occurring in the narrow confines of the thoracic inlet invade the lymphatic vessels in the endothoracic fascia and include, by direct extension, the following structures:
 
Intercostal nerves
Lower roots of the brachial plexus
Stellate ganglion
Sympathetic chain
Adjacent ribs and vertebrae.
Carcinomas in the superior pulmonary sulcus produce Pancoast syndrome, thus causing pain in the shoulder and along the ulnar nerve distribution of the arm and hand. [6] (These carcinomas also cause Horner syndrome.) These apical lung tumors tend to be locally invasive early. In the absence of metastases and regional nodal involvement, these apical cancers can be successfully treated.
 
The tumor may invade the bony structures of the chest, including the first or second thoracic vertebra or the first, second, or third rib. In a review of 60 patients with Pancoast tumors, Maggi et al found radiographic evidence of rib erosion in 50%; an almost equal percentage demonstrated involvement of the first or second rib, and 20% had involvement of the third rib. One patient had involvement of all 3 ribs. [7]
 
The tumor can also invade the first or second thoracic vertebral bodies or intervertebral foramina. From this point, it can extend to the spinal cord and result in cord compression. The subclavian vein or artery may also be invaded.
 
Etiology
The overwhelming majority of cases of Pancoast syndrome are non–small cell lung carcinoma (NSCLC), with more than 95% located in the superior sulcus. The most common varieties are SCC and adenocarcinoma; large cell carcinoma has also been reported.
 
Although quite rare (responsible for fewer than 5% percent of cases in most series), small cell carcinoma is also observed. Maggi et al reported small cell carcinoma in only 3 of the 60 patients in their series. [7] More typically, small cell carcinoma manifests in a central rather than a peripheral location.
 
Although NSCLC is by far the most common cause of Pancoast syndrome, the list of differential diagnoses is broad. Because of the wide variety of diseases that can produce Pancoast syndrome, a histologic diagnosis is mandatory before definitive treatment is initiated.
 
Rare causes include the following:
 
Desmoid tumors [8]
Hemangiopericytoma [9]
Adenoid cystic carcinoma [10]
Metastatic carcinoma [11]
Lymphoma [12]
Thyroid carcinoma [13]
Bacterial [14, 15] and fungal infections [16, 17]
Lymphomatoid granulomatosis
Vascular aneurysms
Amyloid nodules
Cervical rib syndrome
Inflammatory pseudotumor (plasma cell granuloma)
Mycotic subclavian artery aneurysm
Carotid pseudoaneurysm in a child (caused by a hydatid cyst)
Risk factors are similar for almost all lung cancers and include the following:
 
Prolonged asbestos exposure
Exposure to industrial elements (eg, gold, nickel)
Tobacco smoking
Secondary smoke exposure
Epidemiology
Overall, Pancoast tumors are much less common than other lung cancers, accounting for fewer than 5% of these cancers (1-3% in various previous series). [18, 19] Originally deemed universally fatal, Pancoast tumors are now amenable to curative treatment because of improvements in combined modality therapy and development of new techniques for resection.
 
Prognosis
The prognosis for patients with Pancoast syndrome is stage dependent. Adverse prognostic factors include the following:
 
Presence of Horner syndrome
Involvement of mediastinal lymph nodes
Incomplete resection
Involvement of supraclavicular lymph node
Vertebral body invasion
To date, no patient with the first 3 prognostic factors has survived for 5 years.
 
Distant disease limits survival. Treatment failure is especially frequent in patients with involvement of the brain. The authors recommend careful surveillance for brain metastasis during and after the therapy. The authors also recommend obtaining brain imaging prior to surgery in patients receiving induction therapy for the primary tumor.
 
Mortality and survival
Attar et al reported a median survival of 36.8 months in patients with T3 lesions undergoing combined modality treatment; median survival was only 6.4 months if the patient had T4 disease. [20]
 
Overall survival data were summarized by Detterbeck, who noted that 5-year survival rates ranged from 15% to 56%. [21] Of the 104 patients treated by Attar and coworkers, 7 (~7%) were 5-year survivors and 3 (~3%) were 10-year survivors. [20] Another study demonstrated surgical morbidity rates of 7-38%, with mortality ranging from 5% to 10%. [22]
 
For neoplastic causes, predictors of 5-year survival are weight loss, supraclavicular fossa or vertebral body involvement, disease stage, and surgical treatment. A study by an MD Anderson group reported the following findings [23] :
 
For patients with stage IIB disease, the 5-year survival rate was 47%, whereas for those with stage IIIA and IIIB disease, it was 14% and 16%, respectively
In patients with stage IIB disease, surgical treatment and weight loss were significant independent predictors of 5-year survival
Among patients with stage IIIA disease, the only predictor of survival was the Karnofsky performance score
In patients with stage IIIB disease, the only independent predictor of survival was a right superior sulcus location, which was associated with a worse 5-year survival rate than a left superior sulcus location
Compared with patients who had squamous cell tumors, more patients with adenocarcinoma had cerebral metastases within 5 years
Relapse
Locoregional relapse is common despite preoperative or postoperative radiation therapy. Muscolino et al found locoregional recurrence in 60% of patients treated with a combined radiosurgical approach. Ginsberg et al found that 94 of their 124 patients had recurrence of disease, with 72% of these cases being locoregional at initial recurrence. In two thirds of patients who underwent complete resection, local recurrences were the first site of relapse. [18]
 
This distribution of relapses was noted in several studies reviewed by Detterbeck. In many of these studies, patients received preoperative radiation therapy. [21] In the Memorial Sloan-Kettering experience, additional postoperative brachytherapy was administered to achieve maximal possible local control; despite these measures, local relapses and, ultimately, distant relapses were frequent. [18]
 
Pancoast syndrome (Pancoast’s syndrome) typically  results when a malignant neoplasm of the superior sulcus of the lung (lung cancer) leads to destructive lesions of the thoracic inlet and involvement of the brachial plexus and cervical sympathetic nerves (stellate ganglion). [1, 2, 3] This is accompanied by the following:
 
Severe pain in the shoulder region radiating toward the axilla and scapula, with later extension along the ulnar aspect of the arm to the hand
Atrophy of hand and arm muscles
Horner syndrome ( ptosis, miosis, hemianhidrosis, enophthalmos)
Compression of the blood vessels with edema
Most Pancoast tumors are squamous cell carcinomas (SCCs) or adenocarcinomas; only 3-5% are small cell carcinomas. Squamous cell carcinoma occurs more frequently, although large cell and undifferentiated types are also common. Adenocarcinoma is sometimes found in this location and can even be metastatic. Involvement of the phrenic or recurrent laryngeal nerve or superior vena cava obstruction is not representative of the classic Pancoast tumor.
 
Once universally fatal, Pancoast tumors are currently treatable with outcomes similar to those of other stage-matched non–small cell lung cancers. [4] Careful assessment and appropriate staging are performed before surgery, and selected patients are administered preoperative irradiation of 30 Gy over 2 weeks. After an interval of 2-4 weeks, surgical resection of the chest wall and lower brachial plexus and en bloc lung resection produces a 5-year survival rate of 30%. Contraindications to surgical management include the following:
 
Extension of the tumor into the neck or vertebrae
Presence of substantial mediastinal lymph nodes
Peripheral tumor dissemination
Protocols that use combinations of radiation therapy, chemotherapy, and surgery are currently being studied to determine the best therapy.
Pathophysiology
Pancoast tumors are a subset of lung cancers that invade the apical chest wall. Because of their location in the pleural apex, they invade adjoining tissue. Although other tumors may have a similar clinical presentation because of their location at the thoracic inlet, the most common cause is believed to be a bronchogenic carcinoma arising in or near the superior sulcus and invading adjacent extrathoracic structures by direct extension. Location, rather than pathology or histology of origin, is significant in producing the tumor’s characteristic clinical pattern. [5]
 
The bulk of a true Pancoast tumor is extrathoracic, originating in an extreme peripheral location with a plaquelike extension over the lung apex and principally involving the chest wall structures rather than the underlying lung parenchyma. Bronchogenic carcinomas occurring in the narrow confines of the thoracic inlet invade the lymphatic vessels in the endothoracic fascia and include, by direct extension, the following structures:
 
Intercostal nerves
Lower roots of the brachial plexus
Stellate ganglion
Sympathetic chain
Adjacent ribs and vertebrae.
Carcinomas in the superior pulmonary sulcus produce Pancoast syndrome, thus causing pain in the shoulder and along the ulnar nerve distribution of the arm and hand. [6] (These carcinomas also cause Horner syndrome.) These apical lung tumors tend to be locally invasive early. In the absence of metastases and regional nodal involvement, these apical cancers can be successfully treated.
 
The tumor may invade the bony structures of the chest, including the first or second thoracic vertebra or the first, second, or third rib. In a review of 60 patients with Pancoast tumors, Maggi et al found radiographic evidence of rib erosion in 50%; an almost equal percentage demonstrated involvement of the first or second rib, and 20% had involvement of the third rib. One patient had involvement of all 3 ribs. [7]
 
The tumor can also invade the first or second thoracic vertebral bodies or intervertebral foramina. From this point, it can extend to the spinal cord and result in cord compression. The subclavian vein or artery may also be invaded.

Latest revision as of 19:11, 16 February 2018

Overview

History Patients with Pancoast syndrome may present with referred pain over the scapula to the shoulder as the result of damage to the afferent pain fibers of the sympathetic trunk. The symptoms are typical of the location of the tumor in the superior sulcus or thoracic inlet adjacent to the eighth cervical nerve roots, the first and second thoracic trunk distribution, the sympathetic chain, and the stellate ganglion.

Initially, localized pain occurs in the shoulder and vertebral border of the scapula. Pain may later extend along an ulnar nerve distribution of the arm to the elbow and, ultimately, to the ulnar surface of the forearm and to the small and ring fingers of the hand (C8). If the tumor extends to the sympathetic chain and stellate ganglion, Horner syndrome and anhidrosis develop on the ipsilateral side of the face and upper extremity.

The pain is frequently relentless and unremitting, and adequate relief often requires administration of narcotics. The patient usually supports the elbow of the affected arm in the hand of the opposite upper extremity to ease the tension on the shoulder and upper arm.

The hand muscles may become weak and atrophic, and the triceps reflex may be absent. The first or second rib or vertebrae may be involved by tumor extension and intensify the severity of pain. The spinal canal and spinal cord may be invaded or compressed, with subsequent symptoms of spinal cord tumor or cervical disk disease.

Many patients are initially treated for presumed local musculoskeletal conditions such as bursitis and vertebral osteoarthritis with radicular pain. Symptoms may persist for many months before evaluation for progression reveals the cause. In a 1994 series by Maggi et al, symptoms lasted 2-36 months, with a mean of 9.7 months. [7] In 1997, Muscolino described plexopathy or radicular symptoms in 53% of 15 patients. [24]


Historical Perspective

  • [Disease name] was first discovered by [scientist name], a [nationality + occupation], in [year] during/following [event].
  • In [year], [gene] mutations were first identified in the pathogenesis of [disease name].
  • In [year], the first [discovery] was developed by [scientist] to treat/diagnose [disease name].

Classification

  • [Disease name] may be classified according to [classification method] into [number] subtypes/groups:
  • [group1]
  • [group2]
  • [group3]
  • Other variants of [disease name] include [disease subtype 1], [disease subtype 2], and [disease subtype 3].

Pathophysiology

  • The pathogenesis of [disease name] is characterized by [feature1], [feature2], and [feature3].
  • The [gene name] gene/Mutation in [gene name] has been associated with the development of [disease name], involving the [molecular pathway] pathway.
  • On gross pathology, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].
  • On microscopic histopathological analysis, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].

Causes

  • [Disease name] may be caused by either [cause1], [cause2], or [cause3].
  • [Disease name] is caused by a mutation in the [gene1], [gene2], or [gene3] gene[s].
  • There are no established causes for [disease name].

Differentiating [disease name] from other Diseases

  • [Disease name] must be differentiated from other diseases that cause [clinical feature 1], [clinical feature 2], and [clinical feature 3], such as:
  • [Differential dx1]
  • [Differential dx2]
  • [Differential dx3]

Epidemiology and Demographics

  • The prevalence of [disease name] is approximately [number or range] per 100,000 individuals worldwide.
  • In [year], the incidence of [disease name] was estimated to be [number or range] cases per 100,000 individuals in [location].

Age

  • Patients of all age groups may develop [disease name].
  • [Disease name] is more commonly observed among patients aged [age range] years old.
  • [Disease name] is more commonly observed among [elderly patients/young patients/children].

Gender

  • [Disease name] affects men and women equally.
  • [Gender 1] are more commonly affected with [disease name] than [gender 2].
  • The [gender 1] to [Gender 2] ratio is approximately [number > 1] to 1.

Race

  • There is no racial predilection for [disease name].
  • [Disease name] usually affects individuals of the [race 1] race.
  • [Race 2] individuals are less likely to develop [disease name].

Risk Factors

  • Common risk factors in the development of [disease name] are [risk factor 1], [risk factor 2], [risk factor 3], and [risk factor 4].

Natural History, Complications and Prognosis

  • The majority of patients with [disease name] remain asymptomatic for [duration/years].
  • Early clinical features include [manifestation 1], [manifestation 2], and [manifestation 3].
  • If left untreated, [#%] of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].
  • Common complications of [disease name] include [complication 1], [complication 2], and [complication 3].
  • Prognosis is generally [excellent/good/poor], and the [1/5/10­year mortality/survival rate] of patients with [disease name] is approximately [#%].

Diagnosis

Diagnostic Criteria

  • The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met:
  • [criterion 1]
  • [criterion 2]
  • [criterion 3]
  • [criterion 4]

Symptoms

  • [Disease name] is usually asymptomatic.
  • Symptoms of [disease name] may include the following:
  • [symptom 1]
  • [symptom 2]
  • [symptom 3]
  • [symptom 4]
  • [symptom 5]
  • [symptom 6]

Physical Examination

  • Patients with [disease name] usually appear [general appearance].
  • Physical examination may be remarkable for:
  • [finding 1]
  • [finding 2]
  • [finding 3]
  • [finding 4]
  • [finding 5]
  • [finding 6]

Laboratory Findings

  • There are no specific laboratory findings associated with [disease name].
  • A [positive/negative] [test name] is diagnostic of [disease name].
  • An [elevated/reduced] concentration of [serum/blood/urinary/CSF/other] [lab test] is diagnostic of [disease name].
  • Other laboratory findings consistent with the diagnosis of [disease name] include [abnormal test 1], [abnormal test 2], and [abnormal test 3].

Imaging Findings

  • There are no [imaging study] findings associated with [disease name].
  • [Imaging study 1] is the imaging modality of choice for [disease name].
  • On [imaging study 1], [disease name] is characterized by [finding 1], [finding 2], and [finding 3].
  • [Imaging study 2] may demonstrate [finding 1], [finding 2], and [finding 3].

Other Diagnostic Studies

  • [Disease name] may also be diagnosed using [diagnostic study name].
  • Findings on [diagnostic study name] include [finding 1], [finding 2], and [finding 3].

Treatment

Medical Therapy

  • There is no treatment for [disease name]; the mainstay of therapy is supportive care.
  • The mainstay of therapy for [disease name] is [medical therapy 1] and [medical therapy 2].
  • [Medical therapy 1] acts by [mechanism of action 1].
  • Response to [medical therapy 1] can be monitored with [test/physical finding/imaging] every [frequency/duration].

Surgery

  • Surgery is the mainstay of therapy for [disease name].
  • [Surgical procedure] in conjunction with [chemotherapy/radiation] is the most common approach to the treatment of [disease name].
  • [Surgical procedure] can only be performed for patients with [disease stage] [disease name].

Prevention

  • There are no primary preventive measures available for [disease name].
  • Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].
  • Once diagnosed and successfully treated, patients with [disease name] are followed-up every [duration]. Follow-up testing includes [test 1], [test 2], and [test 3].

References

Pancoast syndrome (Pancoast’s syndrome) typically results when a malignant neoplasm of the superior sulcus of the lung (lung cancer) leads to destructive lesions of the thoracic inlet and involvement of the brachial plexus and cervical sympathetic nerves (stellate ganglion). [1, 2, 3] This is accompanied by the following:

Severe pain in the shoulder region radiating toward the axilla and scapula, with later extension along the ulnar aspect of the arm to the hand Atrophy of hand and arm muscles Horner syndrome ( ptosis, miosis, hemianhidrosis, enophthalmos) Compression of the blood vessels with edema Most Pancoast tumors are squamous cell carcinomas (SCCs) or adenocarcinomas; only 3-5% are small cell carcinomas. Squamous cell carcinoma occurs more frequently, although large cell and undifferentiated types are also common. Adenocarcinoma is sometimes found in this location and can even be metastatic. Involvement of the phrenic or recurrent laryngeal nerve or superior vena cava obstruction is not representative of the classic Pancoast tumor.

Once universally fatal, Pancoast tumors are currently treatable with outcomes similar to those of other stage-matched non–small cell lung cancers. [4] Careful assessment and appropriate staging are performed before surgery, and selected patients are administered preoperative irradiation of 30 Gy over 2 weeks. After an interval of 2-4 weeks, surgical resection of the chest wall and lower brachial plexus and en bloc lung resection produces a 5-year survival rate of 30%. Contraindications to surgical management include the following:

Extension of the tumor into the neck or vertebrae Presence of substantial mediastinal lymph nodes Peripheral tumor dissemination Protocols that use combinations of radiation therapy, chemotherapy, and surgery are currently being studied to determine the best therapy.

Pathophysiology Pancoast tumors are a subset of lung cancers that invade the apical chest wall. Because of their location in the pleural apex, they invade adjoining tissue. Although other tumors may have a similar clinical presentation because of their location at the thoracic inlet, the most common cause is believed to be a bronchogenic carcinoma arising in or near the superior sulcus and invading adjacent extrathoracic structures by direct extension. Location, rather than pathology or histology of origin, is significant in producing the tumor’s characteristic clinical pattern. [5]

The bulk of a true Pancoast tumor is extrathoracic, originating in an extreme peripheral location with a plaquelike extension over the lung apex and principally involving the chest wall structures rather than the underlying lung parenchyma. Bronchogenic carcinomas occurring in the narrow confines of the thoracic inlet invade the lymphatic vessels in the endothoracic fascia and include, by direct extension, the following structures:

Intercostal nerves Lower roots of the brachial plexus Stellate ganglion Sympathetic chain Adjacent ribs and vertebrae. Carcinomas in the superior pulmonary sulcus produce Pancoast syndrome, thus causing pain in the shoulder and along the ulnar nerve distribution of the arm and hand. [6] (These carcinomas also cause Horner syndrome.) These apical lung tumors tend to be locally invasive early. In the absence of metastases and regional nodal involvement, these apical cancers can be successfully treated.

The tumor may invade the bony structures of the chest, including the first or second thoracic vertebra or the first, second, or third rib. In a review of 60 patients with Pancoast tumors, Maggi et al found radiographic evidence of rib erosion in 50%; an almost equal percentage demonstrated involvement of the first or second rib, and 20% had involvement of the third rib. One patient had involvement of all 3 ribs. [7]

The tumor can also invade the first or second thoracic vertebral bodies or intervertebral foramina. From this point, it can extend to the spinal cord and result in cord compression. The subclavian vein or artery may also be invaded.

Etiology The overwhelming majority of cases of Pancoast syndrome are non–small cell lung carcinoma (NSCLC), with more than 95% located in the superior sulcus. The most common varieties are SCC and adenocarcinoma; large cell carcinoma has also been reported.

Although quite rare (responsible for fewer than 5% percent of cases in most series), small cell carcinoma is also observed. Maggi et al reported small cell carcinoma in only 3 of the 60 patients in their series. [7] More typically, small cell carcinoma manifests in a central rather than a peripheral location.

Although NSCLC is by far the most common cause of Pancoast syndrome, the list of differential diagnoses is broad. Because of the wide variety of diseases that can produce Pancoast syndrome, a histologic diagnosis is mandatory before definitive treatment is initiated.

Rare causes include the following:

Desmoid tumors [8] Hemangiopericytoma [9] Adenoid cystic carcinoma [10] Metastatic carcinoma [11] Lymphoma [12] Thyroid carcinoma [13] Bacterial [14, 15] and fungal infections [16, 17] Lymphomatoid granulomatosis Vascular aneurysms Amyloid nodules Cervical rib syndrome Inflammatory pseudotumor (plasma cell granuloma) Mycotic subclavian artery aneurysm Carotid pseudoaneurysm in a child (caused by a hydatid cyst) Risk factors are similar for almost all lung cancers and include the following:

Prolonged asbestos exposure Exposure to industrial elements (eg, gold, nickel) Tobacco smoking Secondary smoke exposure Epidemiology Overall, Pancoast tumors are much less common than other lung cancers, accounting for fewer than 5% of these cancers (1-3% in various previous series). [18, 19] Originally deemed universally fatal, Pancoast tumors are now amenable to curative treatment because of improvements in combined modality therapy and development of new techniques for resection.

Prognosis The prognosis for patients with Pancoast syndrome is stage dependent. Adverse prognostic factors include the following:

Presence of Horner syndrome Involvement of mediastinal lymph nodes Incomplete resection Involvement of supraclavicular lymph node Vertebral body invasion To date, no patient with the first 3 prognostic factors has survived for 5 years.

Distant disease limits survival. Treatment failure is especially frequent in patients with involvement of the brain. The authors recommend careful surveillance for brain metastasis during and after the therapy. The authors also recommend obtaining brain imaging prior to surgery in patients receiving induction therapy for the primary tumor.

Mortality and survival Attar et al reported a median survival of 36.8 months in patients with T3 lesions undergoing combined modality treatment; median survival was only 6.4 months if the patient had T4 disease. [20]

Overall survival data were summarized by Detterbeck, who noted that 5-year survival rates ranged from 15% to 56%. [21] Of the 104 patients treated by Attar and coworkers, 7 (~7%) were 5-year survivors and 3 (~3%) were 10-year survivors. [20] Another study demonstrated surgical morbidity rates of 7-38%, with mortality ranging from 5% to 10%. [22]

For neoplastic causes, predictors of 5-year survival are weight loss, supraclavicular fossa or vertebral body involvement, disease stage, and surgical treatment. A study by an MD Anderson group reported the following findings [23] :

For patients with stage IIB disease, the 5-year survival rate was 47%, whereas for those with stage IIIA and IIIB disease, it was 14% and 16%, respectively In patients with stage IIB disease, surgical treatment and weight loss were significant independent predictors of 5-year survival Among patients with stage IIIA disease, the only predictor of survival was the Karnofsky performance score In patients with stage IIIB disease, the only independent predictor of survival was a right superior sulcus location, which was associated with a worse 5-year survival rate than a left superior sulcus location Compared with patients who had squamous cell tumors, more patients with adenocarcinoma had cerebral metastases within 5 years Relapse Locoregional relapse is common despite preoperative or postoperative radiation therapy. Muscolino et al found locoregional recurrence in 60% of patients treated with a combined radiosurgical approach. Ginsberg et al found that 94 of their 124 patients had recurrence of disease, with 72% of these cases being locoregional at initial recurrence. In two thirds of patients who underwent complete resection, local recurrences were the first site of relapse. [18]

This distribution of relapses was noted in several studies reviewed by Detterbeck. In many of these studies, patients received preoperative radiation therapy. [21] In the Memorial Sloan-Kettering experience, additional postoperative brachytherapy was administered to achieve maximal possible local control; despite these measures, local relapses and, ultimately, distant relapses were frequent. [18]

Pancoast syndrome (Pancoast’s syndrome) typically results when a malignant neoplasm of the superior sulcus of the lung (lung cancer) leads to destructive lesions of the thoracic inlet and involvement of the brachial plexus and cervical sympathetic nerves (stellate ganglion). [1, 2, 3] This is accompanied by the following:

Severe pain in the shoulder region radiating toward the axilla and scapula, with later extension along the ulnar aspect of the arm to the hand Atrophy of hand and arm muscles Horner syndrome ( ptosis, miosis, hemianhidrosis, enophthalmos) Compression of the blood vessels with edema Most Pancoast tumors are squamous cell carcinomas (SCCs) or adenocarcinomas; only 3-5% are small cell carcinomas. Squamous cell carcinoma occurs more frequently, although large cell and undifferentiated types are also common. Adenocarcinoma is sometimes found in this location and can even be metastatic. Involvement of the phrenic or recurrent laryngeal nerve or superior vena cava obstruction is not representative of the classic Pancoast tumor.

Once universally fatal, Pancoast tumors are currently treatable with outcomes similar to those of other stage-matched non–small cell lung cancers. [4] Careful assessment and appropriate staging are performed before surgery, and selected patients are administered preoperative irradiation of 30 Gy over 2 weeks. After an interval of 2-4 weeks, surgical resection of the chest wall and lower brachial plexus and en bloc lung resection produces a 5-year survival rate of 30%. Contraindications to surgical management include the following:

Extension of the tumor into the neck or vertebrae Presence of substantial mediastinal lymph nodes Peripheral tumor dissemination Protocols that use combinations of radiation therapy, chemotherapy, and surgery are currently being studied to determine the best therapy. Pathophysiology Pancoast tumors are a subset of lung cancers that invade the apical chest wall. Because of their location in the pleural apex, they invade adjoining tissue. Although other tumors may have a similar clinical presentation because of their location at the thoracic inlet, the most common cause is believed to be a bronchogenic carcinoma arising in or near the superior sulcus and invading adjacent extrathoracic structures by direct extension. Location, rather than pathology or histology of origin, is significant in producing the tumor’s characteristic clinical pattern. [5]

The bulk of a true Pancoast tumor is extrathoracic, originating in an extreme peripheral location with a plaquelike extension over the lung apex and principally involving the chest wall structures rather than the underlying lung parenchyma. Bronchogenic carcinomas occurring in the narrow confines of the thoracic inlet invade the lymphatic vessels in the endothoracic fascia and include, by direct extension, the following structures:

Intercostal nerves Lower roots of the brachial plexus Stellate ganglion Sympathetic chain Adjacent ribs and vertebrae. Carcinomas in the superior pulmonary sulcus produce Pancoast syndrome, thus causing pain in the shoulder and along the ulnar nerve distribution of the arm and hand. [6] (These carcinomas also cause Horner syndrome.) These apical lung tumors tend to be locally invasive early. In the absence of metastases and regional nodal involvement, these apical cancers can be successfully treated.

The tumor may invade the bony structures of the chest, including the first or second thoracic vertebra or the first, second, or third rib. In a review of 60 patients with Pancoast tumors, Maggi et al found radiographic evidence of rib erosion in 50%; an almost equal percentage demonstrated involvement of the first or second rib, and 20% had involvement of the third rib. One patient had involvement of all 3 ribs. [7]

The tumor can also invade the first or second thoracic vertebral bodies or intervertebral foramina. From this point, it can extend to the spinal cord and result in cord compression. The subclavian vein or artery may also be invaded.