Fanconi anemia future or investigational therapies: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
'''Therapies under development'''
'''Therapies under development'''


● '''Gene therapy''' – Gene therapy has the potential to improve bone marrow function in individuals with FA since the origin of bone marrow failure is deficiency of an FA gene function. Gene-corrected CD34+ stem cells from FA patients have been engrafted in immune-deficient mice, but successful clinical applications of gene therapy for FA have not yet been demonstrated.<ref name="pmid28801449">{{cite journal| author=Río P, Navarro S, Guenechea G, Sánchez-Domínguez R, Lamana ML, Yañez R et al.| title=Engraftment and in vivo proliferation advantage of gene-corrected mobilized CD34+ cells from Fanconi anemia patients. | journal=Blood | year= 2017 | volume= 130 | issue= 13 | pages= 1535-1542 | pmid=28801449 | doi=10.1182/blood-2017-03-774174 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28801449  }}</ref>
● '''[[Gene therapy]]''' – Gene therapy has the potential to improve bone marrow function in individuals with FA since the origin of bone marrow failure is deficiency of an FA gene function. Gene-corrected CD34+ stem cells from FA patients have been engrafted in immune-deficient mice, but successful clinical applications of gene therapy for FA have not yet been demonstrated.<ref name="pmid28801449">{{cite journal| author=Río P, Navarro S, Guenechea G, Sánchez-Domínguez R, Lamana ML, Yañez R et al.| title=Engraftment and in vivo proliferation advantage of gene-corrected mobilized CD34+ cells from Fanconi anemia patients. | journal=Blood | year= 2017 | volume= 130 | issue= 13 | pages= 1535-1542 | pmid=28801449 | doi=10.1182/blood-2017-03-774174 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28801449  }}</ref><blockquote>Major inclusion and exclusion criteria for gene therapy in patients with biallelic FANCA germ-line mutations as proposed by International Fanconi Anemia Gene Therapy Working Group.<ref name="pmid4685155">{{cite journal| author=Arefolov VA, Raevskiĭ KS| title=[Electron microscopic study of the effect of triftazin on reticular formation neurons in the rat medulla oblongata and mesencephalon]. | journal=Farmakol Toksikol | year= 1973 | volume= 36 | issue= 1 | pages= 5-8 | pmid=4685155 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=4685155  }}</ref></blockquote>
 
Major inclusion and exclusion criteria for gene therapy in patients with biallelic FANCA germ-line mutations as proposed by International Fanconi Anemia Gene Therapy Working Group.<ref name="pmid4685155">{{cite journal| author=Arefolov VA, Raevskiĭ KS| title=[Electron microscopic study of the effect of triftazin on reticular formation neurons in the rat medulla oblongata and mesencephalon]. | journal=Farmakol Toksikol | year= 1973 | volume= 36 | issue= 1 | pages= 5-8 | pmid=4685155 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=4685155  }}</ref>
{| class="wikitable"
{| class="wikitable"
| colspan="1" rowspan="1" |Inclusion Criteria
| colspan="1" rowspan="1" |Inclusion Criteria
Line 17: Line 15:
| colspan="1" rowspan="1" |2. Patients with an HLA identical sibling donor.
| colspan="1" rowspan="1" |2. Patients with an HLA identical sibling donor.
|}
|}
Metformin – In a mouse model of FA (''FANCD''2 gene knockout), metformin produced modest increases in white blood cell (WBC) counts, hemoglobin levels, and platelet counts.<ref name="pmid27756748">{{cite journal| author=Zhang QS, Tang W, Deater M, Phan N, Marcogliese AN, Li H et al.| title=Metformin improves defective hematopoiesis and delays tumor formation in Fanconi anemia mice. | journal=Blood | year= 2016 | volume= 128 | issue= 24 | pages= 2774-2784 | pmid=27756748 | doi=10.1182/blood-2015-11-683490 | pmc=5159699 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27756748  }}</ref> There was also reduced p53-dependent tumor formation and a suggestion of decreased susceptibility to DNA damage. Metformin has not been evaluated in patients with FA.
[[Metformin]] – In a mouse model of FA (''FANCD''2 gene knockout), metformin produced modest increases in white blood cell (WBC) counts, hemoglobin levels, and platelet counts.<ref name="pmid27756748">{{cite journal| author=Zhang QS, Tang W, Deater M, Phan N, Marcogliese AN, Li H et al.| title=Metformin improves defective hematopoiesis and delays tumor formation in Fanconi anemia mice. | journal=Blood | year= 2016 | volume= 128 | issue= 24 | pages= 2774-2784 | pmid=27756748 | doi=10.1182/blood-2015-11-683490 | pmc=5159699 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27756748  }}</ref> There was also reduced p53-dependent tumor formation and a suggestion of decreased susceptibility to DNA damage. Metformin has not been evaluated in patients with FA.


__NOTOC__
__NOTOC__

Latest revision as of 18:11, 26 June 2018

Therapies under development

● Gene therapy – Gene therapy has the potential to improve bone marrow function in individuals with FA since the origin of bone marrow failure is deficiency of an FA gene function. Gene-corrected CD34+ stem cells from FA patients have been engrafted in immune-deficient mice, but successful clinical applications of gene therapy for FA have not yet been demonstrated.[1]

Major inclusion and exclusion criteria for gene therapy in patients with biallelic FANCA germ-line mutations as proposed by International Fanconi Anemia Gene Therapy Working Group.[2]

Inclusion Criteria 1. FA demonstrated by a positive test for increased sensitivity to chromosomal breakage with MMC/DEB and determination of FA complementation group A by somatic cell hybrids, molecular characterization, western blot analysis, direct FANCA sequencing, or acquisition of mitomycin C resistance after in vitro transduction with a vector bearing the FANCA cDNA.
2. Bone Marrow analysis demonstrating normal karyotype.
Exclusion Criteria 1. Uncontrolled infection (viral, bacterial, or fungal).
2. Patients with an HLA identical sibling donor.

Metformin – In a mouse model of FA (FANCD2 gene knockout), metformin produced modest increases in white blood cell (WBC) counts, hemoglobin levels, and platelet counts.[3] There was also reduced p53-dependent tumor formation and a suggestion of decreased susceptibility to DNA damage. Metformin has not been evaluated in patients with FA.


References

  1. Río P, Navarro S, Guenechea G, Sánchez-Domínguez R, Lamana ML, Yañez R; et al. (2017). "Engraftment and in vivo proliferation advantage of gene-corrected mobilized CD34+ cells from Fanconi anemia patients". Blood. 130 (13): 1535–1542. doi:10.1182/blood-2017-03-774174. PMID 28801449.
  2. Arefolov VA, Raevskiĭ KS (1973). "[Electron microscopic study of the effect of triftazin on reticular formation neurons in the rat medulla oblongata and mesencephalon]". Farmakol Toksikol. 36 (1): 5–8. PMID 4685155.
  3. Zhang QS, Tang W, Deater M, Phan N, Marcogliese AN, Li H; et al. (2016). "Metformin improves defective hematopoiesis and delays tumor formation in Fanconi anemia mice". Blood. 128 (24): 2774–2784. doi:10.1182/blood-2015-11-683490. PMC 5159699. PMID 27756748.