The protein encoded by this gene is a human guanine nucleotide releasing protein for Ras protein. It belongs to the adaptor-type Src homology (SH)2-containing molecules. Src homology 2 domains are globular protein modules present in a large variety of functionally distinct proteins. They mediate binding events that control the activity and localization of many proteins involved in the transmission of signals from the cell surface to the nucleus. The mRNAs of these proteins are expressed ubiquitously in human adult and fetal tissues. Several alternatively spliced transcript variants of this gene have been described, but the full-length nature of some variants has not been determined.[3]
↑Takai S, Tanaka M, Sugimura H, Yamada K, Naito Y, Kino I, Matsuda M (Nov 1994). "Mapping of the human C3G gene coding a guanine nucleotide releasing protein for Ras family to 9q34.3 by fluorescence in situ hybridization". Human Genetics. 94 (5): 549–50. doi:10.1007/bf00211024. PMID7959692.
↑ 5.05.1Smit L, van der Horst G, Borst J (Apr 1996). "Sos, Vav, and C3G participate in B cell receptor-induced signaling pathways and differentially associate with Shc-Grb2, Crk, and Crk-L adaptors". The Journal of Biological Chemistry. 271 (15): 8564–9. doi:10.1074/jbc.271.15.8564. PMID8621483.
↑Kyono WT, de Jong R, Park RK, Liu Y, Heisterkamp N, Groffen J, Durden DL (Nov 1998). "Differential interaction of Crkl with Cbl or C3G, Hef-1, and gamma subunit immunoreceptor tyrosine-based activation motif in signaling of myeloid high affinity Fc receptor for IgG (Fc gamma RI)". Journal of Immunology. 161 (10): 5555–63. PMID9820532.
↑Grumbach IM, Mayer IA, Uddin S, Lekmine F, Majchrzak B, Yamauchi H, Fujita S, Druker B, Fish EN, Platanias LC (Feb 2001). "Engagement of the CrkL adaptor in interferon alpha signalling in BCR-ABL-expressing cells". British Journal of Haematology. 112 (2): 327–36. doi:10.1046/j.1365-2141.2001.02556.x. PMID11167825.
↑Ahmad S, Alsayed YM, Druker BJ, Platanias LC (Nov 1997). "The type I interferon receptor mediates tyrosine phosphorylation of the CrkL adaptor protein". The Journal of Biological Chemistry. 272 (48): 29991–4. doi:10.1074/jbc.272.48.29991. PMID9374471.
↑Chin H, Saito T, Arai A, Yamamoto K, Kamiyama R, Miyasaka N, Miura O (Oct 1997). "Erythropoietin and IL-3 induce tyrosine phosphorylation of CrkL and its association with Shc, SHP-2, and Cbl in hematopoietic cells". Biochemical and Biophysical Research Communications. 239 (2): 412–7. doi:10.1006/bbrc.1997.7480. PMID9344843.
↑Wu C, Lai CF, Mobley WC (Aug 2001). "Nerve growth factor activates persistent Rap1 signaling in endosomes". The Journal of Neuroscience. 21 (15): 5406–16. PMID11466412.
↑Sakkab D, Lewitzky M, Posern G, Schaeper U, Sachs M, Birchmeier W, Feller SM (Apr 2000). "Signaling of hepatocyte growth factor/scatter factor (HGF) to the small GTPase Rap1 via the large docking protein Gab1 and the adapter protein CRKL". The Journal of Biological Chemistry. 275 (15): 10772–8. doi:10.1074/jbc.275.15.10772. PMID10753869.
↑Shivakrupa R, Radha V, Sudhakar Ch, Swarup G (Dec 2003). "Physical and functional interaction between Hck tyrosine kinase and guanine nucleotide exchange factor C3G results in apoptosis, which is independent of C3G catalytic domain". The Journal of Biological Chemistry. 278 (52): 52188–94. doi:10.1074/jbc.M310656200. PMID14551197.
Further reading
Pessin JE, Okada S (Mar 1999). "Insulin and EGF receptors integrate the Ras and Rap signaling pathways". Endocrine Journal. 46 Suppl: S11–6. doi:10.1507/endocrj.46.suppl_s11. PMID12054111.
Ehrhardt A, Ehrhardt GR, Guo X, Schrader JW (Oct 2002). "Ras and relatives--job sharing and networking keep an old family together". Experimental Hematology. 30 (10): 1089–106. doi:10.1016/S0301-472X(02)00904-9. PMID12384139.
Knudsen BS, Feller SM, Hanafusa H (Dec 1994). "Four proline-rich sequences of the guanine-nucleotide exchange factor C3G bind with unique specificity to the first Src homology 3 domain of Crk". The Journal of Biological Chemistry. 269 (52): 32781–7. PMID7806500.
Smit L, van der Horst G, Borst J (Apr 1996). "Sos, Vav, and C3G participate in B cell receptor-induced signaling pathways and differentially associate with Shc-Grb2, Crk, and Crk-L adaptors". The Journal of Biological Chemistry. 271 (15): 8564–9. doi:10.1074/jbc.271.15.8564. PMID8621483.
Matsuda M, Ota S, Tanimura R, Nakamura H, Matuoka K, Takenawa T, Nagashima K, Kurata T (Jun 1996). "Interaction between the amino-terminal SH3 domain of CRK and its natural target proteins". The Journal of Biological Chemistry. 271 (24): 14468–72. doi:10.1074/jbc.271.24.14468. PMID8662907.
Uemura N, Salgia R, Li JL, Pisick E, Sattler M, Griffin JD (Mar 1997). "The BCR/ABL oncogene alters interaction of the adapter proteins CRKL and CRK with cellular proteins". Leukemia. 11 (3): 376–85. doi:10.1038/sj.leu.2400590. PMID9067577.
Husson H, Mograbi B, Schmid-Antomarchi H, Fischer S, Rossi B (May 1997). "CSF-1 stimulation induces the formation of a multiprotein complex including CSF-1 receptor, c-Cbl, PI 3-kinase, Crk-II and Grb2". Oncogene. 14 (19): 2331–8. doi:10.1038/sj.onc.1201074. PMID9178909.
Chin H, Saito T, Arai A, Yamamoto K, Kamiyama R, Miyasaka N, Miura O (Oct 1997). "Erythropoietin and IL-3 induce tyrosine phosphorylation of CrkL and its association with Shc, SHP-2, and Cbl in hematopoietic cells". Biochemical and Biophysical Research Communications. 239 (2): 412–7. doi:10.1006/bbrc.1997.7480. PMID9344843.
Ahmad S, Alsayed YM, Druker BJ, Platanias LC (Nov 1997). "The type I interferon receptor mediates tyrosine phosphorylation of the CrkL adaptor protein". The Journal of Biological Chemistry. 272 (48): 29991–4. doi:10.1074/jbc.272.48.29991. PMID9374471.
Guerrero C, Fernandez-Medarde A, Rojas JM, Font de Mora J, Esteban LM, Santos E (Feb 1998). "Transformation suppressor activity of C3G is independent of its CDC25-homology domain". Oncogene. 16 (5): 613–24. doi:10.1038/sj.onc.1201569. PMID9482107.
Ohashi Y, Tachibana K, Kamiguchi K, Fujita H, Morimoto C (Mar 1998). "T cell receptor-mediated tyrosine phosphorylation of Cas-L, a 105-kDa Crk-associated substrate-related protein, and its association of Crk and C3G". The Journal of Biological Chemistry. 273 (11): 6446–51. doi:10.1074/jbc.273.11.6446. PMID9497377.
Astier A, Manié SN, Law SF, Canty T, Haghayghi N, Druker BJ, Salgia R, Golemis EA, Freedman AS (Dec 1997). "Association of the Cas-like molecule HEF1 with CrkL following integrin and antigen receptor signaling in human B-cells: potential relevance to neoplastic lymphohematopoietic cells". Leukemia & Lymphoma. 28 (1–2): 65–72. doi:10.3109/10428199709058332. PMID9498705.
Yokote K, Hellman U, Ekman S, Saito Y, Rönnstrand L, Saito Y, Heldin CH, Mori S (Mar 1998). "Identification of Tyr-762 in the platelet-derived growth factor alpha-receptor as the binding site for Crk proteins". Oncogene. 16 (10): 1229–39. doi:10.1038/sj.onc.1201641. PMID9546424.
Ichiba T, Hashimoto Y, Nakaya M, Kuraishi Y, Tanaka S, Kurata T, Mochizuki N, Matsuda M (May 1999). "Activation of C3G guanine nucleotide exchange factor for Rap1 by phosphorylation of tyrosine 504". The Journal of Biological Chemistry. 274 (20): 14376–81. doi:10.1074/jbc.274.20.14376. PMID10318861.
Nosaka Y, Arai A, Miyasaka N, Miura O (Oct 1999). "CrkL mediates Ras-dependent activation of the Raf/ERK pathway through the guanine nucleotide exchange factor C3G in hematopoietic cells stimulated with erythropoietin or interleukin-3". The Journal of Biological Chemistry. 274 (42): 30154–62. doi:10.1074/jbc.274.42.30154. PMID10514505.
Uemura N, Griffin JD (Dec 1999). "The adapter protein Crkl links Cbl to C3G after integrin ligation and enhances cell migration". The Journal of Biological Chemistry. 274 (53): 37525–32. doi:10.1074/jbc.274.53.37525. PMID10608804.