Osteosarcoma pathophysiology: Difference between revisions

Jump to navigation Jump to search
Gunnam (talk | contribs)
Gunnam (talk | contribs)
 
(11 intermediate revisions by the same user not shown)
Line 97: Line 97:
* The ability of [[osteosarcoma]] cells to metastasise by such a pathway completely depended on the complex cell-cell and cell-[[matrix]] interactions.
* The ability of [[osteosarcoma]] cells to metastasise by such a pathway completely depended on the complex cell-cell and cell-[[matrix]] interactions.


=== Osteoclast Function <ref name="pmid28263668">{{cite journal |vauthors=Kelleher FC, O'Sullivan H |title=Monocytes, Macrophages, and Osteoclasts in Osteosarcoma |journal=J Adolesc Young Adult Oncol |volume=6 |issue=3 |pages=396–405 |date=September 2017 |pmid=28263668 |doi=10.1089/jayao.2016.0078 |url=}}</ref><ref name="pmid21204734">{{cite journal |vauthors=Broadhead ML, Clark JC, Dass CR, Choong PF, Myers DE |title=Therapeutic targeting of osteoclast function and pathways |journal=Expert Opin. Ther. Targets |volume=15 |issue=2 |pages=169–81 |date=February 2011 |pmid=21204734 |doi=10.1517/14728222.2011.546351 |url=}}</ref><ref name="pmid22846337">{{cite journal |vauthors=Endo-Munoz L, Evdokiou A, Saunders NA |title=The role of osteoclasts and tumour-associated macrophages in osteosarcoma metastasis |journal=Biochim. Biophys. Acta |volume=1826 |issue=2 |pages=434–42 |date=December 2012 |pmid=22846337 |doi=10.1016/j.bbcan.2012.07.003 |url=}}</ref><ref name="pmid20823153">{{cite journal |vauthors=Endo-Munoz L, Cumming A, Rickwood D, Wilson D, Cueva C, Ng C, Strutton G, Cassady AI, Evdokiou A, Sommerville S, Dickinson I, Guminski A, Saunders NA |title=Loss of osteoclasts contributes to development of osteosarcoma pulmonary metastases |journal=Cancer Res. |volume=70 |issue=18 |pages=7063–72 |date=September 2010 |pmid=20823153 |doi=10.1158/0008-5472.CAN-09-4291 |url=}}</ref>===
=== Osteoclast Function ===


* [[Osteosarcoma]] [[invasion]] of bone relies on interactions between the bone [[matrix]], [[osteosarcoma]] cells, [[osteoblasts]], and [[osteoclasts]].  
* [[Osteosarcoma]] [[invasion]] of bone relies on interactions between the bone [[matrix]], [[osteosarcoma]] cells, [[osteoblasts]], and [[osteoclasts]].<ref name="pmid28263668">{{cite journal |vauthors=Kelleher FC, O'Sullivan H |title=Monocytes, Macrophages, and Osteoclasts in Osteosarcoma |journal=J Adolesc Young Adult Oncol |volume=6 |issue=3 |pages=396–405 |date=September 2017 |pmid=28263668 |doi=10.1089/jayao.2016.0078 |url=}}</ref><ref name="pmid21204734">{{cite journal |vauthors=Broadhead ML, Clark JC, Dass CR, Choong PF, Myers DE |title=Therapeutic targeting of osteoclast function and pathways |journal=Expert Opin. Ther. Targets |volume=15 |issue=2 |pages=169–81 |date=February 2011 |pmid=21204734 |doi=10.1517/14728222.2011.546351 |url=}}</ref><ref name="pmid22846337">{{cite journal |vauthors=Endo-Munoz L, Evdokiou A, Saunders NA |title=The role of osteoclasts and tumour-associated macrophages in osteosarcoma metastasis |journal=Biochim. Biophys. Acta |volume=1826 |issue=2 |pages=434–42 |date=December 2012 |pmid=22846337 |doi=10.1016/j.bbcan.2012.07.003 |url=}}</ref><ref name="pmid20823153">{{cite journal |vauthors=Endo-Munoz L, Cumming A, Rickwood D, Wilson D, Cueva C, Ng C, Strutton G, Cassady AI, Evdokiou A, Sommerville S, Dickinson I, Guminski A, Saunders NA |title=Loss of osteoclasts contributes to development of osteosarcoma pulmonary metastases |journal=Cancer Res. |volume=70 |issue=18 |pages=7063–72 |date=September 2010 |pmid=20823153 |doi=10.1158/0008-5472.CAN-09-4291 |url=}}</ref>
* In response to the [[hypoxic]] and [[Acidosis|acidotic]] conditions the osteosarcoma cells release molecules such as: [[Endothelin-1|endothelin]]-1 (ET-1), [[VEGF]] and [[PDGF]].  
* In response to the [[hypoxic]] and [[Acidosis|acidotic]] conditions the osteosarcoma cells release molecules such as: [[Endothelin-1|endothelin]]-1 (ET-1), [[VEGF]] and [[PDGF]].  
* [[Endothelin-1]] (ET-1), [[Vascular endothelial growth factor|VEGF]], and [[Platelet-derived growth factor|PDGF]] factors have predominantly osteoblast-stimulatory functions.  
* [[Endothelin-1]] (ET-1), [[Vascular endothelial growth factor|VEGF]], and [[Platelet-derived growth factor|PDGF]] factors have predominantly osteoblast-stimulatory functions.  
* The [[Parathyroid hormone-related protein|PTHrP]] as an important [[Granuloma faciale|GF]] and the [[Interleukin 11|IL-11]] also act on [[osteoblasts]] enhancing the expression of receptor activator of nuclear factor κB ligand ([[RANKL]]).  
* The [[Parathyroid hormone-related protein|PTHrP]] as an important [[Granuloma faciale|GF]] and the [[Interleukin 11|IL-11]] also act on [[osteoblasts]] enhancing the expression of receptor activator of nuclear factor κB ligand ([[RANKL]]).  
* [[RANKL]] is a key mediator of osteoclast differentiation and activity. The activated osteoclasts release proteases to resorb the nonmineralised components of bone. Consequently, the Osteoclast pathways (differentiation, maturation, and activation) have potential as therapeutic effect. For example: inhibition of bone resorption at the tumor-bone interface reduces the osteosarcoma local invasion
* [[RANKL]] is a key mediator of osteoclast differentiation and activity. The activated osteoclasts release proteases to resorb the non mineralised components of bone.  
*Consequently, the [[osteoclast]] pathways (differentiation, maturation, and activation) have potential as therapeutic effect.  
*For example: Inhibition of bone [[resorption]] at the tumor-bone interface reduces the [[osteosarcoma]] local invasion.


=== Bone Growth and Tumorigenesis <ref name="pmid27697093">{{cite journal |vauthors=Jiang F, Zhang D, Li G, Wang X |title=Knockdown of DDX46 Inhibits the Invasion and Tumorigenesis in Osteosarcoma Cells |journal=Oncol. Res. |volume=25 |issue=3 |pages=417–425 |date=March 2017 |pmid=27697093 |doi=10.3727/096504016X14747253292210 |url=}}</ref><ref name="pmid29229388">{{cite journal |vauthors=Zhou S, Yu L, Xiong M, Dai G |title=LncRNA SNHG12 promotes tumorigenesis and metastasis in osteosarcoma by upregulating Notch2 by sponging miR-195-5p |journal=Biochem. Biophys. Res. Commun. |volume=495 |issue=2 |pages=1822–1832 |date=January 2018 |pmid=29229388 |doi=10.1016/j.bbrc.2017.12.047 |url=}}</ref><ref name="pmid27983923">{{cite journal |vauthors=Yang L, Xie F, Li S |title=Downregulation of Homeobox B7 Inhibits the Tumorigenesis and Progression of Osteosarcoma |journal=Oncol. Res. |volume=25 |issue=7 |pages=1089–1095 |date=August 2017 |pmid=27983923 |doi=10.3727/096504016X14784668796788 |url=}}</ref><ref name="pmid28849077">{{cite journal |vauthors=Wang H, Xing D, Ren D, Feng W, Chen Y, Zhao Z, Xiao Z, Peng Z |title=MicroRNA‑643 regulates the expression of ZEB1 and inhibits tumorigenesis in osteosarcoma |journal=Mol Med Rep |volume=16 |issue=4 |pages=5157–5164 |date=October 2017 |pmid=28849077 |pmc=5647050 |doi=10.3892/mmr.2017.7273 |url=}}</ref><ref name="pmid28264040">{{cite journal |vauthors=Gill J, Connolly P, Roth M, Chung SH, Zhang W, Piperdi S, Hoang B, Yang R, Guzik H, Morris J, Gorlick R, Geller DS |title=The effect of bone morphogenetic protein-2 on osteosarcoma metastasis |journal=PLoS ONE |volume=12 |issue=3 |pages=e0173322 |date=2017 |pmid=28264040 |doi=10.1371/journal.pone.0173322 |url=}}</ref><ref name="pmid27894960">{{cite journal |vauthors=Brown HK, Tellez-Gabriel M, Heymann D |title=Cancer stem cells in osteosarcoma |journal=Cancer Lett. |volume=386 |issue= |pages=189–195 |date=February 2017 |pmid=27894960 |doi=10.1016/j.canlet.2016.11.019 |url=}}</ref><ref name="pmid28106543">{{cite journal |vauthors=Zhang XH, Zhang Y, Xie WP, Sun DS, Zhang YK, Hao YK, Tan GQ |title=Expression and significance of calreticulin in human osteosarcoma |journal=Cancer Biomark |volume=18 |issue=4 |pages=405–411 |date=2017 |pmid=28106543 |doi=10.3233/CBM-160266 |url=}}</ref><ref name="pmid28774797">{{cite journal |vauthors=Cortini M, Avnet S, Baldini N |title=Mesenchymal stroma: Role in osteosarcoma progression |journal=Cancer Lett. |volume=405 |issue= |pages=90–99 |date=October 2017 |pmid=28774797 |doi=10.1016/j.canlet.2017.07.024 |url=}}</ref><ref name="pmid28837148">{{cite journal |vauthors=Liu K, Ren T, Huang Y, Sun K, Bao X, Wang S, Zheng B, Guo W |title=Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma |journal=Cell Death Dis |volume=8 |issue=8 |pages=e3015 |date=August 2017 |pmid=28837148 |pmc=5596600 |doi=10.1038/cddis.2017.422 |url=}}</ref><ref name="pmid28496199">{{cite journal |vauthors=Jiang ZH, Peng J, Yang HL, Fu XL, Wang JZ, Liu L, Jiang JN, Tan YF, Ge ZJ |title=Upregulation and biological function of transmembrane protein 119 in osteosarcoma |journal=Exp. Mol. Med. |volume=49 |issue=5 |pages=e329 |date=May 2017 |pmid=28496199 |pmc=5454443 |doi=10.1038/emm.2017.41 |url=}}</ref><ref name="pmid25929293">{{cite journal |vauthors=Wycislo KL, Fan TM |title=The immunotherapy of canine osteosarcoma: a historical and systematic review |journal=J. Vet. Intern. Med. |volume=29 |issue=3 |pages=759–69 |date=2015 |pmid=25929293 |pmc=4895426 |doi=10.1111/jvim.12603 |url=}}</ref>===
=== Bone Growth and Tumorigenesis ===
Previous studies have revealed a positive significant correlation between the osteosarcoma development and the rapid bone growth occurs during puberty. Accordingly the peak age of osteosarcoma development is slightly earlier for female population. And patients affected by the disease are taller compared to the normal population of the same age group. Also, the epiphyseal growth plates of the distal femur and proximal tibia are known to be responsible for the increase in height that occurs during puberty. Meanwhile, the Paget’s disease which is a disorder characterized by both excessive bone formation and breakdown leads to a higher incidence of osteosarcoma among the affected individuals.
 
* Previous studies have revealed a positive significant correlation between the [[osteosarcoma]] development and the rapid bone growth occurs during [[puberty]].<ref name="pmid27697093">{{cite journal |vauthors=Jiang F, Zhang D, Li G, Wang X |title=Knockdown of DDX46 Inhibits the Invasion and Tumorigenesis in Osteosarcoma Cells |journal=Oncol. Res. |volume=25 |issue=3 |pages=417–425 |date=March 2017 |pmid=27697093 |doi=10.3727/096504016X14747253292210 |url=}}</ref><ref name="pmid29229388">{{cite journal |vauthors=Zhou S, Yu L, Xiong M, Dai G |title=LncRNA SNHG12 promotes tumorigenesis and metastasis in osteosarcoma by upregulating Notch2 by sponging miR-195-5p |journal=Biochem. Biophys. Res. Commun. |volume=495 |issue=2 |pages=1822–1832 |date=January 2018 |pmid=29229388 |doi=10.1016/j.bbrc.2017.12.047 |url=}}</ref><ref name="pmid27983923">{{cite journal |vauthors=Yang L, Xie F, Li S |title=Downregulation of Homeobox B7 Inhibits the Tumorigenesis and Progression of Osteosarcoma |journal=Oncol. Res. |volume=25 |issue=7 |pages=1089–1095 |date=August 2017 |pmid=27983923 |doi=10.3727/096504016X14784668796788 |url=}}</ref><ref name="pmid28849077">{{cite journal |vauthors=Wang H, Xing D, Ren D, Feng W, Chen Y, Zhao Z, Xiao Z, Peng Z |title=MicroRNA‑643 regulates the expression of ZEB1 and inhibits tumorigenesis in osteosarcoma |journal=Mol Med Rep |volume=16 |issue=4 |pages=5157–5164 |date=October 2017 |pmid=28849077 |pmc=5647050 |doi=10.3892/mmr.2017.7273 |url=}}</ref><ref name="pmid28264040">{{cite journal |vauthors=Gill J, Connolly P, Roth M, Chung SH, Zhang W, Piperdi S, Hoang B, Yang R, Guzik H, Morris J, Gorlick R, Geller DS |title=The effect of bone morphogenetic protein-2 on osteosarcoma metastasis |journal=PLoS ONE |volume=12 |issue=3 |pages=e0173322 |date=2017 |pmid=28264040 |doi=10.1371/journal.pone.0173322 |url=}}</ref><ref name="pmid27894960">{{cite journal |vauthors=Brown HK, Tellez-Gabriel M, Heymann D |title=Cancer stem cells in osteosarcoma |journal=Cancer Lett. |volume=386 |issue= |pages=189–195 |date=February 2017 |pmid=27894960 |doi=10.1016/j.canlet.2016.11.019 |url=}}</ref><ref name="pmid28106543">{{cite journal |vauthors=Zhang XH, Zhang Y, Xie WP, Sun DS, Zhang YK, Hao YK, Tan GQ |title=Expression and significance of calreticulin in human osteosarcoma |journal=Cancer Biomark |volume=18 |issue=4 |pages=405–411 |date=2017 |pmid=28106543 |doi=10.3233/CBM-160266 |url=}}</ref><ref name="pmid28774797">{{cite journal |vauthors=Cortini M, Avnet S, Baldini N |title=Mesenchymal stroma: Role in osteosarcoma progression |journal=Cancer Lett. |volume=405 |issue= |pages=90–99 |date=October 2017 |pmid=28774797 |doi=10.1016/j.canlet.2017.07.024 |url=}}</ref><ref name="pmid28837148">{{cite journal |vauthors=Liu K, Ren T, Huang Y, Sun K, Bao X, Wang S, Zheng B, Guo W |title=Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma |journal=Cell Death Dis |volume=8 |issue=8 |pages=e3015 |date=August 2017 |pmid=28837148 |pmc=5596600 |doi=10.1038/cddis.2017.422 |url=}}</ref><ref name="pmid28496199">{{cite journal |vauthors=Jiang ZH, Peng J, Yang HL, Fu XL, Wang JZ, Liu L, Jiang JN, Tan YF, Ge ZJ |title=Upregulation and biological function of transmembrane protein 119 in osteosarcoma |journal=Exp. Mol. Med. |volume=49 |issue=5 |pages=e329 |date=May 2017 |pmid=28496199 |pmc=5454443 |doi=10.1038/emm.2017.41 |url=}}</ref><ref name="pmid25929293">{{cite journal |vauthors=Wycislo KL, Fan TM |title=The immunotherapy of canine osteosarcoma: a historical and systematic review |journal=J. Vet. Intern. Med. |volume=29 |issue=3 |pages=759–69 |date=2015 |pmid=25929293 |pmc=4895426 |doi=10.1111/jvim.12603 |url=}}</ref>
* Accordingly the peak age of osteosarcoma development is slightly earlier for female population.  
* And patients affected by the disease are taller compared to the normal population of the same age group.
* Also, the [[epiphyseal]] growth plates of the distal [[femur]] and proximal [[tibia]] are known to be responsible for the increase in height that occurs during puberty.  
* Meanwhile, the [[Paget’s disease|Paget’s]] disease which is a disorder characterized by both excessive bone formation and breakdown leads to a higher incidence of [[osteosarcoma]] among the affected individuals.
 
* Environmental factors known as [[carcinogens]] for [[osteosarcoma]] include:


Environmental Factors known as carcinogens for osteosarcoma include:
# Physical agents
# Physical agents
# Chemical agents
#[[Chemical]] agents
# Biological agents
#[[Biological agents]]


==== Physical agents ====
==== Physical agents ====
- Meanwhile, the ionising radiation, implicated in only 2% of cases of osteosarcoma, has the best established roll in this regard. Meanwhile, the radiotherapy treatment in children develop a secondary neoplasm, and of these are sarcomas in  5.4% and  25% of cases, respectively.  
 
* Meanwhile, the [[ionising radiation]], implicated in only 2% of cases of [[osteosarcoma]], has the best established roll in this regard.  
*Meanwhile, the [[radiotherapy]] treatment in children develop a secondary [[neoplasm]], and of these are sarcomas in  5.4% and  25% of cases, respectively.


==== Chemical agents ====
==== Chemical agents ====
The chemical agents responsible for the osteosarcoma formation include:
 
* methylcholanthrene
* The chemical agents responsible for the [[osteosarcoma]] formation include:
* chromium salts
** [[Methylcholanthrene]]
* beryllium oxide
** [[Chromium]] salts
* zinc beryllium silicate
**[[Beryllium oxide]]
* asbestos
**[[Zinc]] [[beryllium]] silicate
* aniline dyes
**[[Asbestos]]
**[[Aniline]] dyes


==== Biological agents ====
==== Biological agents ====
Resent investigations suggested a viral origin for osteosarcoma which later got some controversies in this regard. It was stemmed from the detection of simian virus 40 (SV40) in osteosarcoma cells but later it was proposed that may in fact be due to laboratory contamination by plasmids containing SV40 sequences.


=== Tumor Suppressor Gene Dysfunction <ref name="pmid28882648">{{cite journal |vauthors=Liu K, Sun X, Zhang Y, Liu L, Yuan Q |title=MiR-598: A tumor suppressor with biomarker significance in osteosarcoma |journal=Life Sci. |volume=188 |issue= |pages=141–148 |date=November 2017 |pmid=28882648 |doi=10.1016/j.lfs.2017.09.003 |url=}}</ref><ref name="pmid25595191">{{cite journal |vauthors=Lo JY, Chou YT, Lai FJ, Hsu LJ |title=Regulation of cell signaling and apoptosis by tumor suppressor WWOX |journal=Exp. Biol. Med. (Maywood) |volume=240 |issue=3 |pages=383–91 |date=March 2015 |pmid=25595191 |pmc=4935227 |doi=10.1177/1535370214566747 |url=}}</ref><ref name="pmid28775781">{{cite journal |vauthors=Zhang W, Duan N, Song T, Li Z, Zhang C, Chen X |title=The Emerging Roles of Forkhead Box (FOX) Proteins in Osteosarcoma |journal=J Cancer |volume=8 |issue=9 |pages=1619–1628 |date=2017 |pmid=28775781 |pmc=5535717 |doi=10.7150/jca.18778 |url=}}</ref> ===
* Recent investigations suggested a viral origin for [[osteosarcoma]] which later got some controversies in this regard.
Any type of exposure to previously-mentioned environmental insults causes a significant damages on the somatic DNA. Due to the tumor-suppressor mechanisms this DNA damage necessarily may not lead to malignant cell line process. These tumor-suppressor mechanisms include:
*It was stemmed from the detection of [[Simian virus 40|simian virus]] 40 ([[SV40]]) in [[osteosarcoma]] cells but later it was proposed that may in fact be due to laboratory contamination by [[plasmids]] containing [[SV40]] sequences.
 
=== Tumor Suppressor Gene Dysfunction ===
 
* Any type of exposure to previously-mentioned environmental insults causes a significant damages on the somatic [[DNA]].<ref name="pmid28882648">{{cite journal |vauthors=Liu K, Sun X, Zhang Y, Liu L, Yuan Q |title=MiR-598: A tumor suppressor with biomarker significance in osteosarcoma |journal=Life Sci. |volume=188 |issue= |pages=141–148 |date=November 2017 |pmid=28882648 |doi=10.1016/j.lfs.2017.09.003 |url=}}</ref><ref name="pmid25595191">{{cite journal |vauthors=Lo JY, Chou YT, Lai FJ, Hsu LJ |title=Regulation of cell signaling and apoptosis by tumor suppressor WWOX |journal=Exp. Biol. Med. (Maywood) |volume=240 |issue=3 |pages=383–91 |date=March 2015 |pmid=25595191 |pmc=4935227 |doi=10.1177/1535370214566747 |url=}}</ref><ref name="pmid28775781">{{cite journal |vauthors=Zhang W, Duan N, Song T, Li Z, Zhang C, Chen X |title=The Emerging Roles of Forkhead Box (FOX) Proteins in Osteosarcoma |journal=J Cancer |volume=8 |issue=9 |pages=1619–1628 |date=2017 |pmid=28775781 |pmc=5535717 |doi=10.7150/jca.18778 |url=}}</ref>
* Due to the tumor-suppressor mechanisms this [[DNA damage]] necessarily may not lead to [[malignant]] cell line process.  
* These [[Tumor suppressor gene|tumor-suppressor]] mechanisms include:


==== Repair the DNA damage <ref name="pmid27989676">{{cite journal |vauthors=Irianto J, Xia Y, Pfeifer CR, Athirasala A, Ji J, Alvey C, Tewari M, Bennett RR, Harding SM, Liu AJ, Greenberg RA, Discher DE |title=DNA Damage Follows Repair Factor Depletion and Portends Genome Variation in Cancer Cells after Pore Migration |journal=Curr. Biol. |volume=27 |issue=2 |pages=210–223 |date=January 2017 |pmid=27989676 |pmc=5262636 |doi=10.1016/j.cub.2016.11.049 |url=}}</ref><ref name="pmid26108997">{{cite journal |vauthors=Li X, Tian J, Bo Q, Li K, Wang H, Liu T, Li J |title=Targeting DNA-PKcs increased anticancer drug sensitivity by suppressing DNA damage repair in osteosarcoma cell line MG63 |journal=Tumour Biol. |volume=36 |issue=12 |pages=9365–72 |date=December 2015 |pmid=26108997 |doi=10.1007/s13277-015-3642-5 |url=}}</ref><ref name="pmid25862479">{{cite journal |vauthors=Wojewoda M, Walczak J, Duszyński J, Szczepanowska J |title=Selenite activates the ATM kinase-dependent DNA repair pathway in human osteosarcoma cells with mitochondrial dysfunction |journal=Biochem. Pharmacol. |volume=95 |issue=3 |pages=170–6 |date=June 2015 |pmid=25862479 |doi=10.1016/j.bcp.2015.03.016 |url=}}</ref><ref name="pmid29317520">{{cite journal |vauthors=Lee JH, Mand MR, Kao CH, Zhou Y, Ryu SW, Richards AL, Coon JJ, Paull TT |title=ATM directs DNA damage responses and proteostasis via genetically separable pathways |journal=Sci Signal |volume=11 |issue=512 |pages= |date=January 2018 |pmid=29317520 |pmc=5898228 |doi=10.1126/scisignal.aan5598 |url=}}</ref><ref name="pmid28489060">{{cite journal |vauthors=Liu G, Wang H, Zhang F, Tian Y, Tian Z, Cai Z, Lim D, Feng Z |title=The Effect of VPA on Increasing Radiosensitivity in Osteosarcoma Cells and Primary-Culture Cells from Chemical Carcinogen-Induced Breast Cancer in Rats |journal=Int J Mol Sci |volume=18 |issue=5 |pages= |date=May 2017 |pmid=28489060 |pmc=5454939 |doi=10.3390/ijms18051027 |url=}}</ref><ref name="pmid24390088">{{cite journal |vauthors=Tang X, Yuan F, Guo K |title=Repair of radiation damage of U2OS osteosarcoma cells is related to DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity |journal=Mol. Cell. Biochem. |volume=390 |issue=1-2 |pages=51–9 |date=May 2014 |pmid=24390088 |doi=10.1007/s11010-013-1955-5 |url=}}</ref><ref name="pmid21036739">{{cite journal |vauthors=Chen HY, Lu HF, Yang JS, Kuo SC, Lo C, Yang MD, Chiu TH, Chueh FS, Ho HC, Ko YC, Chung JG |title=The novel quinolone CHM-1 induces DNA damage and inhibits DNA repair gene expressions in a human osterogenic sarcoma cell line |journal=Anticancer Res. |volume=30 |issue=10 |pages=4187–92 |date=October 2010 |pmid=21036739 |doi= |url=}}</ref>====
=== Repair the DNA damage <ref name="pmid27989676">{{cite journal |vauthors=Irianto J, Xia Y, Pfeifer CR, Athirasala A, Ji J, Alvey C, Tewari M, Bennett RR, Harding SM, Liu AJ, Greenberg RA, Discher DE |title=DNA Damage Follows Repair Factor Depletion and Portends Genome Variation in Cancer Cells after Pore Migration |journal=Curr. Biol. |volume=27 |issue=2 |pages=210–223 |date=January 2017 |pmid=27989676 |pmc=5262636 |doi=10.1016/j.cub.2016.11.049 |url=}}</ref><ref name="pmid26108997">{{cite journal |vauthors=Li X, Tian J, Bo Q, Li K, Wang H, Liu T, Li J |title=Targeting DNA-PKcs increased anticancer drug sensitivity by suppressing DNA damage repair in osteosarcoma cell line MG63 |journal=Tumour Biol. |volume=36 |issue=12 |pages=9365–72 |date=December 2015 |pmid=26108997 |doi=10.1007/s13277-015-3642-5 |url=}}</ref><ref name="pmid25862479">{{cite journal |vauthors=Wojewoda M, Walczak J, Duszyński J, Szczepanowska J |title=Selenite activates the ATM kinase-dependent DNA repair pathway in human osteosarcoma cells with mitochondrial dysfunction |journal=Biochem. Pharmacol. |volume=95 |issue=3 |pages=170–6 |date=June 2015 |pmid=25862479 |doi=10.1016/j.bcp.2015.03.016 |url=}}</ref><ref name="pmid29317520">{{cite journal |vauthors=Lee JH, Mand MR, Kao CH, Zhou Y, Ryu SW, Richards AL, Coon JJ, Paull TT |title=ATM directs DNA damage responses and proteostasis via genetically separable pathways |journal=Sci Signal |volume=11 |issue=512 |pages= |date=January 2018 |pmid=29317520 |pmc=5898228 |doi=10.1126/scisignal.aan5598 |url=}}</ref><ref name="pmid28489060">{{cite journal |vauthors=Liu G, Wang H, Zhang F, Tian Y, Tian Z, Cai Z, Lim D, Feng Z |title=The Effect of VPA on Increasing Radiosensitivity in Osteosarcoma Cells and Primary-Culture Cells from Chemical Carcinogen-Induced Breast Cancer in Rats |journal=Int J Mol Sci |volume=18 |issue=5 |pages= |date=May 2017 |pmid=28489060 |pmc=5454939 |doi=10.3390/ijms18051027 |url=}}</ref><ref name="pmid24390088">{{cite journal |vauthors=Tang X, Yuan F, Guo K |title=Repair of radiation damage of U2OS osteosarcoma cells is related to DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity |journal=Mol. Cell. Biochem. |volume=390 |issue=1-2 |pages=51–9 |date=May 2014 |pmid=24390088 |doi=10.1007/s11010-013-1955-5 |url=}}</ref><ref name="pmid21036739">{{cite journal |vauthors=Chen HY, Lu HF, Yang JS, Kuo SC, Lo C, Yang MD, Chiu TH, Chueh FS, Ho HC, Ko YC, Chung JG |title=The novel quinolone CHM-1 induces DNA damage and inhibits DNA repair gene expressions in a human osterogenic sarcoma cell line |journal=Anticancer Res. |volume=30 |issue=10 |pages=4187–92 |date=October 2010 |pmid=21036739 |doi= |url=}}</ref>===


==== Apoptosis ====
==== Apoptosis ====
The p53 and retinoblastoma (Rb) genes are the well-known tumor-suppressor genes in cellular system. However, sometimes these tumor suppressor genes may themselves become mutated causing the loss of their protective function effects. Its been reported that the mutations in both the p53 and Rb genes have been proven to be involved in osteosarcoma pathogenesis.


''DNA damage → phosphorylate p53 → dissociation from Mdm2''  
* The [[p53]] and [[retinoblastoma]] ([[Rb]]) [[genes]] are the well-known tumor-suppressor genes in cellular system.
* However, sometimes these [[tumor suppressor genes]] may themselves become mutated causing the loss of their protective function effects.
* It's been reported that the mutations in both the p53 and Rb genes have been proven to be involved in [[osteosarcoma]] pathogenesis.
 
''[[DNA damage]] → phosphorylate [[p53]] → dissociation from [[Mdm2]]''  


===== P53 : =====
===== P53 : =====
The p53 gene mutation found in 50% and 22% all cancers and osteosarcomas respectively. The expression of p53 positively reduced metastatic disease and improved survival for these patients. it is unclear whether p53 mutation or loss may affect tumor behavior. But, using the p53-null SaOS-2 osteosarcoma cell line showed that the adenoviral-mediated gene transfer of wild-type p53 reduced the cell viability and also increased the sensitivity to chemotherapeutic agents in affected cells. for example: Li-Fraumeni syndrome is characterized by an autosomal dominant mutation of p53 leading to the development of multiple cancers such as osteosarcoma.  
 
* The [[p53]] gene mutation found in 50% and 22% all cancers and osteosarcomas respectively.
* The expression of [[p53]] positively reduced [[metastatic]] disease and improved survival for these patients.  
* It is unclear whether [[p53]] [[mutation]] or loss may affect [[tumor]] behavior. But, using the [[p53]]-null SaOS-2 [[osteosarcoma]] cell line showed that the adenoviral-mediated gene transfer of wild-type [[p53]] reduced the cell viability and also increased the [[sensitivity]] to [[Chemotherapy|chemotherapeutic]] agents in affected cells.  
* For example: [[Li-Fraumeni syndrome]] is characterized by an [[autosomal dominant]] mutation of [[p53]] leading to the development of multiple cancers such as [[osteosarcoma]].  


===== Retinoblastoma =====
===== Retinoblastoma =====
The Rb gene is critical to cell-cycle control. Inherited mutation of the Rb gene lead to the retinoblastoma syndrome which predisposes a patient to multiple malignancies such as osteosarcoma. The Rb protein controls the cell cycle by binding the transcription factor E2F. E2F usually is held inactive by Rb until the CDK4/cyclin D complex phosphorylates Rb. Mutations of Rb allow for the continuous cycling of cells thus leads to the osteosarcoma occurance. It should be noted that both germ-line and somatic mutations of Rb increases the risk of osteosarcoma.


=== Tumor Angiogenesis <ref name="pmid27028305">{{cite journal |vauthors=Hu F, Shang XF, Wang W, Jiang W, Fang C, Tan D, Zhou HC |title=High-level expression of periostin is significantly correlated with tumour angiogenesis and poor prognosis in osteosarcoma |journal=Int J Exp Pathol |volume=97 |issue=1 |pages=86–92 |date=February 2016 |pmid=27028305 |pmc=4840243 |doi=10.1111/iep.12171 |url=}}</ref><ref name="pmid25471534">{{cite journal |vauthors=Ségaliny AI, Mohamadi A, Dizier B, Lokajczyk A, Brion R, Lanel R, Amiaud J, Charrier C, Boisson-Vidal C, Heymann D |title=Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment |journal=Int. J. Cancer |volume=137 |issue=1 |pages=73–85 |date=July 2015 |pmid=25471534 |doi=10.1002/ijc.29376 |url=}}</ref><ref name="pmid28656259">{{cite journal |vauthors=Xie L, Ji T, Guo W |title=Anti-angiogenesis target therapy for advanced osteosarcoma (Review) |journal=Oncol. Rep. |volume=38 |issue=2 |pages=625–636 |date=August 2017 |pmid=28656259 |pmc=5562076 |doi=10.3892/or.2017.5735 |url=}}</ref><ref name="pmid29330051">{{cite journal |vauthors=Li X, Lu Q, Xie W, Wang Y, Wang G |title=Anti-tumor effects of triptolide on angiogenesis and cell apoptosis in osteosarcoma cells by inducing autophagy via repressing Wnt/β-Catenin signaling |journal=Biochem. Biophys. Res. Commun. |volume=496 |issue=2 |pages=443–449 |date=February 2018 |pmid=29330051 |doi=10.1016/j.bbrc.2018.01.052 |url=}}</ref>===
* The [[Rb|Rb gene]] is critical to cell-cycle control, inherited [[mutation]] of the [[Rb]] gene lead to the [[retinoblastoma]] syndrome which predisposes a patient to multiple [[malignancies]] such as [[osteosarcoma]].
Tumour angiogenesis is essential for sustained osteosarcoma growth and metastasis. The most common sites for osteosarcoma spread include: Metastasis to the lungs and bone also relies on the formation and maintenance of blood vessels. A hypoxic and acidotic microenvironment exists at the proliferated osteosarcoma area. While the osteosarcoma is a relatively vascular tumor. Angiogenesis is regulated by the balance between pro-angiogenic and antiangiogenic factors. Antiangiogenic proteins such as thrombospondin 1, TGF-β, troponin I, pigment epithelial-derived factor (PEDF), and reversion-inducing cysteine rich protein with Kazal motifs (RECK) are downregulated in osteosarcoma.
* The [[Rb]] protein controls the cell cycle by binding the [[transcription factor]] [[E2F]]. [[E2F]] usually is held inactive by [[Rb]] until the [[Cyclin-dependent kinase 4|CDK4]]/[[cyclin D]] complex [[phosphorylates]] Rb.
* [[Mutation|Mutations]] of Rb allow for the continuous cycling of cells thus leads to the [[osteosarcoma]] occurance.
* It should be noted that both [[germline]] and [[somatic]] mutations of [[Rb]] increases the risk of [[osteosarcoma]].
 
=== Tumor Angiogenesis ===
 
* [[Tumor|Tumour]] [[angiogenesis]] is essential for sustained [[osteosarcoma]] growth and [[metastasis]].<ref name="pmid27028305">{{cite journal |vauthors=Hu F, Shang XF, Wang W, Jiang W, Fang C, Tan D, Zhou HC |title=High-level expression of periostin is significantly correlated with tumour angiogenesis and poor prognosis in osteosarcoma |journal=Int J Exp Pathol |volume=97 |issue=1 |pages=86–92 |date=February 2016 |pmid=27028305 |pmc=4840243 |doi=10.1111/iep.12171 |url=}}</ref><ref name="pmid25471534">{{cite journal |vauthors=Ségaliny AI, Mohamadi A, Dizier B, Lokajczyk A, Brion R, Lanel R, Amiaud J, Charrier C, Boisson-Vidal C, Heymann D |title=Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment |journal=Int. J. Cancer |volume=137 |issue=1 |pages=73–85 |date=July 2015 |pmid=25471534 |doi=10.1002/ijc.29376 |url=}}</ref><ref name="pmid28656259">{{cite journal |vauthors=Xie L, Ji T, Guo W |title=Anti-angiogenesis target therapy for advanced osteosarcoma (Review) |journal=Oncol. Rep. |volume=38 |issue=2 |pages=625–636 |date=August 2017 |pmid=28656259 |pmc=5562076 |doi=10.3892/or.2017.5735 |url=}}</ref><ref name="pmid29330051">{{cite journal |vauthors=Li X, Lu Q, Xie W, Wang Y, Wang G |title=Anti-tumor effects of triptolide on angiogenesis and cell apoptosis in osteosarcoma cells by inducing autophagy via repressing Wnt/β-Catenin signaling |journal=Biochem. Biophys. Res. Commun. |volume=496 |issue=2 |pages=443–449 |date=February 2018 |pmid=29330051 |doi=10.1016/j.bbrc.2018.01.052 |url=}}</ref>
* The most common sites for [[osteosarcoma]] spread include: [[Metastasis]] to the lungs and bone also relies on the formation and maintenance of blood vessels.  
* A [[hypoxic]] and [[Acidosis|acidotic]] microenvironment exists at the proliferated [[osteosarcoma]] area.  
* While the [[osteosarcoma]] is a relatively vascular tumor, [[angiogenesis]] is regulated by the balance between pro-angiogenic and [[antiangiogenic]] factors.  
* [[Antiangiogenic]] proteins such as [[thrombospondin]] 1, [[TGF beta|TGF]]-β, [[troponin]] I, pigment epithelial-derived factor ([[PEDF]]), and reversion-inducing cysteine rich protein with Kazal motifs ([[RECK]]) are downregulated in [[osteosarcoma]].
 
=== Tumor Invasion ===
 
* [[Invasive (medical)|Invasion]] of the surrounding tissues by [[osteosarcoma]] also involves degradation of the extracellular [[matrix]] using the [[Matrix metalloproteinases|Matrix metalloproteinases (]]MMPs).<ref name="pmid28965117" /><ref name="pmid29225166">{{cite journal |vauthors=Zheng B, Ren T, Huang Y, Guo W |title=Apatinib inhibits migration and invasion as well as PD-L1 expression in osteosarcoma by targeting STAT3 |journal=Biochem. Biophys. Res. Commun. |volume=495 |issue=2 |pages=1695–1701 |date=January 2018 |pmid=29225166 |doi=10.1016/j.bbrc.2017.12.032 |url=}}</ref><ref name="pmid28604772">{{cite journal |vauthors=Wu X, Yan L, Liu Y, Xian W, Wang L, Ding X |title=MicroRNA-448 suppresses osteosarcoma cell proliferation and invasion through targeting EPHA7 |journal=PLoS ONE |volume=12 |issue=6 |pages=e0175553 |date=2017 |pmid=28604772 |pmc=5467824 |doi=10.1371/journal.pone.0175553 |url=}}</ref><ref name="pmid28370690" />


=== Tumor Invasion <ref name="pmid28965117">{{cite journal |vauthors=Lan H, Hong W, Fan P, Qian D, Zhu J, Bai B |title=Quercetin Inhibits Cell Migration and Invasion in Human Osteosarcoma Cells |journal=Cell. Physiol. Biochem. |volume=43 |issue=2 |pages=553–567 |date=2017 |pmid=28965117 |doi=10.1159/000480528 |url=}}</ref><ref name="pmid29225166">{{cite journal |vauthors=Zheng B, Ren T, Huang Y, Guo W |title=Apatinib inhibits migration and invasion as well as PD-L1 expression in osteosarcoma by targeting STAT3 |journal=Biochem. Biophys. Res. Commun. |volume=495 |issue=2 |pages=1695–1701 |date=January 2018 |pmid=29225166 |doi=10.1016/j.bbrc.2017.12.032 |url=}}</ref><ref name="pmid28604772">{{cite journal |vauthors=Wu X, Yan L, Liu Y, Xian W, Wang L, Ding X |title=MicroRNA-448 suppresses osteosarcoma cell proliferation and invasion through targeting EPHA7 |journal=PLoS ONE |volume=12 |issue=6 |pages=e0175553 |date=2017 |pmid=28604772 |pmc=5467824 |doi=10.1371/journal.pone.0175553 |url=}}</ref><ref name="pmid28370690">{{cite journal |vauthors=Zhou Z, Li Y, Jia Q, Wang Z, Wang X, Hu J, Xiao J |title=Heat shock transcription factor 1 promotes the proliferation, migration and invasion of osteosarcoma cells |journal=Cell Prolif. |volume=50 |issue=4 |pages= |date=August 2017 |pmid=28370690 |doi=10.1111/cpr.12346 |url=}}</ref>===
* [[Matrix metalloproteinase|MMPs]] are a family of zinc-dependent [[endopeptidases]] that are involved in a range of physiological processes including inflammation, wound healing, [[embryogenesis]], and fracture healing.  
Invasion of the surrounding tissues by osteosarcoma also involves degradation of the extracellular matrix using the Matrix metalloproteinases (MMPs).
* In normal healthy tissues, [[Matrix metalloproteinase|MMPs]] are regulated by natural inhibitors such as tissue inhibitors of [[Matrix metalloproteinase|MMPs]] ([[TIMP1|TIMPs]]), [[RECK]], and α2 [[macroglobulin]]. but in the [[malignancies]] such as osteosarcoma, the [[Matrix metalloproteinase|MMPs]] break down extracellular [[Collagen|collagens]], facilitating both tumor and [[endothelial cell]] [[Invasive (medical)|invasion]].  
* The [[urokinase]] [[plasminogen]] activator ([[UPARAP|uPA]]) system an other [[osteosarcoma]] invasion regulator interacting with [[Matrix metalloproteinase|MMPs]].  
* Accordingly, the downregulation of [[UPARAP|uPAR]] in an in vivo [[osteosarcoma]] model resulted in reduced primary [[tumor]] growth and fewer [[Metastasis|metastases]].


MMPs are a family of zinc-dependent endopeptidases that are involved in a range of physiological processes including inflammation, wound healing, embryogenesis, and fracture healing. In normal healthy tissues, MMPs are regulated by natural inhibitors such as tissue inhibitors of MMPs (TIMPs), RECK, and α2 macroglobulin. but in the malignancis such as osteosarcoma, the MMPs break down extracellular collagens, facilitating both tumor and endothelial cell invasion. The urokinase plasminogen activator (uPA) system an other osteosarcoma invasion regulator interacting with MMPs. Accordingly, the downregulation of uPAR in an in vivo osteosarcoma model resulted in reduced primary tumor growth and fewer metastases.
=== Osteosarcoma Cell Proliferation, Apoptosis, and Anchorage-Independent Growth ===


=== Osteosarcoma Cell Proliferation, Apoptosis, and Anchorage-Independent Growth <ref name="pmid23228048">{{cite journal |vauthors=Helmerick EC, Loftus JP, Wakshlag JJ |title=The effects of baicalein on canine osteosarcoma cell proliferation and death |journal=Vet Comp Oncol |volume=12 |issue=4 |pages=299–309 |date=December 2014 |pmid=23228048 |doi=10.1111/vco.12013 |url=}}</ref><ref name="pmid21034328">{{cite journal |vauthors=Wakshlag JJ, Balkman CE |title=Effects of lycopene on proliferation and death of canine osteosarcoma cells |journal=Am. J. Vet. Res. |volume=71 |issue=11 |pages=1362–70 |date=November 2010 |pmid=21034328 |doi=10.2460/ajvr.71.11.1362 |url=}}</ref><ref name="pmid20383567">{{cite journal |vauthors=Akiyama T, Choong PF, Dass CR |title=RANK-Fc inhibits malignancy via inhibiting ERK activation and evoking caspase-3-mediated anoikis in human osteosarcoma cells |journal=Clin. Exp. Metastasis |volume=27 |issue=4 |pages=207–15 |date=April 2010 |pmid=20383567 |doi=10.1007/s10585-010-9319-y |url=}}</ref><ref name="pmid25889105">{{cite journal |vauthors=Foley JM, Scholten DJ, Monks NR, Cherba D, Monsma DJ, Davidson P, Dylewski D, Dykema K, Winn ME, Steensma MR |title=Anoikis-resistant subpopulations of human osteosarcoma display significant chemoresistance and are sensitive to targeted epigenetic therapies predicted by expression profiling |journal=J Transl Med |volume=13 |issue= |pages=110 |date=April 2015 |pmid=25889105 |pmc=4419490 |doi=10.1186/s12967-015-0466-4 |url=}}</ref>===
* [[Malignant]] cells such as [[osteosarcoma]] cells are mostly resistant to [[apoptosis]].<ref name="pmid23228048">{{cite journal |vauthors=Helmerick EC, Loftus JP, Wakshlag JJ |title=The effects of baicalein on canine osteosarcoma cell proliferation and death |journal=Vet Comp Oncol |volume=12 |issue=4 |pages=299–309 |date=December 2014 |pmid=23228048 |doi=10.1111/vco.12013 |url=}}</ref><ref name="pmid21034328">{{cite journal |vauthors=Wakshlag JJ, Balkman CE |title=Effects of lycopene on proliferation and death of canine osteosarcoma cells |journal=Am. J. Vet. Res. |volume=71 |issue=11 |pages=1362–70 |date=November 2010 |pmid=21034328 |doi=10.2460/ajvr.71.11.1362 |url=}}</ref><ref name="pmid20383567">{{cite journal |vauthors=Akiyama T, Choong PF, Dass CR |title=RANK-Fc inhibits malignancy via inhibiting ERK activation and evoking caspase-3-mediated anoikis in human osteosarcoma cells |journal=Clin. Exp. Metastasis |volume=27 |issue=4 |pages=207–15 |date=April 2010 |pmid=20383567 |doi=10.1007/s10585-010-9319-y |url=}}</ref><ref name="pmid25889105">{{cite journal |vauthors=Foley JM, Scholten DJ, Monks NR, Cherba D, Monsma DJ, Davidson P, Dylewski D, Dykema K, Winn ME, Steensma MR |title=Anoikis-resistant subpopulations of human osteosarcoma display significant chemoresistance and are sensitive to targeted epigenetic therapies predicted by expression profiling |journal=J Transl Med |volume=13 |issue= |pages=110 |date=April 2015 |pmid=25889105 |pmc=4419490 |doi=10.1186/s12967-015-0466-4 |url=}}</ref>
Malignant cells such as osteosarcoma cells are mostly resistant to apoptosis.Apoptosis consists of initiation phase and execution phase. Both intrinsic and extrinsic pathways regulate the initiation phase. The intrinsic pathway relies on increased mitochondrial permeability while extrinsic pathway is known as a death receptor-initiated pathway. Osteosarcoma cells are resistant to anoikis and proliferate despite deranged cell-cell and cell-matrix attachments. This resistance to anoikis called anchorage-independent growth (AIG).
* [[Apoptosis]] consists of initiation phase and execution phase. Both intrinsic and extrinsic pathways regulate the initiation phase.  
* The intrinsic pathway relies on increased [[mitochondrial]] permeability while extrinsic pathway is known as a death receptor-initiated pathway.  
* [[Osteosarcoma]] cells are resistant to [[anoikis]] and [[proliferate]] despite deranged cell-cell and cell-[[matrix]] attachments.  
* This resistance to [[anoikis]] called anchorage-independent growth ([[AIG1|AIG]]).


==References==
==References==

Latest revision as of 17:33, 14 October 2019


Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mohammadmain Rezazadehsaatlou[2].

Osteosarcoma Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Osteosarcoma from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Staging

History and Symptoms

Physical Examination

Laboratory Findings

Biopsy

X Ray

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Osteosarcoma pathophysiology On the Web

Most recent articles

cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Osteosarcoma pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Osteosarcoma pathophysiology

CDC on Osteosarcoma pathophysiology

Osteosarcoma pathophysiology in the news

Blogs on Osteosarcoma pathophysiology

Directions to Hospitals Treating Osteosarcoma

Risk calculators and risk factors for Osteosarcoma pathophysiology

Overview

The main cause of osteosarcoma is not well-known, yet. However, a number of risk factors have been identified in this regard. Osteosarcoma can involve any bone but it usually affects the extremities of long bones near metaphyseal growth plates. The most common sites include

  • Femur 42% of cases ( the distal femur had around 75% of involvement).
  • Tibia 19% of cases ( the proximal tibia had around 80% of involvement).
  • Humerus 10% of cases ( the proximal humerus had around 90% of involvement).
  • Skull and jaw 8% of cases.
  • Pelvis 8% of cases.

Pathophysiology

Growth Factors

TGF-β

IGF

  • IGF-I and IGF-II are growth factors usually overexpressed by osteosarcomas.
  • IGF families bind corresponding receptors such as IGF-1R, causing the activation of the PI3K and MAPK transduction pathways.
  • Consequently they supports the cell proliferation and inhibition of apoptosis. Meanwhile, the Lentivirus-mediated snRNA targeting IGF-R1 increases the chemosensitivity and the anti-tumor response of osteosarcoma cells to docetaxel and cisplatin.

CTGF

Parathyroid hormone (PTH)

Chromosomal Abnormalities

Genetics

Transcription Factors

Activator protein 1 complex (AP-1)

Myc

Cell Adhesion and Migration

Osteoclast Function

Bone Growth and Tumorigenesis

  • Previous studies have revealed a positive significant correlation between the osteosarcoma development and the rapid bone growth occurs during puberty.[28][29][30][31][32][33][34][35][36][37][38]
  • Accordingly the peak age of osteosarcoma development is slightly earlier for female population.
  • And patients affected by the disease are taller compared to the normal population of the same age group.
  • Also, the epiphyseal growth plates of the distal femur and proximal tibia are known to be responsible for the increase in height that occurs during puberty.
  • Meanwhile, the Paget’s disease which is a disorder characterized by both excessive bone formation and breakdown leads to a higher incidence of osteosarcoma among the affected individuals.
  1. Physical agents
  2. Chemical agents
  3. Biological agents

Physical agents

  • Meanwhile, the ionising radiation, implicated in only 2% of cases of osteosarcoma, has the best established roll in this regard.
  • Meanwhile, the radiotherapy treatment in children develop a secondary neoplasm, and of these are sarcomas in 5.4% and 25% of cases, respectively.

Chemical agents

Biological agents

  • Recent investigations suggested a viral origin for osteosarcoma which later got some controversies in this regard.
  • It was stemmed from the detection of simian virus 40 (SV40) in osteosarcoma cells but later it was proposed that may in fact be due to laboratory contamination by plasmids containing SV40 sequences.

Tumor Suppressor Gene Dysfunction

  • Any type of exposure to previously-mentioned environmental insults causes a significant damages on the somatic DNA.[39][40][41]
  • Due to the tumor-suppressor mechanisms this DNA damage necessarily may not lead to malignant cell line process.
  • These tumor-suppressor mechanisms include:

Repair the DNA damage [42][43][44][45][12][46][47]

Apoptosis

  • The p53 and retinoblastoma (Rb) genes are the well-known tumor-suppressor genes in cellular system.
  • However, sometimes these tumor suppressor genes may themselves become mutated causing the loss of their protective function effects.
  • It's been reported that the mutations in both the p53 and Rb genes have been proven to be involved in osteosarcoma pathogenesis.

DNA damage → phosphorylate p53 → dissociation from Mdm2

P53 :
Retinoblastoma

Tumor Angiogenesis

Tumor Invasion

Osteosarcoma Cell Proliferation, Apoptosis, and Anchorage-Independent Growth

References

  1. Kim HJ, Chalmers PN, Morris CD (February 2010). "Pediatric osteogenic sarcoma". Curr. Opin. Pediatr. 22 (1): 61–6. doi:10.1097/MOP.0b013e328334581f. PMID 19915470.
  2. Moore DD, Luu HH (2014). "Osteosarcoma". Cancer Treat. Res. 162: 65–92. doi:10.1007/978-3-319-07323-1_4. PMID 25070231.
  3. Ilaslan H, Schils J, Nageotte W, Lietman SA, Sundaram M (March 2010). "Clinical presentation and imaging of bone and soft-tissue sarcomas". Cleve Clin J Med. 77 Suppl 1: S2–7. doi:10.3949/ccjm.77.s1.01. PMID 20179183.
  4. Wu PK, Chen WM, Lee OK, Chen CF, Huang CK, Chen TH (November 2010). "The prognosis for patients with osteosarcoma who have received prior manipulative therapy". J Bone Joint Surg Br. 92 (11): 1580–5. doi:10.1302/0301-620X.92B11.24706. PMID 21037356.
  5. Obiedat H, Alrabadi N, Sultan E, Al Shatti M, Zihlif M (July 2018). "The effect of ERCC1 and ERCC2 gene polymorphysims on response to cisplatin based therapy in osteosarcoma patients". BMC Med. Genet. 19 (1): 112. doi:10.1186/s12881-018-0627-4. PMC 6035436. PMID 29980176.
  6. Sergi C, Shen F, Liu SM (2019). "Insulin/IGF-1R, SIRT1, and FOXOs Pathways-An Intriguing Interaction Platform for Bone and Osteosarcoma". Front Endocrinol (Lausanne). 10: 93. doi:10.3389/fendo.2019.00093. PMC 6405434. PMID 30881341.
  7. Colombo M, Platonova N, Giannandrea D, Palano MT, Basile A, Chiaramonte R (2019). "Re-establishing Apoptosis Competence in Bone Associated Cancers via Communicative Reprogramming Induced Through Notch Signaling Inhibition". Front Pharmacol. 10: 145. doi:10.3389/fphar.2019.00145. PMC 6400837. PMID 30873026.
  8. Weinman MA, Fischer JA, Jacobs DC, Goodall CP, Bracha S, Chappell PE (February 2019). "Autocrine production of reproductive axis neuropeptides affects proliferation of canine osteosarcoma in vitro". BMC Cancer. 19 (1): 158. doi:10.1186/s12885-019-5363-4. PMC 6379937. PMID 30777054.
  9. Haralambiev L, Wien L, Gelbrich N, Kramer A, Mustea A, Burchardt M, Ekkernkamp A, Stope MB, Gümbel D (January 2019). "Effects of Cold Atmospheric Plasma on the Expression of Chemokines, Growth Factors, TNF Superfamily Members, Interleukins, and Cytokines in Human Osteosarcoma Cells". Anticancer Res. 39 (1): 151–157. doi:10.21873/anticanres.13091. PMID 30591452.
  10. Boulay G, Volorio A, Iyer S, Broye LC, Stamenkovic I, Riggi N, Rivera MN (August 2018). "Epigenome editing of microsatellite repeats defines tumor-specific enhancer functions and dependencies". Genes Dev. 32 (15–16): 1008–1019. doi:10.1101/gad.315192.118. PMC 6075149. PMID 30042132.
  11. Smida J, Xu H, Zhang Y, Baumhoer D, Ribi S, Kovac M, von Luettichau I, Bielack S, O'Leary VB, Leib-Mösch C, Frishman D, Nathrath M (August 2017). "Genome-wide analysis of somatic copy number alterations and chromosomal breakages in osteosarcoma". Int. J. Cancer. 141 (4): 816–828. doi:10.1002/ijc.30778. PMID 28494505.
  12. 12.0 12.1 Liu G, Wang H, Zhang F, Tian Y, Tian Z, Cai Z, Lim D, Feng Z (May 2017). "The Effect of VPA on Increasing Radiosensitivity in Osteosarcoma Cells and Primary-Culture Cells from Chemical Carcinogen-Induced Breast Cancer in Rats". Int J Mol Sci. 18 (5). doi:10.3390/ijms18051027. PMC 5454939. PMID 28489060.
  13. Bishop MW, Janeway KA, Gorlick R (February 2016). "Future directions in the treatment of osteosarcoma". Curr. Opin. Pediatr. 28 (1): 26–33. doi:10.1097/MOP.0000000000000298. PMC 4761449. PMID 26626558.
  14. Regueiro García A, Saborido Fiaño R, González Calvete L, Vázquez Donsión M, Couselo Sánchez JM, Fernández Sanmartín M (January 2015). "[Osteosarcoma and ATR-16 syndrome: association or coincidence?]". An Pediatr (Barc) (in Spanish; Castilian). 82 (1): e189–91. doi:10.1016/j.anpedi.2014.02.008. PMID 24631100.
  15. Both J, Krijgsman O, Bras J, Schaap GR, Baas F, Ylstra B, Hulsebos TJ (2014). "Focal chromosomal copy number aberrations identify CMTM8 and GPR177 as new candidate driver genes in osteosarcoma". PLoS ONE. 9 (12): e115835. doi:10.1371/journal.pone.0115835. PMC 4281204. PMID 25551557.
  16. Jiang Z, Zhang W, Chen Z, Shao J, Chen L, Wang Z (June 2017). "Transcription Factor 21 (TCF21) rs12190287 Polymorphism is Associated with Osteosarcoma Risk and Outcomes in East Chinese Population". Med. Sci. Monit. 23: 3185–3191. PMC 5503230. PMID 28663539.
  17. 17.0 17.1 Zhou Z, Li Y, Jia Q, Wang Z, Wang X, Hu J, Xiao J (August 2017). "Heat shock transcription factor 1 promotes the proliferation, migration and invasion of osteosarcoma cells". Cell Prolif. 50 (4). doi:10.1111/cpr.12346. PMID 28370690.
  18. Heng L, Jia Z, Bai J, Zhang K, Zhu Y, Ma J, Zhang J, Duan H (May 2017). "Molecular characterization of metastatic osteosarcoma: Differentially expressed genes, transcription factors and microRNAs". Mol Med Rep. 15 (5): 2829–2836. doi:10.3892/mmr.2017.6286. PMID 28260111.
  19. Ma C, Han J, Dong D, Wang N (June 2018). "MicroRNA-152 Suppresses Human Osteosarcoma Cell Proliferation and Invasion by Targeting E2F Transcription Factor 3". Oncol. Res. 26 (5): 765–773. doi:10.3727/096504017X15021536183535. PMID 28810933.
  20. 20.0 20.1 Lan H, Hong W, Fan P, Qian D, Zhu J, Bai B (2017). "Quercetin Inhibits Cell Migration and Invasion in Human Osteosarcoma Cells". Cell. Physiol. Biochem. 43 (2): 553–567. doi:10.1159/000480528. PMID 28965117.
  21. Tome Y, Kimura H, Kiyuna T, Sugimoto N, Tsuchiya H, Kanaya F, Bouvet M, Hoffman RM (July 2016). "Disintegrin targeting of an αvβ3 integrin-over-expressing high-metastatic human osteosarcoma with echistatin inhibits cell proliferation, migration, invasion and adhesion in vitro". Oncotarget. 7 (29): 46315–46320. doi:10.18632/oncotarget.10111. PMC 5216800. PMID 27331872.
  22. Park GB, Kim DJ, Kim YS, Lee HK, Kim CW, Hur DY (January 2015). "Silencing of galectin-3 represses osteosarcoma cell migration and invasion through inhibition of FAK/Src/Lyn activation and β-catenin expression and increases susceptibility to chemotherapeutic agents". Int. J. Oncol. 46 (1): 185–94. doi:10.3892/ijo.2014.2721. PMID 25339127.
  23. Diao F, Chen K, Wang Y, Li Y, Xu W, Lu J, Chen YX (2017). "Involvement of small G protein RhoB in the regulation of proliferation, adhesion and migration by dexamethasone in osteoblastic cells". PLoS ONE. 12 (3): e0174273. doi:10.1371/journal.pone.0174273. PMC 5360316. PMID 28323887.
  24. Kelleher FC, O'Sullivan H (September 2017). "Monocytes, Macrophages, and Osteoclasts in Osteosarcoma". J Adolesc Young Adult Oncol. 6 (3): 396–405. doi:10.1089/jayao.2016.0078. PMID 28263668.
  25. Broadhead ML, Clark JC, Dass CR, Choong PF, Myers DE (February 2011). "Therapeutic targeting of osteoclast function and pathways". Expert Opin. Ther. Targets. 15 (2): 169–81. doi:10.1517/14728222.2011.546351. PMID 21204734.
  26. Endo-Munoz L, Evdokiou A, Saunders NA (December 2012). "The role of osteoclasts and tumour-associated macrophages in osteosarcoma metastasis". Biochim. Biophys. Acta. 1826 (2): 434–42. doi:10.1016/j.bbcan.2012.07.003. PMID 22846337.
  27. Endo-Munoz L, Cumming A, Rickwood D, Wilson D, Cueva C, Ng C, Strutton G, Cassady AI, Evdokiou A, Sommerville S, Dickinson I, Guminski A, Saunders NA (September 2010). "Loss of osteoclasts contributes to development of osteosarcoma pulmonary metastases". Cancer Res. 70 (18): 7063–72. doi:10.1158/0008-5472.CAN-09-4291. PMID 20823153.
  28. Jiang F, Zhang D, Li G, Wang X (March 2017). "Knockdown of DDX46 Inhibits the Invasion and Tumorigenesis in Osteosarcoma Cells". Oncol. Res. 25 (3): 417–425. doi:10.3727/096504016X14747253292210. PMID 27697093.
  29. Zhou S, Yu L, Xiong M, Dai G (January 2018). "LncRNA SNHG12 promotes tumorigenesis and metastasis in osteosarcoma by upregulating Notch2 by sponging miR-195-5p". Biochem. Biophys. Res. Commun. 495 (2): 1822–1832. doi:10.1016/j.bbrc.2017.12.047. PMID 29229388.
  30. Yang L, Xie F, Li S (August 2017). "Downregulation of Homeobox B7 Inhibits the Tumorigenesis and Progression of Osteosarcoma". Oncol. Res. 25 (7): 1089–1095. doi:10.3727/096504016X14784668796788. PMID 27983923.
  31. Wang H, Xing D, Ren D, Feng W, Chen Y, Zhao Z, Xiao Z, Peng Z (October 2017). "MicroRNA‑643 regulates the expression of ZEB1 and inhibits tumorigenesis in osteosarcoma". Mol Med Rep. 16 (4): 5157–5164. doi:10.3892/mmr.2017.7273. PMC 5647050. PMID 28849077.
  32. Gill J, Connolly P, Roth M, Chung SH, Zhang W, Piperdi S, Hoang B, Yang R, Guzik H, Morris J, Gorlick R, Geller DS (2017). "The effect of bone morphogenetic protein-2 on osteosarcoma metastasis". PLoS ONE. 12 (3): e0173322. doi:10.1371/journal.pone.0173322. PMID 28264040.
  33. Brown HK, Tellez-Gabriel M, Heymann D (February 2017). "Cancer stem cells in osteosarcoma". Cancer Lett. 386: 189–195. doi:10.1016/j.canlet.2016.11.019. PMID 27894960.
  34. Zhang XH, Zhang Y, Xie WP, Sun DS, Zhang YK, Hao YK, Tan GQ (2017). "Expression and significance of calreticulin in human osteosarcoma". Cancer Biomark. 18 (4): 405–411. doi:10.3233/CBM-160266. PMID 28106543.
  35. Cortini M, Avnet S, Baldini N (October 2017). "Mesenchymal stroma: Role in osteosarcoma progression". Cancer Lett. 405: 90–99. doi:10.1016/j.canlet.2017.07.024. PMID 28774797.
  36. Liu K, Ren T, Huang Y, Sun K, Bao X, Wang S, Zheng B, Guo W (August 2017). "Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma". Cell Death Dis. 8 (8): e3015. doi:10.1038/cddis.2017.422. PMC 5596600. PMID 28837148.
  37. Jiang ZH, Peng J, Yang HL, Fu XL, Wang JZ, Liu L, Jiang JN, Tan YF, Ge ZJ (May 2017). "Upregulation and biological function of transmembrane protein 119 in osteosarcoma". Exp. Mol. Med. 49 (5): e329. doi:10.1038/emm.2017.41. PMC 5454443. PMID 28496199.
  38. Wycislo KL, Fan TM (2015). "The immunotherapy of canine osteosarcoma: a historical and systematic review". J. Vet. Intern. Med. 29 (3): 759–69. doi:10.1111/jvim.12603. PMC 4895426. PMID 25929293.
  39. Liu K, Sun X, Zhang Y, Liu L, Yuan Q (November 2017). "MiR-598: A tumor suppressor with biomarker significance in osteosarcoma". Life Sci. 188: 141–148. doi:10.1016/j.lfs.2017.09.003. PMID 28882648.
  40. Lo JY, Chou YT, Lai FJ, Hsu LJ (March 2015). "Regulation of cell signaling and apoptosis by tumor suppressor WWOX". Exp. Biol. Med. (Maywood). 240 (3): 383–91. doi:10.1177/1535370214566747. PMC 4935227. PMID 25595191.
  41. Zhang W, Duan N, Song T, Li Z, Zhang C, Chen X (2017). "The Emerging Roles of Forkhead Box (FOX) Proteins in Osteosarcoma". J Cancer. 8 (9): 1619–1628. doi:10.7150/jca.18778. PMC 5535717. PMID 28775781.
  42. Irianto J, Xia Y, Pfeifer CR, Athirasala A, Ji J, Alvey C, Tewari M, Bennett RR, Harding SM, Liu AJ, Greenberg RA, Discher DE (January 2017). "DNA Damage Follows Repair Factor Depletion and Portends Genome Variation in Cancer Cells after Pore Migration". Curr. Biol. 27 (2): 210–223. doi:10.1016/j.cub.2016.11.049. PMC 5262636. PMID 27989676.
  43. Li X, Tian J, Bo Q, Li K, Wang H, Liu T, Li J (December 2015). "Targeting DNA-PKcs increased anticancer drug sensitivity by suppressing DNA damage repair in osteosarcoma cell line MG63". Tumour Biol. 36 (12): 9365–72. doi:10.1007/s13277-015-3642-5. PMID 26108997.
  44. Wojewoda M, Walczak J, Duszyński J, Szczepanowska J (June 2015). "Selenite activates the ATM kinase-dependent DNA repair pathway in human osteosarcoma cells with mitochondrial dysfunction". Biochem. Pharmacol. 95 (3): 170–6. doi:10.1016/j.bcp.2015.03.016. PMID 25862479.
  45. Lee JH, Mand MR, Kao CH, Zhou Y, Ryu SW, Richards AL, Coon JJ, Paull TT (January 2018). "ATM directs DNA damage responses and proteostasis via genetically separable pathways". Sci Signal. 11 (512). doi:10.1126/scisignal.aan5598. PMC 5898228. PMID 29317520.
  46. Tang X, Yuan F, Guo K (May 2014). "Repair of radiation damage of U2OS osteosarcoma cells is related to DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity". Mol. Cell. Biochem. 390 (1–2): 51–9. doi:10.1007/s11010-013-1955-5. PMID 24390088.
  47. Chen HY, Lu HF, Yang JS, Kuo SC, Lo C, Yang MD, Chiu TH, Chueh FS, Ho HC, Ko YC, Chung JG (October 2010). "The novel quinolone CHM-1 induces DNA damage and inhibits DNA repair gene expressions in a human osterogenic sarcoma cell line". Anticancer Res. 30 (10): 4187–92. PMID 21036739.
  48. Hu F, Shang XF, Wang W, Jiang W, Fang C, Tan D, Zhou HC (February 2016). "High-level expression of periostin is significantly correlated with tumour angiogenesis and poor prognosis in osteosarcoma". Int J Exp Pathol. 97 (1): 86–92. doi:10.1111/iep.12171. PMC 4840243. PMID 27028305.
  49. Ségaliny AI, Mohamadi A, Dizier B, Lokajczyk A, Brion R, Lanel R, Amiaud J, Charrier C, Boisson-Vidal C, Heymann D (July 2015). "Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment". Int. J. Cancer. 137 (1): 73–85. doi:10.1002/ijc.29376. PMID 25471534.
  50. Xie L, Ji T, Guo W (August 2017). "Anti-angiogenesis target therapy for advanced osteosarcoma (Review)". Oncol. Rep. 38 (2): 625–636. doi:10.3892/or.2017.5735. PMC 5562076. PMID 28656259.
  51. Li X, Lu Q, Xie W, Wang Y, Wang G (February 2018). "Anti-tumor effects of triptolide on angiogenesis and cell apoptosis in osteosarcoma cells by inducing autophagy via repressing Wnt/β-Catenin signaling". Biochem. Biophys. Res. Commun. 496 (2): 443–449. doi:10.1016/j.bbrc.2018.01.052. PMID 29330051.
  52. Zheng B, Ren T, Huang Y, Guo W (January 2018). "Apatinib inhibits migration and invasion as well as PD-L1 expression in osteosarcoma by targeting STAT3". Biochem. Biophys. Res. Commun. 495 (2): 1695–1701. doi:10.1016/j.bbrc.2017.12.032. PMID 29225166.
  53. Wu X, Yan L, Liu Y, Xian W, Wang L, Ding X (2017). "MicroRNA-448 suppresses osteosarcoma cell proliferation and invasion through targeting EPHA7". PLoS ONE. 12 (6): e0175553. doi:10.1371/journal.pone.0175553. PMC 5467824. PMID 28604772.
  54. Helmerick EC, Loftus JP, Wakshlag JJ (December 2014). "The effects of baicalein on canine osteosarcoma cell proliferation and death". Vet Comp Oncol. 12 (4): 299–309. doi:10.1111/vco.12013. PMID 23228048.
  55. Wakshlag JJ, Balkman CE (November 2010). "Effects of lycopene on proliferation and death of canine osteosarcoma cells". Am. J. Vet. Res. 71 (11): 1362–70. doi:10.2460/ajvr.71.11.1362. PMID 21034328.
  56. Akiyama T, Choong PF, Dass CR (April 2010). "RANK-Fc inhibits malignancy via inhibiting ERK activation and evoking caspase-3-mediated anoikis in human osteosarcoma cells". Clin. Exp. Metastasis. 27 (4): 207–15. doi:10.1007/s10585-010-9319-y. PMID 20383567.
  57. Foley JM, Scholten DJ, Monks NR, Cherba D, Monsma DJ, Davidson P, Dylewski D, Dykema K, Winn ME, Steensma MR (April 2015). "Anoikis-resistant subpopulations of human osteosarcoma display significant chemoresistance and are sensitive to targeted epigenetic therapies predicted by expression profiling". J Transl Med. 13: 110. doi:10.1186/s12967-015-0466-4. PMC 4419490. PMID 25889105.

Template:WH Template:WS