Ebsteins anomaly of the tricuspid valve MRI: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
'''Associate Editor-In-Chief:''' {{CZ}}}; [[User:KeriShafer|Keri Shafer, M.D.]] [mailto:kshafer@bidmc.harvard.edu] [[Priyamvada Singh|Priyamvada Singh, MBBS]] [[mailto:psingh13579@gmail.com]] '''Assistant Editor-In-Chief:''' [[Kristin Feeney|Kristin Feeney, B.S.]] [[mailto:kfeeney@elon.edu]] | '''Associate Editor-In-Chief:''' {{CZ}}}; [[User:KeriShafer|Keri Shafer, M.D.]] [mailto:kshafer@bidmc.harvard.edu] [[Priyamvada Singh|Priyamvada Singh, MBBS]] [[mailto:psingh13579@gmail.com]] '''Assistant Editor-In-Chief:''' [[Kristin Feeney|Kristin Feeney, B.S.]] [[mailto:kfeeney@elon.edu]] | ||
==Overview== | ==Overview== | ||
Magnetic resonance imaging can be helpful as a diagnostic tool in conditions where the echocardiographic findings are inconclusive. | [[Magnetic resonance imaging]] can be helpful as a [[diagnostic]] tool in conditions where the [[echocardiographic]] findings are inconclusive. It shows [[apical]] displacement of the [[septal]] and posterior leaflets of the [[Tricuspid valves|tricuspid valve]], arialization of the [[right ventricle]] and [[tricuspid regurgitation]]. | ||
==Magnetic resonance imaging== | ==Magnetic resonance imaging== | ||
Magnetic resonance imaging (MRI) can be used as a diagnostic modality in the evaluation of the patient who is suspected to have Ebstein's anomaly if the echocardiogram is inconclusive. | *[[Magnetic resonance imaging]] ([[MRI]]) can be used as a [[diagnostic]] modality in the evaluation of the [[patient]] who is suspected to have Ebstein's anomaly if the [[echocardiogram]] is inconclusive..<ref name="pmid7955830">{{cite journal |author=Eustace S, Kruskal JB, Hartnell GG |title=Ebstein's anomaly presenting in adulthood: the role of cine magnetic resonance imaging in diagnosis |journal=[[Clinical Radiology]] |volume=49 |issue=10 |pages=690–2 |year=1994 |month=October |pmid=7955830 |doi= |url= |issn= |accessdate=2012-10-20}}</ref><ref name="pmid30257686">{{cite journal |vauthors=Yang D, Li X, Sun JY, Cheng W, Greiser A, Zhang TJ, Liu H, Wan K, Luo Y, An Q, Chung YC, Han Y, Chen YC |title=Cardiovascular magnetic resonance evidence of myocardial fibrosis and its clinical significance in adolescent and adult patients with Ebstein's anomaly |journal=J Cardiovasc Magn Reson |volume=20 |issue=1 |pages=69 |date=September 2018 |pmid=30257686 |pmc=6158838 |doi=10.1186/s12968-018-0488-1 |url=}}</ref><ref name="pmid22014496">{{cite journal |vauthors=Kilner PJ |title=The role of cardiovascular magnetic resonance in adults with congenital heart disease |journal=Prog Cardiovasc Dis |volume=54 |issue=3 |pages=295–304 |date=2011 |pmid=22014496 |pmc=3245850 |doi=10.1016/j.pcad.2011.07.006 |url=}}</ref><ref name="pmid22723533">{{cite journal |vauthors=Kilner PJ |title=Imaging congenital heart disease in adults |journal=Br J Radiol |volume=84 Spec No 3 |issue= |pages=S258–68 |date=December 2011 |pmid=22723533 |pmc=3473918 |doi=10.1259/bjr/74240815 |url=}}</ref> | ||
*It shows [[apical]] displacement of the [[septal]] and posterior leaflets of the [[Tricuspid valves|tricuspid valve]], arialization of the [[right ventricle]] and [[tricuspid regurgitation]]. | |||
====Advantages of MRI==== | ====Advantages of MRI==== | ||
* It can be used in cases where echocardiographic results are inconclusive. | * It can be used in cases where [[echocardiographic]] results are inconclusive. | ||
* Helps in measuring heart volumes, blood flow and ventricular wall thickness. | * Helps in measuring [[heart]] [[Volume|volumes]], [[blood flow]] and [[ventricular]] wall thickness. | ||
* The magnetic resonance angiography helps in better visualization of heart vasculature and measuring the size the pulmonary arteries | * The [[magnetic resonance angiography]] helps in better visualization of [[heart]] [[vasculature]] and measuring the size the [[pulmonary arteries]] | ||
* Phase velocity mapping helps in measuring the ratio of pulmonary to systemic blood flow (Qp:Qs). | * Phase [[velocity]] mapping helps in measuring the ratio of [[pulmonary]] to [[systemic]] [[blood flow]] (Qp:Qs). | ||
====Disadvantages of MRI==== | ====Disadvantages of MRI==== | ||
*For successful MRI procedure breath holding is required, which is sometimes difficult to achieve with small kids. | *For successful [[MRI]] procedure [[breath]] holding is required, which is sometimes difficult to achieve with small kids. | ||
*Some patients may become claustrophobic. | *Some [[patients]] may become [[Claustrophobia|claustrophobic.]] | ||
*Due to the above, the procedure is sometimes done under general anesthesia in children. | *Due to the above, the procedure is sometimes done under [[general anesthesia]] in [[children]]. | ||
*There may be limited expertise to interpret the MRI as well. | *There may be limited expertise to interpret the [[MRI]] as well. | ||
==ACC/AHA 2018 Guidelines for the | ==ACC/AHA 2018 Guidelines for the Diagnostic recommendations of Adults With Ebstein Anomaly(DO NOT EDIT)<ref name="pmid30121239">{{cite journal |vauthors=Stout KK, Daniels CJ, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM, Crumb SR, Dearani JA, Fuller S, Gurvitz M, Khairy P, Landzberg MJ, Saidi A, Valente AM, Van Hare GF |title=2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines |journal=J. Am. Coll. Cardiol. |volume=73 |issue=12 |pages=e81–e192 |date=April 2019 |pmid=30121239 |doi=10.1016/j.jacc.2018.08.1029 |url=}}</ref><ref name="StoutDaniels2019">{{cite journal|last1=Stout|first1=Karen K.|last2=Daniels|first2=Curt J.|last3=Aboulhosn|first3=Jamil A.|last4=Bozkurt|first4=Biykem|last5=Broberg|first5=Craig S.|last6=Colman|first6=Jack M.|last7=Crumb|first7=Stephen R.|last8=Dearani|first8=Joseph A.|last9=Fuller|first9=Stephanie|last10=Gurvitz|first10=Michelle|last11=Khairy|first11=Paul|last12=Landzberg|first12=Michael J.|last13=Saidi|first13=Arwa|last14=Valente|first14=Anne Marie|last15=Van Hare|first15=George F.|title=2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease|journal=Journal of the American College of Cardiology|volume=73|issue=12|year=2019|pages=e81–e192|issn=07351097|doi=10.1016/j.jacc.2018.08.1029}}</ref>== | ||
{|class="wikitable" | {|class="wikitable" | ||
Line 34: | Line 34: | ||
''<nowiki/>'' | ''<nowiki/>'' | ||
|} | |} | ||
==References== | ==References== | ||
{{Reflist|2}} | {{Reflist|2}} | ||
{{WH}} | {{WH}} | ||
{{WS}} | {{WS}} | ||
Line 48: | Line 45: | ||
[[Category:Congenital heart disease]] | [[Category:Congenital heart disease]] | ||
[[Category:Pediatrics]] | [[Category:Pediatrics]] | ||
[[Category: | [[Category:Medicine] | ||
[[Category:Radiology]] |
Latest revision as of 18:41, 18 February 2020
Ebsteins anomaly of the tricuspid valve Microchapters | |
Diagnosis | |
---|---|
Treatment | |
Case Studies | |
Ebsteins anomaly of the tricuspid valve MRI On the Web | |
American Roentgen Ray Society Images of Ebsteins anomaly of the tricuspid valve MRI | |
Risk calculators and risk factors for Ebsteins anomaly of the tricuspid valve MRI | |
Ebsteins anomaly of the tricuspid valve Microchapters | |
Diagnosis | |
---|---|
Treatment | |
Case Studies | |
Ebsteins anomaly of the tricuspid valve MRI On the Web | |
American Roentgen Ray Society Images of Ebsteins anomaly of the tricuspid valve MRI | |
Risk calculators and risk factors for Ebsteins anomaly of the tricuspid valve MRI | |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] and Claudia P. Hochberg, M.D. [2]
Associate Editor-In-Chief: Cafer Zorkun, M.D., Ph.D. [3]}; Keri Shafer, M.D. [4] Priyamvada Singh, MBBS [[5]] Assistant Editor-In-Chief: Kristin Feeney, B.S. [[6]]
Overview
Magnetic resonance imaging can be helpful as a diagnostic tool in conditions where the echocardiographic findings are inconclusive. It shows apical displacement of the septal and posterior leaflets of the tricuspid valve, arialization of the right ventricle and tricuspid regurgitation.
Magnetic resonance imaging
- Magnetic resonance imaging (MRI) can be used as a diagnostic modality in the evaluation of the patient who is suspected to have Ebstein's anomaly if the echocardiogram is inconclusive..[1][2][3][4]
- It shows apical displacement of the septal and posterior leaflets of the tricuspid valve, arialization of the right ventricle and tricuspid regurgitation.
Advantages of MRI
- It can be used in cases where echocardiographic results are inconclusive.
- Helps in measuring heart volumes, blood flow and ventricular wall thickness.
- The magnetic resonance angiography helps in better visualization of heart vasculature and measuring the size the pulmonary arteries
- Phase velocity mapping helps in measuring the ratio of pulmonary to systemic blood flow (Qp:Qs).
Disadvantages of MRI
- For successful MRI procedure breath holding is required, which is sometimes difficult to achieve with small kids.
- Some patients may become claustrophobic.
- Due to the above, the procedure is sometimes done under general anesthesia in children.
- There may be limited expertise to interpret the MRI as well.
ACC/AHA 2018 Guidelines for the Diagnostic recommendations of Adults With Ebstein Anomaly(DO NOT EDIT)[5][6]
Class IIa |
1.. In adults with Ebstein anomaly, CMR(cardiac magnetic resonance imaging) can be useful to determine anatomy, RV dimensions, and systolic function. (Level of Evidence: B)
|
References
- ↑ Eustace S, Kruskal JB, Hartnell GG (1994). "Ebstein's anomaly presenting in adulthood: the role of cine magnetic resonance imaging in diagnosis". Clinical Radiology. 49 (10): 690–2. PMID 7955830. Unknown parameter
|month=
ignored (help);|access-date=
requires|url=
(help) - ↑ Yang D, Li X, Sun JY, Cheng W, Greiser A, Zhang TJ, Liu H, Wan K, Luo Y, An Q, Chung YC, Han Y, Chen YC (September 2018). "Cardiovascular magnetic resonance evidence of myocardial fibrosis and its clinical significance in adolescent and adult patients with Ebstein's anomaly". J Cardiovasc Magn Reson. 20 (1): 69. doi:10.1186/s12968-018-0488-1. PMC 6158838. PMID 30257686.
- ↑ Kilner PJ (2011). "The role of cardiovascular magnetic resonance in adults with congenital heart disease". Prog Cardiovasc Dis. 54 (3): 295–304. doi:10.1016/j.pcad.2011.07.006. PMC 3245850. PMID 22014496.
- ↑ Kilner PJ (December 2011). "Imaging congenital heart disease in adults". Br J Radiol. 84 Spec No 3: S258–68. doi:10.1259/bjr/74240815. PMC 3473918. PMID 22723533.
- ↑ Stout KK, Daniels CJ, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM, Crumb SR, Dearani JA, Fuller S, Gurvitz M, Khairy P, Landzberg MJ, Saidi A, Valente AM, Van Hare GF (April 2019). "2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines". J. Am. Coll. Cardiol. 73 (12): e81–e192. doi:10.1016/j.jacc.2018.08.1029. PMID 30121239.
- ↑ Stout, Karen K.; Daniels, Curt J.; Aboulhosn, Jamil A.; Bozkurt, Biykem; Broberg, Craig S.; Colman, Jack M.; Crumb, Stephen R.; Dearani, Joseph A.; Fuller, Stephanie; Gurvitz, Michelle; Khairy, Paul; Landzberg, Michael J.; Saidi, Arwa; Valente, Anne Marie; Van Hare, George F. (2019). "2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease". Journal of the American College of Cardiology. 73 (12): e81–e192. doi:10.1016/j.jacc.2018.08.1029. ISSN 0735-1097.
Template:WH Template:WS [[Category:Medicine]