COVID-19-associated stress cardiomyopathy: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
 
(135 intermediate revisions by 3 users not shown)
Line 2: Line 2:
{{SI}}
{{SI}}


{{CMG}}; {{AE}} {{Jose}}
{{CMG}}; {{AE}} {{Jose}} {{Sara.Zand}}  


{{SK}}  
{{SK}} Takotsubo syndrome, TTS, Takotsubo cardiomyopathy, broken heart syndrome, Stress cardiomyopathy, left ventricular outflow obstruction ( LVOTO)


==Overview==
==Overview==
[[COVID-19]]-associated [[stress cardiomyopathy]] was first described by Elena Roca, an Italian physician, in April 2020. This disorder is the result of extreme [[Sympathetic nervous system|sympathetic]] stimulation due to the abnormal release of [[catecholamines]] and [[cortisol]] leading to rapid, severe, reversible  [[cardiac dysfunction]], as well as, [[wall motion abnormality]] of the [[left ventricle]] subtending more than one [[coronary artery]] territory, without evidence of significant [[obstructive]] [[coronary artery disease]]. Few cases of  [[stress cardiomyopathy]] reported in literature due to direct consequences of [[covid-19]] on the [[myocardium]]. However, due to increased [[psychological]], [[social]], [[economical]] distress during [[covid-19]] pandemic, the incidence of [[stress cardiomyopathy]] in non-[[covid-19]] [[patients]] increased significantly compared with prepandemic periods. In general,  [[stress cardiomyopathy]] may develope in the setting of [[emotional stress]] or secondary to infections such as [[covid-19]]. The latter  may have worse prognosis in terms of [[mortality]] compared with [[emotional]] [[trigger]].


==Historical Perspective==
==Historical Perspective==
Line 14: Line 15:
==Classification==
==Classification==


* There is no established system for the classification of COVID-19-associated [[stress cardiomyopathy]].
* [[Takotsubo cardiomyopathy]] is classified as follows:<ref name="pmid26332547">{{cite journal |vauthors=Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, Cammann VL, Sarcon A, Geyer V, Neumann CA, Seifert B, Hellermann J, Schwyzer M, Eisenhardt K, Jenewein J, Franke J, Katus HA, Burgdorf C, Schunkert H, Moeller C, Thiele H, Bauersachs J, Tschöpe C, Schultheiss HP, Laney CA, Rajan L, Michels G, Pfister R, Ukena C, Böhm M, Erbel R, Cuneo A, Kuck KH, Jacobshagen C, Hasenfuss G, Karakas M, Koenig W, Rottbauer W, Said SM, Braun-Dullaeus RC, Cuculi F, Banning A, Fischer TA, Vasankari T, Airaksinen KE, Fijalkowski M, Rynkiewicz A, Pawlak M, Opolski G, Dworakowski R, MacCarthy P, Kaiser C, Osswald S, Galiuto L, Crea F, Dichtl W, Franz WM, Empen K, Felix SB, Delmas C, Lairez O, Erne P, Bax JJ, Ford I, Ruschitzka F, Prasad A, Lüscher TF |title=Clinical Features and Outcomes of Takotsubo (Stress) Cardiomyopathy |journal=N Engl J Med |volume=373 |issue=10 |pages=929–38 |date=September 2015 |pmid=26332547 |doi=10.1056/NEJMoa1406761 |url=}}</ref>
 
* Primary [[takotsubo cardiomyopathy]]: acute [[cardiac]] [[symptoms]] resulting from [[emotional]] or [[physical stress]], main cause of seeking [[medical attention]]
* Secondary [[takotsubo cardiomyopathy]]: developing in [[hospitalized]] [[patients]] for other reasons
 
 
 
 


==Pathophysiology==


* It is thought that COVID-19-associated [[stress cardiomyopathy]] is the result of extreme [[Sympathetic nervous system|sympathetic]] stimulation due to abnormal release of [[catecholamines]] causing [[epicardial]] [[coronary vasospasm]].


* Many mechanisms occurring in [[COVID-19]] patients may lead to [[myocardial injury]] and [[left ventricular dysfunction]].<ref name="pmid32523926">{{cite journal| author=Pasqualetto MC, Secco E, Nizzetto M, Scevola M, Altafini L, Cester A | display-authors=etal| title=Stress Cardiomyopathy in COVID-19 Disease. | journal=Eur J Case Rep Intern Med | year= 2020 | volume= 7 | issue= 6 | pages= 001718 | pmid=32523926 | doi=10.12890/2020_001718 | pmc=7279910 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32523926  }}</ref>
{| style="border: 2px solid #4479BA; align="left"
*One of the proposed theory is that patients may experience [[Stress (medicine)|stress-induced]] [[adrenergic]] discharge as consequence of [[fever]] and [[inflammatory]] response to [[infection]]. One other factor to consider is the direct [[SARS-CoV-2]] injury causing [[endothelial dysfunction]], which may cause [[Microvascular angina|microvascular]] [[vasoconstriction]] that can manifest in a transient [[Left ventricular dysfunction|left ventricular apical dysfunction]], (apical ballooning).<ref name="pmid32644140" />
! style="width: 200px; background: #4479BA;" | {{fontcolor|#FFF|Apical type}}
! style="width: 300px; background: #4479BA;" | {{fontcolor|#FFF|Midventricular type}}
! style="width: 400px; background: #4479BA;" | {{fontcolor|#FFF|Basal type}}
! style="width: 400px; background: #4479BA;" | {{fontcolor|#FFF|Focal type}}
|-
| style="padding: 0 5px; background: #F5F5F5; text-align: left;" | Common type (>80%), [[hypokinesia]] or [[dyskinesia]] of [[midventricular]] and [[apical]] parts of [[anterior]], septal, inferior and lateral walls of [[left ventricle]] associated with [[hyperkinesia]] of basal segments
| style="padding: 0 5px; background: #F5F5F5; text-align: left;" | [[Hypokinesia]] or [[dyskinesia]] of [[midventricular segments]], like a '''[[cuff]]''' in most cases, with normokinesia or hyperkinesia  of basal and apical segments
| style="padding: 0 5px; background: #F5F5F5; text-align: left;" | '''Inverse takotsubo cardiomyopathy''', [[wall motion abnormality]] is reciprocal to apical type, [[hypokinesia]] or [[dyskinesia]] of basal segments, normokinesia or [[hyperkinesia]] of [[midventricular]], anterior, [[antroseptal]], and [[antroapikal]] segments of [[left ventricle]]
| style="padding: 0 5px; background: #F5F5F5; text-align: left;" | Focal [[hypkinesia]] or [[dyskinesia]] of any segments of the [[left ventricle]] , commonly [[antroseptal wall]]
|-
|}
 
==Pathophysiology==
* [[Inflammation]] and [[cytokine storm]] are the underlying mechanisms of  [[cathecolamines release]] in [[patients]] with [[covid-19]].
* It is thought that [[COVID-19]]-associated [[stress cardiomyopathy]] is the result of extreme [[Sympathetic nervous system|sympathetic]] stimulation due to abnormal release of [[catecholamines]] such as [[epinephrine]], [[norepinephrine]], [[dopamine]] and also high level of [[cortisol]].
* Increase level of [[cathecolamines]] and [[cortisol]] in [[patients]] with [[covid-19]] may cause direct [[toxic effect]] on [[cardiomyocytes]] and [[stress cardiomyopathy]].
* Direct effect of [[cathecolamine]] on [[cardiomyocytes]] may lead to [[myocardial stunning]], [[hyperdynamic contractility]], [[multiple vessles spasm]], and/or [[microvascular dysfunction]].
*
* Increased  [[ cortisol]] level  observed in [[patients]] with [[covid-19]] may cause [[isometric tension]], reduced relaxasion of [[papillary muscles]], reduced total relaxation time, without any effect on contraction time.<ref name="pmid32563278">{{cite journal |vauthors=Tan T, Khoo B, Mills EG, Phylactou M, Patel B, Eng PC, Thurston L, Muzi B, Meeran K, Prevost AT, Comninos AN, Abbara A, Dhillo WS |title=Association between high serum total cortisol concentrations and mortality from COVID-19 |journal=Lancet Diabetes Endocrinol |volume=8 |issue=8 |pages=659–660 |date=August 2020 |pmid=32563278 |pmc=7302794 |doi=10.1016/S2213-8587(20)30216-3 |url=}}</ref>
* The mechanisms occurring in [[COVID-19]] [[patients]] may lead to [[myocardial injury]] and [[left ventricular dysfunction]] are:.<ref name="pmid32523926">{{cite journal| author=Pasqualetto MC, Secco E, Nizzetto M, Scevola M, Altafini L, Cester A | display-authors=etal| title=Stress Cardiomyopathy in COVID-19 Disease. | journal=Eur J Case Rep Intern Med | year= 2020 | volume= 7 | issue= 6 | pages= 001718 | pmid=32523926 | doi=10.12890/2020_001718 | pmc=7279910 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32523926  }}</ref>
*:: [[Stress (medicine)|Stress-induced]] [[adrenergic]] discharge as consequence of [[fever]] and [[inflammatory]] response to [[infection]]
*:: The direct [[SARS-CoV-2]] injury causing [[endothelial dysfunction]], which may cause [[Microvascular angina|microvascular]] [[vasoconstriction]] that can manifest in a transient [[Left ventricular dysfunction|left ventricular apical dysfunction]], (apical ballooning).<ref name="pmid32644140" />
* Proposed mechanisms that have the potential to cause [[myocardial injury]] in acute [[coronavirus]] disease 2019 cardiovascular syndrome:<ref name="pmid32297796">{{cite journal| author=Hendren NS, Drazner MH, Bozkurt B, Cooper LT| title=Description and Proposed Management of the Acute COVID-19 Cardiovascular Syndrome. | journal=Circulation | year= 2020 | volume= 141 | issue= 23 | pages= 1903-1914 | pmid=32297796 | doi=10.1161/CIRCULATIONAHA.120.047349 | pmc=7314493 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32297796  }} </ref><br />
* Proposed mechanisms that have the potential to cause [[myocardial injury]] in acute [[coronavirus]] disease 2019 cardiovascular syndrome:<ref name="pmid32297796">{{cite journal| author=Hendren NS, Drazner MH, Bozkurt B, Cooper LT| title=Description and Proposed Management of the Acute COVID-19 Cardiovascular Syndrome. | journal=Circulation | year= 2020 | volume= 141 | issue= 23 | pages= 1903-1914 | pmid=32297796 | doi=10.1161/CIRCULATIONAHA.120.047349 | pmc=7314493 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32297796  }} </ref><br />
<br>
</br>
{{familytree/start}}
{{familytree/start}}
{{familytree | | | | | | | | | | | | | | A01 | | |A01=Stress Induced Cardiomyopathy}}
{{familytree | | | | | | | | | | | | | | A01 | | |A01=Stress Induced Cardiomyopathy}}
{{familytree | | | | | | | | | | B01 |-|.|!|,|-| B02 | | | | | | | | | | | | | | | | | | | | | | |B01=Microvascular/Thrombotic Injury|B02=Cytokine Storm}}
{{familytree | | | | | | | | | | B01 |-|.|!|,|-| B02 | | | | | | | |B01=Microvascular/[[Thrombotic]] Injury|B02=[[Cytokine Storm]]}}
{{familytree | | | | | | C01 |-|-|-|-|-| C02 |-|-|-|-|-| C03 | | | |C01=Pre-existing [[cardiovascular Disease]]|C02=Acute Myocardial Injury Characterized by Abnormal [[Troponin]]|C03=Viral [[Myocarditis]]}}
{{familytree | | | | | | C01 |-|-|-|-|-| C02 |-|-|-|-|-| C03 | | | |C01=Pre-existing [[cardiovascular Disease]]|C02=Acute [[Myocardial Injury]] Characterized by Abnormal [[Troponin]]|C03=Viral [[Myocarditis]]}}
{{familytree | | | | | | | | | | D01 |-|'|!|`|-| D02 | | | | | | | || | | | | | | | | | | | | |D01=[[Hypoxemia]]|D02=[[Hypotension]] +/- [[Shock]] }}
{{familytree | | | | | | | | | | D01 |-|'|!|`|-| D02 | | | | | | | |D01=[[Hypoxemia]]|D02=[[Hypotension]] +/- [[Shock]] }}
{{familytree | | | | | | | | | | | | | | E01 | | | | | | | | | | | | | | | | | | | | | | | | |E01=[[Ventricular arrhythmias|Ventricular]] or [[Atrial Arrhythmias]]}}
{{familytree | | | | | | | | | | | | | | E01 | | | | | | | | | | | |E01=[[Ventricular]] or [[atrial]] arrhythmias}}
{{familytree | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | }}
{{familytree | | | | | | | | | | | | | | | | | | | | | | | | | | | |}}
{{familytree | | | | | | | | | | | | | | || | | | | | | | | | | | | | | | | | | | | | | | | | | }}
{{familytree | | | | | | | | | | | | | | | | | | | | | | | | | | | |}}
{{familytree/end}}
{{familytree/end}}
==Causes==
==Causes==
 
Common causes of [[stress cardiomyopathy]] include:
* COVID-19-associated [[stress cardiomyopathy]] may be caused by a very intense [[Sympathetic nervous system|sympathetic]] stimulation which is theorized to be caused either due to direct viral action or the ongoing [[psychological]], economical and social effects (physical distancing rules, lack of social interaction) of the [[Pandemics|pandemic]] due to the imposed [[quarantine]].<ref name="pmid32644140">{{cite journal| author=Jabri A, Kalra A, Kumar A, Alameh A, Adroja S, Bashir H | display-authors=etal| title=Incidence of Stress Cardiomyopathy During the Coronavirus Disease 2019 Pandemic. | journal=JAMA Netw Open | year= 2020 | volume= 3 | issue= 7 | pages= e2014780 | pmid=32644140 | doi=10.1001/jamanetworkopen.2020.14780 | pmc=7348683 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32644140  }}</ref>
* [[Physical stressors]]
* [[Emotional]] stressors ([[anger]], [[argument]], [[surgery]], [[natural disasters]], [[ grief]], [[happiness]])
* Several [[medications]]
* General [[anesthesia]]
*[[Infectious disease]]
* [[Novel coronavirus disease 2019]]<ref name="pmid32644140">{{cite journal| author=Jabri A, Kalra A, Kumar A, Alameh A, Adroja S, Bashir H | display-authors=etal| title=Incidence of Stress Cardiomyopathy During the Coronavirus Disease 2019 Pandemic. | journal=JAMA Netw Open | year= 2020 | volume= 3 | issue= 7 | pages= e2014780 | pmid=32644140 | doi=10.1001/jamanetworkopen.2020.14780 | pmc=7348683 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32644140  }}</ref>


==Differentiating COVID-19-associated stress cardiomyopathy from other Diseases==
==Differentiating COVID-19-associated stress cardiomyopathy from other Diseases==
 
* For further information about the differential diagnosis, click [[COVID-19-associated stress cardiomyopathy differential diagnosis|here]].
* COVID-19-associated [[stress cardiomyopathy]] must be differentiated from other diseases that cause [[left ventricular dysfunction]] such as [[acute myocardial infarction]] ([[STEMI]] and [[NSTEMI]]) and [[viral myocarditis]].
*To view the differential diagnosis of COVID-19, [[COVID-19 differential diagnosis|click here]].<br />
 
{| class="wikitable"
{| class="wikitable"
!Disease
!Can Present With
!Cardiac Enzymes
!Catecholamine Levels
!ECG Findings
!Echocardiography Findings
!Prognosis
|-
|-
|Stress Cardiomyopathy
!  Differentiating diagnosis
|[[Chest pain]], [[dyspnea]]
[[Takotsubo cardiomyopathy]]
|
[[STEMI]]
|Transiently elevated
|-
|[[ST elevation]] in [[precordial leads]]
| [[Stressful trigger]]
|[[LV]] regional dysfunction
| [[Prominent stressful event]] (79%)
|Very good
| 8%
|-
|  Elevated [[troponin]] on admission
| 91%
| 37%
|-
|-
|[[Pheochromocytoma]]
| [[LVEF]]<40%
|[[Chest pain]], [[dyspnea]]
| Higher incidence of decreased [[LVEF]] at presentation (80%)
|Can be positive
| 31%
|Persistently elevated
|[[ST elevation]] in [[precordial leads]]
|[[LV]] regional dysfunction
|Good to poor - it varies if disease is localized or diffuse (95% to 50% survival in 5 years)<ref>{{Cite web|url=https://www.cancer.net/cancer-types/pheochromocytoma-and-paraganglioma/statistics#:~:text=Localized%20pheochromocytomas%20have%20a%205,or%20paraganglioma%20are%20an%20estimate.|title=Cancer.net - Statistics of Pheochromocytoma and Paraganglioma|last=|first=|date=07/18/2020|website=Cancer.net|archive-url=|archive-date=|dead-url=|access-date=}}</ref>
|-
|-
|[[Anterior MI]]
| [[Symptoms]]
|[[Chest pain]], [[dyspnea]]
| [[Chest pain]] (73%)
|↑↑↑
| Higher rate of [[chest pain]] (100%)
| -
|[[ST elevation]] in [[precordial leads]]
|Dysfunction at area of [[infarction]]
|Variable - depends on the coronary lesion, but usually it has a 30% mortality rate and 5-10% of the survivors die within one year of the event<ref>{{Cite web|url=https://www.medscape.com/answers/155919-15097/what-is-the-prognosis-of-acute-myocardial-infarction-mi-heart-attack|title=Medscape - Acute MI|last=|first=|date=07/18/2020|website=Medscape|archive-url=|archive-date=|dead-url=|access-date=}}</ref>
|-
|-
|[[Myocarditis]]
| [[Sex]]
|[[Chest pain]], [[dyspnea]], [[fever]]
| [[Female]]
|May be acutely elevated
| [[Male]]
| -
|May show [[atrial fibrillation]], [[Left bundle branch block|LBBB]] or [[AV block]]
|Diffuse [[hypokinesia]]
|Extremely variable
|-
|-
|[[Dilated cardiomyopathy|Dilated Cardiomyopathy]]
| [[Age]]
|[[Dyspnea]], [[dyspnea on exertion]], [[cough]], [[edema]], [[fatigue]]
| [[Older age ]] (66 years old)
|Usually negative
| [[Mean]] age 60 years old
| -
|May show [[atrial fibrillation]], [[Left bundle branch block|LBBB]] or [[AV block]]
|[[LV]] enlargement
|Poor - survival is less than 50% in ten years<ref>{{Cite web|url=https://emedicine.medscape.com/article/2017823-overview#:~:text=Dilated%20cardiomyopathy%20is%20associated%20with,often%20recurs%20with%20subsequent%20pregnancy.|title=Medscape - Dilated Cardiomyopathy|last=|first=|date=07/18/2020|website=Medscape|archive-url=|archive-date=|dead-url=|access-date=}}</ref>
|-
|-
|[[Hypertrophic Cardiomyopathy]]
| [[Risk factors]]
|[[Chest pain]], [[dyspnea]], [[syncope]], [[sudden cardiac death]]
| Lower incidence of [[HLP]], [[smoking]], [[diabetes mellitus]]
|Usually negative
| [[HLP]], [[smoking]], [[diabetes mellitus]]
| -
|Common findings include:
* [[Right axis deviation|Right]] or [[left axis deviation]]
* [[Bundle branch block|BBB]]
* [[Sinus bradycardia]]
|[[LV hypertrophy]], [[systolic]] anterior motion of the [[mitral valve]], asymmetric septal [[hypertrophy]]
|Generably good with up to 2/3 of the patients having a normal life, and a 1% cardiac annual mortality<ref name="pmid10163618">{{cite journal| author=Ten Cate FJ| title=Prognosis of hypertrophic cardiomyopathy. | journal=J Insur Med | year= 1996 | volume= 28 | issue= 1 | pages= 42-5 | pmid=10163618 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10163618  }}</ref>
|-
|-
|COVID-19-associated Stress Cardiomyopathy
| [[Coronary angiography]]
|[[Chest pain]], [[dyspnea]]
|  Lower incidence of [[stenosis]]> 50% (15%)
|↑
| [[Stenosis]]> 50% in 100%
|Transiently elevated
|-
|[[ST elevation]] in [[precordial leads]]
| [[In-hospital mortality]]
|[[LV]] regional dysfunction
| 1.3%
|Very good - but hospitalizations may be longer in comparison to regular stress cardiomyopathy<ref name="pmid32644140" />
| 3.6%
 
|}
|}
* For further information about the differential diagnosis, click [[COVID-19-associated stress cardiomyopathy differential diagnosis|here]].
 
==Epidemiology and Demographics==
==Epidemiology and Demographics==


* The [[incidence]] of COVID-19-associated [[stress cardiomyopathy]] is approximately 7.8% of all patients presenting [[acute coronary syndrome]].<ref name="pmid32644140" />
* The [[incidence]] of [[stress cardiomyopathy]]associated [[covid-19]] is approximately 7.8% of all [[patients]] presenting [[acute coronary syndrome]] which is higher than pre-pandemic period.<ref name="pmid32644140" />
* In comparison, the [[stress cardiomyopathy]] [[Incidence (epidemiology)|incidence]] in the pre-[[COVID-19]] period was varying between 1.5-1.8%.<ref name="pmid32644140" />
* In critically ill [[covid-19]] [[patients]], the incidence of [[stress cardiomyopathy]] is approximitely 2-4%, compared  to 1-2% among general population.<ref name="pmid2589">{{cite journal |vauthors=Beppu M, Terao T, Osawa T, Jentsch F |title=Photoaffinity labeling of concanavalin A. Preparation of a concanavalin A derivative with reduced valence |journal=J Biochem |volume=78 |issue=5 |pages=1013–9 |date=November 1975 |pmid=2589 |doi=10.1093/oxfordjournals.jbchem.a130978 |url=}}</ref>
===Age===
*[[Stress cardiomyopathy]] is more commonly observed among [[elderly]] [[patients]] with a mean age of 64.6 years.
===Gender===
*[[Male]] are more commonly affected with [[stress cardiomyopathy]] secondary to [[covid-19]].
* Primary [[stress cardiomyopathy]] is much more common in [[women]]..
 
===Race===
*There is no racial predilection for [[stress cardiomyopathy]] in [[covid-19]] [[patients]].


==Risk Factors==
==Risk Factors==


* There are no established risk factors for COVID-19-associated [[stress cardiomyopathy]].
* There are no established risk factors for [[COVID-19]]-associated [[stress cardiomyopathy]].
*[[Hypertension, systemic|Hypertension]] was, however, the most frequently [[comorbidity]] found across the groups in the [[COVID-19]] period patients, as was [[hyperlipidemia]].<ref name="pmid32644140" />
* In general population,  secondary [[stress cardiomyopathy]] is much more commen in older [[men]] , as well as with higher incidence of conventional risk factors including [[HTN]], [[diabetes mellitus]], [[dyslipidemia]], [[cerebrovascular disease]], [[cardiac arrhythmia]].
*  Common risk factors in reported [[takotsubo cardiomyopathy]] secondary to [[covid-19]] include:
*:[[Older]] [[age]]
*: [[HTN]]
*:[[DM]]
*:[[ Dyslipidemia]]
*:Prior [[stroke]]
:* [[Atrial fibrillation]]
:* [[Psychiatric illness]]
:* [[Hypoxia]]
:*Severe [[covid-19]] [[pneumonia]] requiring [[mechanical ventilation]] support
 
 
 
 
 
 
*Common triggers associated with development of secondary [[takotsubo cardiomyopathy]] in severe [[covid-19]] [[pneumonia]] include:<ref name="pmid24685327">{{cite journal |vauthors=Singh K, Carson K, Shah R, Sawhney G, Singh B, Parsaik A, Gilutz H, Usmani Z, Horowitz J |title=Meta-analysis of clinical correlates of acute mortality in takotsubo cardiomyopathy |journal=Am J Cardiol |volume=113 |issue=8 |pages=1420–8 |date=April 2014 |pmid=24685327 |doi=10.1016/j.amjcard.2014.01.419 |url=}}</ref><ref name="pmid26332547">{{cite journal |vauthors=Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, Cammann VL, Sarcon A, Geyer V, Neumann CA, Seifert B, Hellermann J, Schwyzer M, Eisenhardt K, Jenewein J, Franke J, Katus HA, Burgdorf C, Schunkert H, Moeller C, Thiele H, Bauersachs J, Tschöpe C, Schultheiss HP, Laney CA, Rajan L, Michels G, Pfister R, Ukena C, Böhm M, Erbel R, Cuneo A, Kuck KH, Jacobshagen C, Hasenfuss G, Karakas M, Koenig W, Rottbauer W, Said SM, Braun-Dullaeus RC, Cuculi F, Banning A, Fischer TA, Vasankari T, Airaksinen KE, Fijalkowski M, Rynkiewicz A, Pawlak M, Opolski G, Dworakowski R, MacCarthy P, Kaiser C, Osswald S, Galiuto L, Crea F, Dichtl W, Franz WM, Empen K, Felix SB, Delmas C, Lairez O, Erne P, Bax JJ, Ford I, Ruschitzka F, Prasad A, Lüscher TF |title=Clinical Features and Outcomes of Takotsubo (Stress) Cardiomyopathy |journal=N Engl J Med |volume=373 |issue=10 |pages=929–38 |date=September 2015 |pmid=26332547 |doi=10.1056/NEJMoa1406761 |url=}}</ref>
*: [[Respiratory condition]]
*: [[Intubation]]
*: [[Medication]] use
*: [[Epinephrine]] use
*: [[Anxiety]]
*: [[Betablocker]] withdraw


==Screening==
==Screening==
Line 125: Line 166:
==Natural History, Complications, and Prognosis==
==Natural History, Complications, and Prognosis==


*[[COVID-19]]-associated [[stress cardiomyopathy]] outcomes were similar to the [[stress cardiomyopathy]] not related to [[COVID-19]] with regard to mortality and 30-day rehospitalization.<ref name="pmid32644140" />
* The same study showed that COVID-19-associated [[stress cardiomyopathy]] patients had a significantly longer hospital length of stay. in comparison to the ones not related to [[COVID-19]].<ref name="pmid32644140" />


* Provided that patients survive the initial insult without any complications, most patients recover and have a normalized cardiac function within a few weeks.<ref name="pmid19106400">{{cite journal |vauthors=Akashi YJ, Goldstein DS, Barbaro G, Ueyama T |title=Takotsubo cardiomyopathy: a new form of acute, reversible heart failure |journal=Circulation |volume=118 |issue=25 |pages=2754–62 |year=2008 |pmid=19106400 |pmc=4893309 |doi=10.1161/CIRCULATIONAHA.108.767012 |url=}}</ref><ref name="pmid18294473">{{cite journal |vauthors=Prasad A, Lerman A, Rihal CS |title=Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction |journal=Am. Heart J. |volume=155 |issue=3 |pages=408–17 |year=2008 |pmid=18294473 |doi=10.1016/j.ahj.2007.11.008 |url=}}</ref><ref name="pmid19726776">{{cite journal |vauthors=Tsai TT, Nallamothu BK, Prasad A, Saint S, Bates ER |title=Clinical problem-solving. A change of heart |journal=N. Engl. J. Med. |volume=361 |issue=10 |pages=1010–6 |year=2009 |pmid=19726776 |doi=10.1056/NEJMcps0903023 |url=}}</ref>
* There are varied degree of the recovery of [[patients]] with [[stress cardiomyopathy]] associated [[covid-19]] reported  in literature within two months.<ref name="pmid32267502">{{cite journal |vauthors=Sala S, Peretto G, Gramegna M, Palmisano A, Villatore A, Vignale D, De Cobelli F, Tresoldi M, Cappelletti AM, Basso C, Godino C, Esposito A |title=Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection |journal=Eur Heart J |volume=41 |issue=19 |pages=1861–1862 |date=May 2020 |pmid=32267502 |pmc=7184339 |doi=10.1093/eurheartj/ehaa286 |url=}}</ref> <ref name="pmid32328588">{{cite journal |vauthors=Dabbagh MF, Aurora L, D'Souza P, Weinmann AJ, Bhargava P, Basir MB |title=Cardiac Tamponade Secondary to COVID-19 |journal=JACC Case Rep |volume=2 |issue=9 |pages=1326–1330 |date=July 2020 |pmid=32328588 |pmc=7177077 |doi=10.1016/j.jaccas.2020.04.009 |url=}}</ref><ref name="pmid33458567">{{cite journal |vauthors=Sharma K, Desai HD, Patoliya JV, Jadeja DM, Gadhiya D |title=Takotsubo Syndrome a Rare Entity in COVID-19: a Systemic Review-Focus on Biomarkers, Imaging, Treatment, and Outcome |journal=SN Compr Clin Med |volume= |issue= |pages=1–11 |date=January 2021 |pmid=33458567 |pmc=7799869 |doi=10.1007/s42399-021-00743-4 |url=}}</ref>


*Early clinical features include  [[acute coronary syndrome]] with [[chest pain]] and [[ECG]] changes and rise of [[troponin]], [[acute pulmonary edema]], decreased [[oxygen]] saturation without response to O2 therapy, [[hemodynamic instability]]. 
* [[Patients]] with [[stress cardiomyopathy]] associated with [[covid-19]] had a longer hospital days admission compared with the pre-pandemic period.<ref name="pmid32644140" />
* [[Stress cardiomyopathy]] in critically ill [[covid-19]] [[patients]] may progress to develop [[cardiogenic shock]], [[pulmonary edema]], [[hemodynamic collapse]], and [[death]].
* [[Patients]] with secondary [[takotsubo cardiomyopathy]] may experience [[cardiogenic shock]], [[respiratory failure]] requiring [[mechanical ventilation]] support and [[coagulation]] disorder. However, in  reported [[patients]] with [[takotsubo cardiomyopathy]] exacerbation of [[respiratory]] status may be due to [[covid-19]] complicating [[takotsubo cardiomyopathy]]. 
* Some [[patients]] may recover and have a normalized [[cardiac]] function within a few weeks. .<ref name="pmid19106400">{{cite journal |vauthors=Akashi YJ, Goldstein DS, Barbaro G, Ueyama T |title=Takotsubo cardiomyopathy: a new form of acute, reversible heart failure |journal=Circulation |volume=118 |issue=25 |pages=2754–62 |year=2008 |pmid=19106400 |pmc=4893309 |doi=10.1161/CIRCULATIONAHA.108.767012 |url=}}</ref><ref name="pmid18294473">{{cite journal |vauthors=Prasad A, Lerman A, Rihal CS |title=Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction |journal=Am. Heart J. |volume=155 |issue=3 |pages=408–17 |year=2008 |pmid=18294473 |doi=10.1016/j.ahj.2007.11.008 |url=}}</ref><ref name="pmid19726776">{{cite journal |vauthors=Tsai TT, Nallamothu BK, Prasad A, Saint S, Bates ER |title=Clinical problem-solving. A change of heart |journal=N. Engl. J. Med. |volume=361 |issue=10 |pages=1010–6 |year=2009 |pmid=19726776 |doi=10.1056/NEJMcps0903023 |url=}}</ref>
* Prognosis of [[stress cardiomyopathy]] associated [[covid-19]] is not clearly described yet, and [[mortality rate]] of [[patients]]  with [[stress cardiomyopathy]] without [[covid-19]] [[infection]]  is approximately 5% during  pandemic  (similar to pre-pandemic [[covid-19]] period). However, the [[mortality rate]] of [[takotsubo cardiomyopathy]] secondary to [[covid-19]] [[pneumonia]] is 10 times higher than non-[[covid-19]] [[patients]].<ref name="pmid32644140" />
* Complications of [[stress cardiomyopathy]] include:<ref name="pmid19106400" /><ref name="pmid21401402">{{cite journal |vauthors=Omerovic E |title=How to think about stress-induced cardiomyopathy?--Think "out of the box"! |journal=Scand. Cardiovasc. J. |volume=45 |issue=2 |pages=67–71 |year=2011 |pmid=21401402 |doi=10.3109/14017431.2011.565794 |url=}}</ref><ref name="pmid18206521">{{cite journal |vauthors=Brenner ZR, Powers J |title=Takotsubo cardiomyopathy |journal=Heart Lung |volume=37 |issue=1 |pages=1–7 |year=2008 |pmid=18206521 |doi=10.1016/j.hrtlng.2006.12.003 |url=}}</ref><ref name="pmid19726776" /><ref name="pmid28041712">{{cite journal |vauthors=Efferth T, Banerjee M, Paul NW |title=Broken heart, tako-tsubo or stress cardiomyopathy? Metaphors, meanings and their medical impact |journal=Int. J. Cardiol. |volume= |issue= |pages= |year=2016 |pmid=28041712 |doi=10.1016/j.ijcard.2016.12.129 |url=}}</ref><ref name="pmid15583228">{{cite journal |vauthors=Bybee KA, Kara T, Prasad A, Lerman A, Barsness GW, Wright RS, Rihal CS |title=Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction |journal=Ann. Intern. Med. |volume=141 |issue=11 |pages=858–65 |year=2004 |pmid=15583228 |doi= |url=}}</ref><ref name="pmid11451258">{{cite journal |vauthors=Tsuchihashi K, Ueshima K, Uchida T, Oh-mura N, Kimura K, Owa M, Yoshiyama M, Miyazaki S, Haze K, Ogawa H, Honda T, Hase M, Kai R, Morii I |title=Transient left ventricular apical ballooning without coronary artery stenosis: a novel heart syndrome mimicking acute myocardial infarction. Angina Pectoris-Myocardial Infarction Investigations in Japan |journal=J. Am. Coll. Cardiol. |volume=38 |issue=1 |pages=11–8 |year=2001 |pmid=11451258 |doi= |url=}}</ref><ref name="pmid15687136">{{cite journal |vauthors=Sharkey SW, Lesser JR, Zenovich AG, Maron MS, Lindberg J, Longe TF, Maron BJ |title=Acute and reversible cardiomyopathy provoked by stress in women from the United States |journal=Circulation |volume=111 |issue=4 |pages=472–9 |year=2005 |pmid=15687136 |doi=10.1161/01.CIR.0000153801.51470.EB |url=}}</ref><ref name="pmid12923018">{{cite journal |vauthors=Desmet WJ, Adriaenssens BF, Dens JA |title=Apical ballooning of the left ventricle: first series in white patients |journal=Heart |volume=89 |issue=9 |pages=1027–31 |year=2003 |pmid=12923018 |pmc=1767823 |doi= |url=}}</ref><ref name="pmid26159108">{{cite journal |vauthors=Krishnamoorthy P, Garg J, Sharma A, Palaniswamy C, Shah N, Lanier G, Patel NC, Lavie CJ, Ahmad H |title=Gender Differences and Predictors of Mortality in Takotsubo Cardiomyopathy: Analysis from the National Inpatient Sample 2009-2010 Database |journal=Cardiology |volume=132 |issue=2 |pages=131–136 |year=2015 |pmid=26159108 |doi=10.1159/000430782 |url=}}</ref>
* Complications of [[stress cardiomyopathy]] include:<ref name="pmid19106400" /><ref name="pmid21401402">{{cite journal |vauthors=Omerovic E |title=How to think about stress-induced cardiomyopathy?--Think "out of the box"! |journal=Scand. Cardiovasc. J. |volume=45 |issue=2 |pages=67–71 |year=2011 |pmid=21401402 |doi=10.3109/14017431.2011.565794 |url=}}</ref><ref name="pmid18206521">{{cite journal |vauthors=Brenner ZR, Powers J |title=Takotsubo cardiomyopathy |journal=Heart Lung |volume=37 |issue=1 |pages=1–7 |year=2008 |pmid=18206521 |doi=10.1016/j.hrtlng.2006.12.003 |url=}}</ref><ref name="pmid19726776" /><ref name="pmid28041712">{{cite journal |vauthors=Efferth T, Banerjee M, Paul NW |title=Broken heart, tako-tsubo or stress cardiomyopathy? Metaphors, meanings and their medical impact |journal=Int. J. Cardiol. |volume= |issue= |pages= |year=2016 |pmid=28041712 |doi=10.1016/j.ijcard.2016.12.129 |url=}}</ref><ref name="pmid15583228">{{cite journal |vauthors=Bybee KA, Kara T, Prasad A, Lerman A, Barsness GW, Wright RS, Rihal CS |title=Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction |journal=Ann. Intern. Med. |volume=141 |issue=11 |pages=858–65 |year=2004 |pmid=15583228 |doi= |url=}}</ref><ref name="pmid11451258">{{cite journal |vauthors=Tsuchihashi K, Ueshima K, Uchida T, Oh-mura N, Kimura K, Owa M, Yoshiyama M, Miyazaki S, Haze K, Ogawa H, Honda T, Hase M, Kai R, Morii I |title=Transient left ventricular apical ballooning without coronary artery stenosis: a novel heart syndrome mimicking acute myocardial infarction. Angina Pectoris-Myocardial Infarction Investigations in Japan |journal=J. Am. Coll. Cardiol. |volume=38 |issue=1 |pages=11–8 |year=2001 |pmid=11451258 |doi= |url=}}</ref><ref name="pmid15687136">{{cite journal |vauthors=Sharkey SW, Lesser JR, Zenovich AG, Maron MS, Lindberg J, Longe TF, Maron BJ |title=Acute and reversible cardiomyopathy provoked by stress in women from the United States |journal=Circulation |volume=111 |issue=4 |pages=472–9 |year=2005 |pmid=15687136 |doi=10.1161/01.CIR.0000153801.51470.EB |url=}}</ref><ref name="pmid12923018">{{cite journal |vauthors=Desmet WJ, Adriaenssens BF, Dens JA |title=Apical ballooning of the left ventricle: first series in white patients |journal=Heart |volume=89 |issue=9 |pages=1027–31 |year=2003 |pmid=12923018 |pmc=1767823 |doi= |url=}}</ref><ref name="pmid26159108">{{cite journal |vauthors=Krishnamoorthy P, Garg J, Sharma A, Palaniswamy C, Shah N, Lanier G, Patel NC, Lavie CJ, Ahmad H |title=Gender Differences and Predictors of Mortality in Takotsubo Cardiomyopathy: Analysis from the National Inpatient Sample 2009-2010 Database |journal=Cardiology |volume=132 |issue=2 |pages=131–136 |year=2015 |pmid=26159108 |doi=10.1159/000430782 |url=}}</ref>
**[[Heart failure]]
**Severe [[Heart failure]]
**[[Pulmonary edema]]
**Acute [[pulmonary edema]]
**[[Cardiogenic shock]]
**[[Cardiogenic shock]]
**Dynamic [[left ventricular outflow tract obstruction]] (peak gradients >25 mmhg in [[echo]] or [[cath]])
**[[Hypotension]]
** Moderete to severe acute functional [[mitral regurgitation]]
**[[Bradycardia]]
**[[Bradycardia]]
**[[Arrythmias]], mainly [[QT prolongation]] and [[ventricular arrhythmias]]
**[[QT prolongation]] and [[ventricular arrhythmias]]
** [[Torsade de pointes]]
**[[Left ventricular]] [[mural thrombus]]
**[[Left ventricular]] [[mural thrombus]]
**[[Mitral valve]] dysfunction
**[[Mitral valve]] dysfunction
**[[Pulmonary embolism]]
**[[Pulmonary embolism]]
**[[Mitral regurgitation]]
** Systemic [[embolism]], [[stroke]]
**[[LV]] [[free wall rupture]]
**[[LV]] [[free wall rupture]]
**[[Myocardial rupture|Heart rupture]]
** [[Acute renal failure]]
**Death
** In-hospital death


==Diagnosis==
==Diagnosis==


* Diagnostic findings are largely the same in comparison to [[stress cardiomyopathy]], and these are listed below. There is however a need to show evidence of ongoing [[COVID-19]] infection.
*In the development of new [[hypotension]] and [[tachycardia]] in intubated [[covid-19]] [[patients]] with comorbidities ( [[HTN]], [[dyslipidemia]], [[atrial fibrillation]], previous [[stroke]]) or the need for [[vasopressor]] and presence of [[hypoxia]], investigation  about [[stress cardiomyopathy]] should be done by [[taking ]] [[ECG]] and check of [[cardiac biomarkers]] ( [[troponin]], NT-Pro [[BNP]].
* In the presence of any [[ECG]] changes or [[cardiac biomarkers]] abnormality, [[transthoracic echocardiography]] should be done
 


===Diagnostic Study of Choice===
===Diagnostic Study of Choice===
 
* [[Echocardiography]] is the gold standard of diagnosis of [[takotsubo cardiomyopathy]].
* High risk feature of [[takotsubo cardiomyopathy]] on [[echocardiography]] include: [[LVEF]]<45%, Moderate to severe [[mitral regurgitation]], [[right ventricular]] involvement.
* The diagnosis of [[stress cardiomyopathy]] is made when all 4 of the following diagnostic criteria are met:
* The diagnosis of [[stress cardiomyopathy]] is made when all 4 of the following diagnostic criteria are met:
**Transient [[Hypokinesia|hypokinesis]], [[Akinesia|akinesis]], or [[Dyskinesia|dyskinesis]] of the [[left ventricular]] mid segments with or without [[apical]] involvement; the regional wall motion abnormalities extend beyond a single [[epicardial]] [[vascular]] distribution; a stressful trigger is often, but not always present.
**Transient [[Hypokinesia|hypokinesis]], [[Akinesia|akinesis]], or [[Dyskinesia|dyskinesis]] of the [[left ventricular]] mid segments with or without [[apical]] involvement; the regional wall motion abnormalities extend beyond a single [[epicardial]] [[vascular]] distribution; a stressful trigger is often, but not always present.
Line 165: Line 217:
*[[Loss of consciousness]] due to [[syncope]] or [[cardiac arrest]] in rare cases
*[[Loss of consciousness]] due to [[syncope]] or [[cardiac arrest]] in rare cases


When taking the history from a patient with suspected [[stress cardiomyopathy]], it is important to ask about:<ref name="pmid18206521" /><ref name="pmid15583228" />
* Considering [[emotional factors]] such as  fear of severity of [[covid-19]], contact with a hospitalized family member, worry about [[socioeconomic costs]], [[intrusive]] thoughts about [[morbidity]] of [[covid-19]] that may lead to [[stress cardiomyopathy]]. <ref name="pmid33458567">{{cite journal |vauthors=Sharma K, Desai HD, Patoliya JV, Jadeja DM, Gadhiya D |title=Takotsubo Syndrome a Rare Entity in COVID-19: a Systemic Review-Focus on Biomarkers, Imaging, Treatment, and Outcome |journal=SN Compr Clin Med |volume= |issue= |pages=1–11 |date=January 2021 |pmid=33458567 |pmc=7799869 |doi=10.1007/s42399-021-00743-4 |url=}}</ref>
 
*Personal history of [[hypertension]], [[hyperlipidemia]], [[paroxysmal atrial fibrillation]], [[syncope]], [[hypoglycemia]] or [[stroke]]
*Triggering event(s) to symptoms such as an unexpected death, being a victim of domestic violence or engaging in an argument or performing strenuous [[Physical exercise|physical activity]]


===Physical Examination===
===Physical Examination===
Line 175: Line 224:


{| class="wikitable"
{| class="wikitable"
!Organ System
! align="center" style="background: #4479BA; color: #FFFFFF |Organ System
!Findings
! align="center" style="background: #4479BA; color: #FFFFFF |Findings
!Suggestive Of
! align="center" style="background: #4479BA; color: #FFFFFF |Suggestive Of
|-
|-
! General appearance
! General appearance
Line 191: Line 240:
|-
|-
!Cardiac
!Cardiac
|[[Murmurs]], [[S3]], [[gallop rhythm]], [[Displaced point of maximal impulse|displaced PMI]]
|[[Murmurs]], [[S3]], [[gallop rhythm]], [[Displaced point of maximal impulse]] ([[PMI]])
|[[Heart failure]]
|[[Heart failure]]
|-
|-
Line 198: Line 247:
|[[Pulmonary edema]]
|[[Pulmonary edema]]
|}
|}
===Laboratory Findings===
===Laboratory Findings===


* Laboratory findings consistent with the diagnosis of COVID-19-associated [[stress cardiomyopathy]] include elevated [[troponin]] and Pro-[[BNP]].<ref name="pmid32644140" />
* Laboratory findings consistent with the diagnosis of [[stress cardiomyopathy]] in [[covid-19]] [[patients]] include elevated [[troponin]] and Pro-[[BNP]].<ref name="pmid32644140" />
*Elevated levels of [[serum]] [[catecholamines]] may also be found in patients with [[stress cardiomyopathy]].<ref name="pmid19106400" /><ref name="pmid18206521" /><ref name="pmid15583228" /><ref name="pmid28041712" />
*Elevated levels of [[serum]] [[catecholamines]] may also be found in patients with [[stress cardiomyopathy]].<ref name="pmid19106400" /><ref name="pmid18206521" /><ref name="pmid15583228" /><ref name="pmid28041712" />
*Evidence of ongoing [[COVID-19]] disease is required to establish the diagnosis.
*Evidence of ongoing [[COVID-19]] disease is required to establish the diagnosis.
Line 210: Line 260:
*[[T wave inversion]]
*[[T wave inversion]]
*[[Q wave]] formation
*[[Q wave]] formation
*[[QT prolongation]]
*[[QTc|QT prolongation]]
*New-onset [[Bundle branch block|bundle branch block (BBB)]]
*New-onset [[Bundle branch block|bundle branch block (BBB)]]
*Rarely, malignant [[ventricular arrhythmias]] may be seen
*Rarely, malignant [[ventricular arrhythmias]] may be seen


===X-ray===
===X-ray===
[[Takotsubo cardiomyopathy|Takotsubo]] in Japanese language refer to a ceramic pot, which is used to trap octopus. The typical [[Chest X-ray|chest x-ray]] findings in patients with stress cardiomyopathy include a takotsubo-shaped [[heart]], in which there is [[apical ballooning]] and narrowing of the [[Anatomical terms of location|proximal]] portion near the [[great vessels]].
[[Takotsubo cardiomyopathy|Takotsubo]] refers to a ceramic pot used to trap octopuses in the Japanese language. The typical [[Chest X-ray|chest x-ray]] findings in patients with stress cardiomyopathy include a [[takotsubo]]-shaped [[heart]], in which there is [[apical ballooning]] and narrowing of the [[Anatomical terms of location|proximal]] portion near the [[great vessels]].


===Echocardiography or Ultrasound===
===Echocardiography or Ultrasound===
Line 266: Line 316:


====Myocardial Biopsy ====
====Myocardial Biopsy ====
*[[Myocardial biopsy]], although not necessary for diagnosis, can distinguish between [[stress cardiomyopathy]] and [[MI]].
*The histological findings on [[myocardial biopsy]] in patients with [[stress cardiomyopathy]] include:<ref name="pmid19106400" /><ref name="pmid18206521" />
*The histological findings on [[myocardial biopsy]] in patients with [[stress cardiomyopathy]] include:<ref name="pmid19106400" /><ref name="pmid18206521" />
**[[Inflammatory]] infiltrates, consisting of [[mononuclear lymphocytes]], [[leukocytes]] and [[macrophages]]
**[[Inflammatory]] infiltrates, consisting of [[mononuclear lymphocytes]], [[leukocytes]] and [[macrophages]]
Line 278: Line 326:
===Medical Therapy===
===Medical Therapy===


* There is no treatment for specific treatment for [[stress cardiomyopathy]] when associated with [[COVID-19]]. The mainstay of therapy is supportive care, which is the same for the [[stress cardiomyopathy]] not related to [[COVID-19]].
* The mainstay of therapy of [[stress cardiomyopathy]] associated with [[covid-19]] is supportive care.
 
*In mild [[TTS]] without signs of [[heart failure]], [[beta-blocker]] and [[ACEI]] or [[ARB]] are recommended and [[inotrope]] agents such as [[epinephrine]], [[norepinephrine]], [[dobutamine]], [[milrinone]], [[isoproterenol]] should be avoided.
* Medical therapy in patients with [[stress cardiomyopathy]] is mostly targeted towards the treatment of complications. For [[stress cardiomyopathy]] per se, the use of [[heparin]] and [[aspirin]] are controversial. It must be noted that the use of [[beta blockers]] alone is not advised, as this will result unopposed activity of [[catecholamines]] at the [[alpha receptors]] and can cause further prolongation of the [[QT interval]]. The combined use of [[Alpha blockers|alpha-]] and [[beta blockers]] is reasonable.<ref name="pmid21401402" />
*In the presence of [[pulmonary edema]] without evidence of [[left ventricular outflow obstruction]], administration of [[ACEI]], [[betablocker]]s, [[diuretic]] and [[nitroglycerin]] are recommended.
 
*In the presence of [[cardiogenic shock]] and [[left ventricular outflow obstruction]] (no [[heart failure]] [[symptoms]]), short acting [[betablocker]], IV [[fluide]], and placing  [[impella]] are recommended.
====Treatment of Complications ====
* [[Diuretic]], [[nitroglycerin]], [[intraaortic ballon pump]] should be avoided in the evidence of [[cardiogenic shock]] and [[left ventricular outflow obstruction]].
The following interventions are performed if their associated complications arise:<ref name="pmid21401402" /><ref name="pmid18206521" /><ref name="pmid15583228" />
*If there is evidence of [[pump failure]] in the context of [[cardiogenic shock]], [[levosimentan]], [[ECMO]], [[impella ]] are considered.
 
*[[Arrhythmia]] such as [[VT]], [[VF]], [[torsades de pointes]], [[ bradycardia]], [[long QT interval]] should be managed.
*[[Cardiogenic shock]] is treated with [[intraaortic balloon pump]]
* Temporary [[RV pacing]] is recommended in the presence of [[AV block]] and placement of [[permanent device]] is not recommended.
*[[Pulmonary edema]] is treated by advising the patient to adopt an upright position, supplementation of [[oxygen]], and administration of [[diuretics]], [[morphine]] and [[sedatives]]
* In the presence of [[bradycardia]] and [[long QTc]] >500 ms, [[betablocker]] should be avoided.
*[[Heart failure]] is managed [[ACE inhibitor|ACE inhibitors]], [[Angiotensin II receptor antagonist|ARBs]], [[diuretics]] and [[nitrates]]
*In the presence of [[left ventricular]] clot or large portion of [[akinesia]] of [[left ventricle]] involving [[apex]], [[anticougulation]] therapy  is recommende.
* Classic treatment of [[heart failure]] including [[ACEI]] and [[betablocker]] should be kept at least three months or untill recovery of [[regional wall motion abnormality]].
* Treatment of underlying disorders such as [[coronary artery disease]] is reasonable by continuing  [[aspirin]] and [[statin]].


===Surgery===
===Surgery===
Line 295: Line 345:
===Primary Prevention===
===Primary Prevention===


* There are no established measures for the primary prevention of COVID-19-associated [[stress cardiomyopathy]] if a patient has acquired [[COVID-19]] infection.
* There are no established measures for the primary prevention of COVID-19-associated [[stress cardiomyopathy]].
* Preventive measures should be taken to avoid [[COVID-19]] infection.
* Preventive measures should be taken to avoid [[COVID-19]] infection.



Latest revision as of 16:53, 10 March 2022

WikiDoc Resources for COVID-19-associated stress cardiomyopathy

Articles

Most recent articles on COVID-19-associated stress cardiomyopathy

Most cited articles on COVID-19-associated stress cardiomyopathy

Review articles on COVID-19-associated stress cardiomyopathy

Articles on COVID-19-associated stress cardiomyopathy in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on COVID-19-associated stress cardiomyopathy

Images of COVID-19-associated stress cardiomyopathy

Photos of COVID-19-associated stress cardiomyopathy

Podcasts & MP3s on COVID-19-associated stress cardiomyopathy

Videos on COVID-19-associated stress cardiomyopathy

Evidence Based Medicine

Cochrane Collaboration on COVID-19-associated stress cardiomyopathy

Bandolier on COVID-19-associated stress cardiomyopathy

TRIP on COVID-19-associated stress cardiomyopathy

Clinical Trials

Ongoing Trials on COVID-19-associated stress cardiomyopathy at Clinical Trials.gov

Trial results on COVID-19-associated stress cardiomyopathy

Clinical Trials on COVID-19-associated stress cardiomyopathy at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on COVID-19-associated stress cardiomyopathy

NICE Guidance on COVID-19-associated stress cardiomyopathy

NHS PRODIGY Guidance

FDA on COVID-19-associated stress cardiomyopathy

CDC on COVID-19-associated stress cardiomyopathy

Books

Books on COVID-19-associated stress cardiomyopathy

News

COVID-19-associated stress cardiomyopathy in the news

Be alerted to news on COVID-19-associated stress cardiomyopathy

News trends on COVID-19-associated stress cardiomyopathy

Commentary

Blogs on COVID-19-associated stress cardiomyopathy

Definitions

Definitions of COVID-19-associated stress cardiomyopathy

Patient Resources / Community

Patient resources on COVID-19-associated stress cardiomyopathy

Discussion groups on COVID-19-associated stress cardiomyopathy

Patient Handouts on COVID-19-associated stress cardiomyopathy

Directions to Hospitals Treating COVID-19-associated stress cardiomyopathy

Risk calculators and risk factors for COVID-19-associated stress cardiomyopathy

Healthcare Provider Resources

Symptoms of COVID-19-associated stress cardiomyopathy

Causes & Risk Factors for COVID-19-associated stress cardiomyopathy

Diagnostic studies for COVID-19-associated stress cardiomyopathy

Treatment of COVID-19-associated stress cardiomyopathy

Continuing Medical Education (CME)

CME Programs on COVID-19-associated stress cardiomyopathy

International

COVID-19-associated stress cardiomyopathy en Espanol

COVID-19-associated stress cardiomyopathy en Francais

Business

COVID-19-associated stress cardiomyopathy in the Marketplace

Patents on COVID-19-associated stress cardiomyopathy

Experimental / Informatics

List of terms related to COVID-19-associated stress cardiomyopathy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: José Eduardo Riceto Loyola Junior, M.D.[2] Sara Zand, M.D.[3]

Synonyms and keywords: Takotsubo syndrome, TTS, Takotsubo cardiomyopathy, broken heart syndrome, Stress cardiomyopathy, left ventricular outflow obstruction ( LVOTO)

Overview

COVID-19-associated stress cardiomyopathy was first described by Elena Roca, an Italian physician, in April 2020. This disorder is the result of extreme sympathetic stimulation due to the abnormal release of catecholamines and cortisol leading to rapid, severe, reversible cardiac dysfunction, as well as, wall motion abnormality of the left ventricle subtending more than one coronary artery territory, without evidence of significant obstructive coronary artery disease. Few cases of stress cardiomyopathy reported in literature due to direct consequences of covid-19 on the myocardium. However, due to increased psychological, social, economical distress during covid-19 pandemic, the incidence of stress cardiomyopathy in non-covid-19 patients increased significantly compared with prepandemic periods. In general, stress cardiomyopathy may develope in the setting of emotional stress or secondary to infections such as covid-19. The latter may have worse prognosis in terms of mortality compared with emotional trigger.

Historical Perspective

Classification




Apical type Midventricular type Basal type Focal type
Common type (>80%), hypokinesia or dyskinesia of midventricular and apical parts of anterior, septal, inferior and lateral walls of left ventricle associated with hyperkinesia of basal segments Hypokinesia or dyskinesia of midventricular segments, like a cuff in most cases, with normokinesia or hyperkinesia of basal and apical segments Inverse takotsubo cardiomyopathy, wall motion abnormality is reciprocal to apical type, hypokinesia or dyskinesia of basal segments, normokinesia or hyperkinesia of midventricular, anterior, antroseptal, and antroapikal segments of left ventricle Focal hypkinesia or dyskinesia of any segments of the left ventricle , commonly antroseptal wall

Pathophysiology



 
 
 
 
 
 
 
 
 
 
 
 
 
Stress Induced Cardiomyopathy
 
 
 
 
 
 
 
 
 
 
 
Microvascular/Thrombotic Injury
 
 
 
 
 
 
 
 
Cytokine Storm
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pre-existing cardiovascular Disease
 
 
 
 
 
Acute Myocardial Injury Characterized by Abnormal Troponin
 
 
 
 
 
Viral Myocarditis
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hypoxemia
 
 
 
 
 
 
 
 
Hypotension +/- Shock
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ventricular or atrial arrhythmias
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Causes

Common causes of stress cardiomyopathy include:

Differentiating COVID-19-associated stress cardiomyopathy from other Diseases

  • For further information about the differential diagnosis, click here.
  • To view the differential diagnosis of COVID-19, click here.
Differentiating diagnosis Takotsubo cardiomyopathy STEMI
Stressful trigger Prominent stressful event (79%) 8%
Elevated troponin on admission 91% 37%
LVEF<40% Higher incidence of decreased LVEF at presentation (80%) 31%
Symptoms Chest pain (73%) Higher rate of chest pain (100%)
Sex Female Male
Age Older age (66 years old) Mean age 60 years old
Risk factors Lower incidence of HLP, smoking, diabetes mellitus HLP, smoking, diabetes mellitus
Coronary angiography Lower incidence of stenosis> 50% (15%) Stenosis> 50% in 100%
In-hospital mortality 1.3% 3.6%

Epidemiology and Demographics

Age

Gender

Race

Risk Factors




Screening

Natural History, Complications, and Prognosis

Diagnosis


Diagnostic Study of Choice

History and Symptoms

Symptoms of stress cardiomyopathy can mimic acute coronary syndrome. The most common presenting symptoms are:[12][16][13][18][23][17]

Physical Examination

Organ System Findings Suggestive Of
General appearance Patient may be anxious, ill-appearing or diaphoretic
Vital signs Cardiogenic shock
Cardiac Murmurs, S3, gallop rhythm, Displaced point of maximal impulse (PMI) Heart failure
Respiratory Rales, crackles Pulmonary edema

Laboratory Findings

Electrocardiogram

The ECG findings are largely the same of the regular stress cardiomyopathy, and are often confused with those of an acute anterior wall myocardial infarction.[12][18] Findings on ECG include:[12][16][13][14][18][23][17]

X-ray

Takotsubo refers to a ceramic pot used to trap octopuses in the Japanese language. The typical chest x-ray findings in patients with stress cardiomyopathy include a takotsubo-shaped heart, in which there is apical ballooning and narrowing of the proximal portion near the great vessels.

Echocardiography or Ultrasound

The following echocardiographic findings may be seen in patients with stress cardiomyopathy:[16][13][14][17]

CT scan

A cardiac CT scan can also help differentiate between stress cardiomyopathy and acute MI. Regional abnormalities in the wall motion of the heart, along with absence of coronary atherosclerosis support the diagnosis of stress cardiomyopathy over an acute MI.[17]

Chest CT scan may also show findings associated with COVID-19 and they can include:

  • Unilateral or bilateral pneumonia[27][28][29]
  • Mottling and ground-glass opacity
  • Focal or multifocal opacities
  • Consolidation
  • Septal thickening
  • Subpleural and lower lobe involvement more likely

MRI

Other findings on CMR include:[17][20]

Other Imaging Findings

Positron Emission Tomography (PET) Scan

In patients with stress cardiomyopathy, a PET scan may be done. Areas of hypokinesia or dyskinesia have reduced glucose utilization compared to normal regions.[38]

Coronary Angiography

Other Diagnostic Studies

Cardiac Catheterization

When patients with stress cardiomyopathy undergo cardiac catheterization, the following findings are usually reported:[16][18][14]

Myocardial Biopsy

Treatment

Medical Therapy

Surgery

  • Surgical intervention is not recommended for the management of COVID-19-associated stress cardiomyopathy.

Primary Prevention

  • There are no established measures for the primary prevention of COVID-19-associated stress cardiomyopathy.
  • Preventive measures should be taken to avoid COVID-19 infection.

Secondary Prevention

References

  1. Roca E, Lombardi C, Campana M, Vivaldi O, Bigni B, Bertozzi B; et al. (2020). "Takotsubo Syndrome Associated with COVID-19". Eur J Case Rep Intern Med. 7 (5): 001665. doi:10.12890/2020_001665. PMC 7213829 Check |pmc= value (help). PMID 32399453 Check |pmid= value (help).
  2. 2.0 2.1 Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, Cammann VL, Sarcon A, Geyer V, Neumann CA, Seifert B, Hellermann J, Schwyzer M, Eisenhardt K, Jenewein J, Franke J, Katus HA, Burgdorf C, Schunkert H, Moeller C, Thiele H, Bauersachs J, Tschöpe C, Schultheiss HP, Laney CA, Rajan L, Michels G, Pfister R, Ukena C, Böhm M, Erbel R, Cuneo A, Kuck KH, Jacobshagen C, Hasenfuss G, Karakas M, Koenig W, Rottbauer W, Said SM, Braun-Dullaeus RC, Cuculi F, Banning A, Fischer TA, Vasankari T, Airaksinen KE, Fijalkowski M, Rynkiewicz A, Pawlak M, Opolski G, Dworakowski R, MacCarthy P, Kaiser C, Osswald S, Galiuto L, Crea F, Dichtl W, Franz WM, Empen K, Felix SB, Delmas C, Lairez O, Erne P, Bax JJ, Ford I, Ruschitzka F, Prasad A, Lüscher TF (September 2015). "Clinical Features and Outcomes of Takotsubo (Stress) Cardiomyopathy". N Engl J Med. 373 (10): 929–38. doi:10.1056/NEJMoa1406761. PMID 26332547.
  3. Tan T, Khoo B, Mills EG, Phylactou M, Patel B, Eng PC, Thurston L, Muzi B, Meeran K, Prevost AT, Comninos AN, Abbara A, Dhillo WS (August 2020). "Association between high serum total cortisol concentrations and mortality from COVID-19". Lancet Diabetes Endocrinol. 8 (8): 659–660. doi:10.1016/S2213-8587(20)30216-3. PMC 7302794 Check |pmc= value (help). PMID 32563278 Check |pmid= value (help).
  4. Pasqualetto MC, Secco E, Nizzetto M, Scevola M, Altafini L, Cester A; et al. (2020). "Stress Cardiomyopathy in COVID-19 Disease". Eur J Case Rep Intern Med. 7 (6): 001718. doi:10.12890/2020_001718. PMC 7279910 Check |pmc= value (help). PMID 32523926 Check |pmid= value (help).
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Jabri A, Kalra A, Kumar A, Alameh A, Adroja S, Bashir H; et al. (2020). "Incidence of Stress Cardiomyopathy During the Coronavirus Disease 2019 Pandemic". JAMA Netw Open. 3 (7): e2014780. doi:10.1001/jamanetworkopen.2020.14780. PMC 7348683 Check |pmc= value (help). PMID 32644140 Check |pmid= value (help).
  6. Hendren NS, Drazner MH, Bozkurt B, Cooper LT (2020). "Description and Proposed Management of the Acute COVID-19 Cardiovascular Syndrome". Circulation. 141 (23): 1903–1914. doi:10.1161/CIRCULATIONAHA.120.047349. PMC 7314493 Check |pmc= value (help). PMID 32297796 Check |pmid= value (help).
  7. Beppu M, Terao T, Osawa T, Jentsch F (November 1975). "Photoaffinity labeling of concanavalin A. Preparation of a concanavalin A derivative with reduced valence". J Biochem. 78 (5): 1013–9. doi:10.1093/oxfordjournals.jbchem.a130978. PMID 2589.
  8. Singh K, Carson K, Shah R, Sawhney G, Singh B, Parsaik A, Gilutz H, Usmani Z, Horowitz J (April 2014). "Meta-analysis of clinical correlates of acute mortality in takotsubo cardiomyopathy". Am J Cardiol. 113 (8): 1420–8. doi:10.1016/j.amjcard.2014.01.419. PMID 24685327.
  9. Sala S, Peretto G, Gramegna M, Palmisano A, Villatore A, Vignale D, De Cobelli F, Tresoldi M, Cappelletti AM, Basso C, Godino C, Esposito A (May 2020). "Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection". Eur Heart J. 41 (19): 1861–1862. doi:10.1093/eurheartj/ehaa286. PMC 7184339 Check |pmc= value (help). PMID 32267502 Check |pmid= value (help).
  10. Dabbagh MF, Aurora L, D'Souza P, Weinmann AJ, Bhargava P, Basir MB (July 2020). "Cardiac Tamponade Secondary to COVID-19". JACC Case Rep. 2 (9): 1326–1330. doi:10.1016/j.jaccas.2020.04.009. PMC 7177077 Check |pmc= value (help). PMID 32328588 Check |pmid= value (help).
  11. 11.0 11.1 Sharma K, Desai HD, Patoliya JV, Jadeja DM, Gadhiya D (January 2021). "Takotsubo Syndrome a Rare Entity in COVID-19: a Systemic Review-Focus on Biomarkers, Imaging, Treatment, and Outcome". SN Compr Clin Med: 1–11. doi:10.1007/s42399-021-00743-4. PMC 7799869 Check |pmc= value (help). PMID 33458567 Check |pmid= value (help).
  12. 12.00 12.01 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.09 12.10 Akashi YJ, Goldstein DS, Barbaro G, Ueyama T (2008). "Takotsubo cardiomyopathy: a new form of acute, reversible heart failure". Circulation. 118 (25): 2754–62. doi:10.1161/CIRCULATIONAHA.108.767012. PMC 4893309. PMID 19106400.
  13. 13.0 13.1 13.2 13.3 13.4 13.5 Prasad A, Lerman A, Rihal CS (2008). "Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction". Am. Heart J. 155 (3): 408–17. doi:10.1016/j.ahj.2007.11.008. PMID 18294473.
  14. 14.0 14.1 14.2 14.3 14.4 14.5 Tsai TT, Nallamothu BK, Prasad A, Saint S, Bates ER (2009). "Clinical problem-solving. A change of heart". N. Engl. J. Med. 361 (10): 1010–6. doi:10.1056/NEJMcps0903023. PMID 19726776.
  15. 15.0 15.1 Omerovic E (2011). "How to think about stress-induced cardiomyopathy?--Think "out of the box"!". Scand. Cardiovasc. J. 45 (2): 67–71. doi:10.3109/14017431.2011.565794. PMID 21401402.
  16. 16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7 Brenner ZR, Powers J (2008). "Takotsubo cardiomyopathy". Heart Lung. 37 (1): 1–7. doi:10.1016/j.hrtlng.2006.12.003. PMID 18206521.
  17. 17.0 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 Efferth T, Banerjee M, Paul NW (2016). "Broken heart, tako-tsubo or stress cardiomyopathy? Metaphors, meanings and their medical impact". Int. J. Cardiol. doi:10.1016/j.ijcard.2016.12.129. PMID 28041712.
  18. 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 Bybee KA, Kara T, Prasad A, Lerman A, Barsness GW, Wright RS, Rihal CS (2004). "Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction". Ann. Intern. Med. 141 (11): 858–65. PMID 15583228.
  19. 19.0 19.1 Tsuchihashi K, Ueshima K, Uchida T, Oh-mura N, Kimura K, Owa M, Yoshiyama M, Miyazaki S, Haze K, Ogawa H, Honda T, Hase M, Kai R, Morii I (2001). "Transient left ventricular apical ballooning without coronary artery stenosis: a novel heart syndrome mimicking acute myocardial infarction. Angina Pectoris-Myocardial Infarction Investigations in Japan". J. Am. Coll. Cardiol. 38 (1): 11–8. PMID 11451258.
  20. 20.0 20.1 20.2 20.3 Sharkey SW, Lesser JR, Zenovich AG, Maron MS, Lindberg J, Longe TF, Maron BJ (2005). "Acute and reversible cardiomyopathy provoked by stress in women from the United States". Circulation. 111 (4): 472–9. doi:10.1161/01.CIR.0000153801.51470.EB. PMID 15687136.
  21. 21.0 21.1 Desmet WJ, Adriaenssens BF, Dens JA (2003). "Apical ballooning of the left ventricle: first series in white patients". Heart. 89 (9): 1027–31. PMC 1767823. PMID 12923018.
  22. Krishnamoorthy P, Garg J, Sharma A, Palaniswamy C, Shah N, Lanier G, Patel NC, Lavie CJ, Ahmad H (2015). "Gender Differences and Predictors of Mortality in Takotsubo Cardiomyopathy: Analysis from the National Inpatient Sample 2009-2010 Database". Cardiology. 132 (2): 131–136. doi:10.1159/000430782. PMID 26159108.
  23. 23.0 23.1 Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, Cammann VL, Sarcon A, Geyer V, Neumann CA, Seifert B, Hellermann J, Schwyzer M, Eisenhardt K, Jenewein J, Franke J, Katus HA, Burgdorf C, Schunkert H, Moeller C, Thiele H, Bauersachs J, Tschöpe C, Schultheiss HP, Laney CA, Rajan L, Michels G, Pfister R, Ukena C, Böhm M, Erbel R, Cuneo A, Kuck KH, Jacobshagen C, Hasenfuss G, Karakas M, Koenig W, Rottbauer W, Said SM, Braun-Dullaeus RC, Cuculi F, Banning A, Fischer TA, Vasankari T, Airaksinen KE, Fijalkowski M, Rynkiewicz A, Pawlak M, Opolski G, Dworakowski R, MacCarthy P, Kaiser C, Osswald S, Galiuto L, Crea F, Dichtl W, Franz WM, Empen K, Felix SB, Delmas C, Lairez O, Erne P, Bax JJ, Ford I, Ruschitzka F, Prasad A, Lüscher TF (2015). "Clinical Features and Outcomes of Takotsubo (Stress) Cardiomyopathy". N. Engl. J. Med. 373 (10): 929–38. doi:10.1056/NEJMoa1406761. PMID 26332547.
  24. Y-Hassan S, Yamasaki K (2013). "History of takotsubo syndrome: is the syndrome really described as a disease entity first in 1990? Some inaccuracies". Int. J. Cardiol. 166 (3): 736–7. doi:10.1016/j.ijcard.2012.09.183. PMID 23073280.
  25. Sharkey SW, Lesser JR, Zenovich AG, Maron MS, Lindberg J, Longe TF, Maron BJ (2005). "Acute and reversible cardiomyopathy provoked by stress in women from the United States". Circulation. 111 (4): 472–9. doi:10.1161/01.CIR.0000153801.51470.EB. PMID 15687136.
  26. Krishnamoorthy P, Garg J, Sharma A, Palaniswamy C, Shah N, Lanier G, Patel NC, Lavie CJ, Ahmad H (2015). "Gender Differences and Predictors of Mortality in Takotsubo Cardiomyopathy: Analysis from the National Inpatient Sample 2009-2010 Database". Cardiology. 132 (2): 131–136. doi:10.1159/000430782. PMID 26159108.
  27. Paul NS, Roberts H, Butany J, Chung T, Gold W, Mehta S, Konen E, Rao A, Provost Y, Hong HH, Zelovitsky L, Weisbrod GL (2004). "Radiologic pattern of disease in patients with severe acute respiratory syndrome: the Toronto experience". Radiographics. 24 (2): 553–63. doi:10.1148/rg.242035193. PMID 15026600.
  28. Ajlan AM, Ahyad RA, Jamjoom LG, Alharthy A, Madani TA (October 2014). "Middle East respiratory syndrome coronavirus (MERS-CoV) infection: chest CT findings". AJR Am J Roentgenol. 203 (4): 782–7. doi:10.2214/AJR.14.13021. PMID 24918624.
  29. Chen, Nanshan; Zhou, Min; Dong, Xuan; Qu, Jieming; Gong, Fengyun; Han, Yang; Qiu, Yang; Wang, Jingli; Liu, Ying; Wei, Yuan; Xia, Jia'an; Yu, Ting; Zhang, Xinxin; Zhang, Li (2020). "Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study". The Lancet. doi:10.1016/S0140-6736(20)30211-7. ISSN 0140-6736.
  30. Haghi D, Fluechter S, Suselbeck T, Kaden JJ, Borggrefe M, Papavassiliu T (2007). "Cardiovascular magnetic resonance findings in typical versus atypical forms of the acute apical ballooning syndrome (Takotsubo cardiomyopathy)". Int. J. Cardiol. 120 (2): 205–11. doi:10.1016/j.ijcard.2006.09.019. PMID 17175045.
  31. 31.0 31.1 Mitchell JH, Hadden TB, Wilson JM, Achari A, Muthupillai R, Flamm SD (2007). "Clinical features and usefulness of cardiac magnetic resonance imaging in assessing myocardial viability and prognosis in Takotsubo cardiomyopathy (transient left ventricular apical ballooning syndrome)". Am. J. Cardiol. 100 (2): 296–301. doi:10.1016/j.amjcard.2007.02.091. PMID 17631086.
  32. Deetjen AG, Conradi G, Mollmann S, Rad A, Hamm CW, Dill T (2006). "Value of gadolinium-enhanced magnetic resonance imaging in patients with Tako-Tsubo-like left ventricular dysfunction". J Cardiovasc Magn Reson. 8 (2): 367–72. PMID 16669180.
  33. Abe Y, Kondo M, Matsuoka R, Araki M, Dohyama K, Tanio H (2003). "Assessment of clinical features in transient left ventricular apical ballooning". J. Am. Coll. Cardiol. 41 (5): 737–42. PMID 12628715.
  34. Dec GW (2005). "Recognition of the apical ballooning syndrome in the United States". Circulation. 111 (4): 388–90. doi:10.1161/01.CIR.0000155234.69439.E4. PMID 15687123.
  35. Handy AD, Prasad A, Olson TM (2009). "Investigating genetic variation of adrenergic receptors in familial stress cardiomyopathy (apical ballooning syndrome)". J Cardiol. 54 (3): 516–7. doi:10.1016/j.jjcc.2009.08.008. PMID 19944334.
  36. Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P, Carbone I, Muellerleile K, Aldrovandi A, Francone M, Desch S, Gutberlet M, Strohm O, Schuler G, Schulz-Menger J, Thiele H, Friedrich MG (2011). "Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy". JAMA. 306 (3): 277–86. doi:10.1001/jama.2011.992. PMID 21771988.
  37. Eitel I, Behrendt F, Schindler K, Kivelitz D, Gutberlet M, Schuler G, Thiele H (2008). "Differential diagnosis of suspected apical ballooning syndrome using contrast-enhanced magnetic resonance imaging". Eur. Heart J. 29 (21): 2651–9. doi:10.1093/eurheartj/ehn433. PMID 18820322.
  38. Testa M, Feola M (2014). "Usefulness of myocardial positron emission tomography/nuclear imaging in Takotsubo cardiomyopathy". World J Radiol. 6 (7): 502–6. doi:10.4329/wjr.v6.i7.502. PMC 4109102. PMID 25071891.


Template:WikiDoc Sources