Diabetes Care in the Hospital Setting: Difference between revisions

Jump to navigation Jump to search
Anahita (talk | contribs)
No edit summary
Javaria Anwer (talk | contribs)
 
(23 intermediate revisions by 2 users not shown)
Line 2: Line 2:
{{ADA guidelines}}
{{ADA guidelines}}
{{CMG}} {{AE}} {{Anahita}}; {{SCh}}; {{TarekNafee}}  
{{CMG}} {{AE}} {{Anahita}}; {{SCh}}; {{TarekNafee}}  
 
*There are numerous considerations regarding [[hyperglycemia]] management in [[diabetes|diabetic]] [[patients]] who are hospitalized. Formerly guidelines advocated to stop all [[mouth|oral]] [[Anti-diabetic drug|antidiabetic agents]] in the hospital settings, nevertheless new [[clinical trials]] support the effectiveness of [[mouth|oral]] [[Anti-diabetic drug|antidiabetic drugs]], solitary or in combination to [[insulin]] [[therapy]].
*There are some available [[clinical practice guideline]]s and [[systematic review]]s that suggest [[Basal (medicine)|basal-bolus]] [[insulin]] may lower [[blood sugar]] more efficient, nevertheless it is more likely to cause [[hypoglycemia]] with no change in clinical outcomes. <ref name="pmid28067472">{{cite journal| author=Christensen MB, Gotfredsen A, Nørgaard K| title=Efficacy of basal-bolus insulin regimens in the inpatient management of non-critically ill patients with type 2 diabetes: A systematic review and meta-analysis. | journal=Diabetes Metab Res Rev | year= 2017 | volume= 33 | issue= 5 | pages=  | pmid=28067472 | doi=10.1002/dmrr.2885 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28067472  }} </ref><ref name="pmid26826772">{{cite journal| author=Gómez Cuervo C, Sánchez Morla A, Pérez-Jacoiste Asín MA, Bisbal Pardo O, Pérez Ordoño L, Vila Santos J| title=Effective adverse event reduction with bolus-basal versus sliding scale insulin therapy in patients with diabetes during conventional hospitalization: Systematic review and meta-analysis. | journal=Endocrinol Nutr | year= 2016 | volume= 63 | issue= 4 | pages= 145-56 | pmid=26826772 | doi=10.1016/j.endonu.2015.11.008 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26826772  }} </ref><ref name="pmid29222385">{{cite journal| author=American Diabetes Association| title=14. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes-2018. | journal=Diabetes Care | year= 2018 | volume= 41 | issue= Suppl 1 | pages= S144-S151 | pmid=29222385 | doi=10.2337/dc18-S014 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29222385  }} </ref><ref name="pmid22223765">{{cite journal| author=Umpierrez GE, Hellman R, Korytkowski MT, Kosiborod M, Maynard GA, Montori VM et al.| title=Management of hyperglycemia in hospitalized patients in non-critical care setting: an endocrine society clinical practice guideline. | journal=J Clin Endocrinol Metab | year= 2012 | volume= 97 | issue= 1 | pages= 16-38 | pmid=22223765 | doi=10.1210/jc.2011-2098 | pmc= | url=http://care.diabetesjournals.org/content/41/Supplement_1/S144.long  }} </ref>.
**Key studies include:
***[[Basal (medicine)|Basal-bolus]] versus a [[Basal (medicine)|basal]] plus correction [[insulin]]<ref name="pmid23435159">{{cite journal| author=Umpierrez GE, Smiley D, Hermayer K, Khan A, Olson DE, Newton C et al.| title=Randomized study comparing a Basal-bolus with a basal plus correction insulin regimen for the hospital management of medical and surgical patients with type 2 diabetes: basal plus trial. | journal=Diabetes Care | year= 2013 | volume= 36 | issue= 8 | pages= 2169-74 | pmid=23435159 | doi=10.2337/dc12-1988 | pmc=3714500 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23435159  }} </ref>
***[[Basal (medicine)|Basal-bolus]] versus sliding scale [[insulin]]<ref name="pmid25181406">{{cite journal| author=Zaman Huri H, Permalu V, Vethakkan SR| title=Sliding-scale versus basal-bolus insulin in the management of severe or acute hyperglycemia in type 2 diabetes patients: a retrospective study. | journal=PLoS One | year= 2014 | volume= 9 | issue= 9 | pages= e106505 | pmid=25181406 | doi=10.1371/journal.pone.0106505 | pmc=4152280 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25181406  }} </ref>
***[[Basal (medicine)|Basal-bolus]] versus [[Basal (medicine)|basal]] Plus sliding scale versus sliding scale alone<ref name="pmid23435159">{{cite journal| author=Umpierrez GE, Smiley D, Hermayer K, Khan A, Olson DE, Newton C et al.| title=Randomized study comparing a Basal-bolus with a basal plus correction insulin regimen for the hospital management of medical and surgical patients with type 2 diabetes: basal plus trial. | journal=Diabetes Care | year= 2013 | volume= 36 | issue= 8 | pages= 2169-74 | pmid=23435159 | doi=10.2337/dc12-1988 | pmc=3714500 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23435159  }} </ref>.
***[[Insulin]] [[Analog (chemistry)|analogues]] versus human [[insulin]].<ref name="pmid26121460">{{cite journal| author=Bueno E, Benitez A, Rufinelli JV, Figueredo R, Alsina S, Ojeda A et al.| title=BASAL-BOLUS REGIMEN WITH INSULIN ANALOGUES VERSUS HUMAN INSULIN IN MEDICAL PATIENTS WITH TYPE 2 DIABETES: A RANDOMIZED CONTROLLED TRIAL IN LATIN AMERICA. | journal=Endocr Pract | year= 2015 | volume= 21 | issue= 7 | pages= 807-13 | pmid=26121460 | doi=10.4158/EP15675.OR | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26121460  }} </ref>
***[[Basal (medicine)|Basal-bolus]] [[insulin]] versus sliding scale [[insulin]] using the Glucommander eGlycemic Management System.<ref name="pmid 29237289">{{cite journal| author=Newsom R, Patty C, Camarena E, Sawyer R, McFarland R, Gray T et al.| title=Safely Converting an Entire Academic Medical Center From Sliding Scale to Basal Bolus Insulin via Implementation of the eGlycemic Management System. | journal=J Diabetes Sci Technol | year= 2018 | volume= 12 | issue= 1 | pages= 53-59 | pmid= 29237289 | doi=10.1177/1932296817747619 | pmc=5761993 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29237289  }} </ref>
*Formerly guidelines advocated to stop all [[mouth|oral]] [[Anti-diabetic drug|antidiabetic agents]] in the hospital settings of [[diabetes]] management, nevertheless some [[clinical trials]] support the effectiveness of [[mouth|oral]] [[Anti-diabetic drug|antidiabetic drugs]], solitary or in combination to [[insulin]] [[therapy]], in some hospitalized individuals. Countries such as England, Israel and India practice the usage of [[mouth|oral]] [[Anti-diabetic drug|antidiabetic agents]] such as, [[metformin]] and [[sulfonylureas]] for inpatient [[diabetes|diabetic]] [[patients]]. <ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref> <ref name="pmid31557075">{{cite journal| author=Amir M, Sinha V, Kistangari G, Lansang MC| title=CLINICAL CHARACTERISTICS OF PATIENTS WITH TYPE 2 DIABETES MELLITUS CONTINUED ON ORAL ANTIDIABETES MEDICATIONS IN THE HOSPITAL. | journal=Endocr Pract | year= 2020 | volume= 26 | issue= 2 | pages= 167-173 | pmid=31557075 | doi=10.4158/EP-2018-0524 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31557075  }} </ref><ref name="pmid28405346">{{cite journal| author=Garg R, Schuman B, Hurwitz S, Metzger C, Bhandari S| title=Safety and efficacy of saxagliptin for glycemic control in non-critically ill hospitalized patients. | journal=BMJ Open Diabetes Res Care | year= 2017 | volume= 5 | issue= 1 | pages= e000394 | pmid=28405346 | doi=10.1136/bmjdrc-2017-000394 | pmc=5372055 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28405346  }} </ref><ref name="pmid30679302">{{cite journal| author=Fayfman M, Galindo RJ, Rubin DJ, Mize DL, Anzola I, Urrutia MA | display-authors=etal| title=A Randomized Controlled Trial on the Safety and Efficacy of Exenatide Therapy for the Inpatient Management of General Medicine and Surgery Patients With Type 2 Diabetes. | journal=Diabetes Care | year= 2019 | volume= 42 | issue= 3 | pages= 450-456 | pmid=30679302 | doi=10.2337/dc18-1760 | pmc=6905476 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30679302  }} </ref>
**[[Dipeptidyl peptidase-4 inhibitor]] [[medications]] are effective for [[Diabetes management|glycemic control]] in mild to moderate [[hyperglycemia]]. Moreover [[dipeptidyl peptidase-4 inhibitors]] are tolerated very well and there has been low rate of [[hypoglycemia]]. It's usage has been recommended alone or in combination with [[Basal (medicine)|basal]] [[insulin]] in [[patients]] with [[blood sugar|blood glucose]]lower than 180 mg/dl. The following table is summary of various [[randomized controlled trial]] and [[observational studies]] regards [[dipeptidyl peptidase-4 inhibitor]] use in hospital setting:<ref name="pmid23877988">{{cite journal| author=Umpierrez GE, Gianchandani R, Smiley D, Jacobs S, Wesorick DH, Newton C | display-authors=etal| title=Safety and efficacy of sitagliptin therapy for the inpatient management of general medicine and surgery patients with type 2 diabetes: a pilot, randomized, controlled study. | journal=Diabetes Care | year= 2013 | volume= 36 | issue= 11 | pages= 3430-5 | pmid=23877988 | doi=10.2337/dc13-0277 | pmc=3816910 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23877988  }} </ref><ref name="pmid27964837">{{cite journal| author=Pasquel FJ, Gianchandani R, Rubin DJ, Dungan KM, Anzola I, Gomez PC | display-authors=etal| title=Efficacy of sitagliptin for the hospital management of general medicine and surgery patients with type 2 diabetes (Sita-Hospital): a multicentre, prospective, open-label, non-inferiority randomised trial. | journal=Lancet Diabetes Endocrinol | year= 2017 | volume= 5 | issue= 2 | pages= 125-133 | pmid=27964837 | doi=10.1016/S2213-8587(16)30402-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27964837  }} </ref><ref name="pmid28405346">{{cite journal| author=Garg R, Schuman B, Hurwitz S, Metzger C, Bhandari S| title=Safety and efficacy of saxagliptin for glycemic control in non-critically ill hospitalized patients. | journal=BMJ Open Diabetes Res Care | year= 2017 | volume= 5 | issue= 1 | pages= e000394 | pmid=28405346 | doi=10.1136/bmjdrc-2017-000394 | pmc=5372055 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28405346  }} </ref><ref name="pmid30456796">{{cite journal| author=Vellanki P, Rasouli N, Baldwin D, Alexanian S, Anzola I, Urrutia M | display-authors=etal| title=Glycaemic efficacy and safety of linagliptin compared to a basal-bolus insulin regimen in patients with type 2 diabetes undergoing non-cardiac surgery: A multicentre randomized clinical trial. | journal=Diabetes Obes Metab | year= 2019 | volume= 21 | issue= 4 | pages= 837-843 | pmid=30456796 | doi=10.1111/dom.13587 | pmc=7231260 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30456796  }} </ref><ref name="pmid23186969">{{cite journal| author=Abuannadi M, Kosiborod M, Riggs L, House JA, Hamburg MS, Kennedy KF | display-authors=etal| title=Management of hyperglycemia with the administration of intravenous exenatide to patients in the cardiac intensive care unit. | journal=Endocr Pract | year= 2013 | volume= 19 | issue= 1 | pages= 81-90 | pmid=23186969 | doi=10.4158/EP12196.OR | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23186969  }} </ref><ref name="pmid24144627">{{cite journal| author=Kohl BA, Hammond MS, Cucchiara AJ, Ochroch EA| title=Intravenous GLP-1 (7-36) amide for prevention of hyperglycemia during cardiac surgery: a randomized, double-blind, placebo-controlled study. | journal=J Cardiothorac Vasc Anesth | year= 2014 | volume= 28 | issue= 3 | pages= 618-25 | pmid=24144627 | doi=10.1053/j.jvca.2013.06.021 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24144627  }} </ref><ref name="pmid28820780">{{cite journal| author=Besch G, Perrotti A, Mauny F, Puyraveau M, Baltres M, Flicoteaux G | display-authors=etal| title=Clinical Effectiveness of Intravenous Exenatide Infusion in Perioperative Glycemic Control after Coronary Artery Bypass Graft Surgery: A Phase II/III Randomized Trial. | journal=Anesthesiology | year= 2017 | volume= 127 | issue= 5 | pages= 775-787 | pmid=28820780 | doi=10.1097/ALN.0000000000001838 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28820780  }} </ref><ref name="pmid29230803">{{cite journal| author=Polderman JAW, van Steen SCJ, Thiel B, Godfried MB, Houweling PL, Hollmann MW | display-authors=etal| title=Peri-operative management of patients with type-2 diabetes mellitus undergoing non-cardiac surgery using liraglutide, glucose-insulin-potassium infusion or intravenous insulin bolus regimens: a randomised controlled trial. | journal=Anaesthesia | year= 2018 | volume= 73 | issue= 3 | pages= 332-339 | pmid=29230803 | doi=10.1111/anae.14180 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29230803  }} </ref><ref name="pmid28581209">{{cite journal| author=Lipš M, Mráz M, Kloučková J, Kopecký P, Dobiáš M, Křížová J | display-authors=etal| title=Effect of continuous exenatide infusion on cardiac function and peri-operative glucose control in patients undergoing cardiac surgery: A single-blind, randomized controlled trial. | journal=Diabetes Obes Metab | year= 2017 | volume= 19 | issue= 12 | pages= 1818-1822 | pmid=28581209 | doi=10.1111/dom.13029 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28581209  }} </ref><ref name="pmid30679302">{{cite journal| author=Fayfman M, Galindo RJ, Rubin DJ, Mize DL, Anzola I, Urrutia MA | display-authors=etal| title=A Randomized Controlled Trial on the Safety and Efficacy of Exenatide Therapy for the Inpatient Management of General Medicine and Surgery Patients With Type 2 Diabetes. | journal=Diabetes Care | year= 2019 | volume= 42 | issue= 3 | pages= 450-456 | pmid=30679302 | doi=10.2337/dc18-1760 | pmc=6905476 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30679302  }} </ref><ref name="pmid30537714">{{cite journal| author=Kaneko S, Ueda Y, Tahara Y| title=GLP1 Receptor Agonist Liraglutide Is an Effective Therapeutic Option for Perioperative Glycemic Control in Type 2 Diabetes within Enhanced Recovery After Surgery (ERAS) Protocols. | journal=Eur Surg Res | year= 2018 | volume= 59 | issue= 5-6 | pages= 349-360 | pmid=30537714 | doi=10.1159/000494768 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30537714  }} </ref><ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref><ref name="pmid31749275">{{cite journal| author=Hulst AH, Visscher MJ, Godfried MB, Thiel B, Gerritse BM, Scohy TV | display-authors=etal| title=Liraglutide for perioperative management of hyperglycaemia in cardiac surgery patients: a multicentre randomized superiority trial. | journal=Diabetes Obes Metab | year= 2020 | volume= 22 | issue= 4 | pages= 557-565 | pmid=31749275 | doi=10.1111/dom.13927 | pmc=7079116 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31749275  }} </ref>
<br>
{| border="3"
! Umpierrez et al (2013)
| '''[[Sitagliptin]] + sliding-scale [[insulin]] or [[sitagliptin]] + [[insulin glargine|glargine]] Vs [[Basal (medicine)|basal]]-[[Bolus (medicine)|bolus]] [[insulin]] ([[Insulin glargine|glargine]]–[[insulin lispro|lispro]])''' <br> Study has been done on 90 [[patients]] (medical or [[surgery|surgical]] cases) with [[diabetes type 2]] who were on [[mouth|oral]] [[Anti-diabetic drug|antidiabetic agents]] or low dose [[insulin]] (less than 0·4 U/kg per day), with [[glucose]] concentrations of 140–400 mg/dL. <br> Reported average [[glucose]] concentration showed no difference. <br> Sole [[sitagliptin]] [[treatment]] has not been effective in [[patients]] who had [[blood sugar|blood glucose]] higher than 180 mg/dL.
|-
! Pasquel et al (2017)
| '''[[Sitagliptin]] + [[insulin glargine|glargine]] Vs [[Basal (medicine)|basal]]-[[Bolus (medicine)|bolus]] [[insulin]] ([[Insulin glargine|glargine]]–[[insulin lispro|lispro]] or [[Insulin glargine|glargine]]–[[insulin aspart|aspart]])''' <br> Study has been done on 278 [[patients]] (medical or [[surgery|surgical]] cases) with [[diabetes type 2]] who were on [[mouth|oral]] [[Anti-diabetic drug|antidiabetic agents]] or low dose [[insulin]] (less than 0·6 U/kg per day), with [[glucose]] concentrations of 140–400 mg/dL. <br> Reported average [[glucose]] concentration showed no difference.
|-
!Garg et al (2017)
|'''[[Saxagliptin]] Vs [[Basal (medicine)|basal]]-[[Bolus (medicine)|bolus]] [[insulin]] ([[Insulin glargine|glargine]]–[[insulin aspart|aspart]])''' <br> Study has been done on 66 [[patients]] (medical or [[surgery|surgical]] cases) with [[diabetes type 2]] who were on maximum 1 non-[[insulin]] [[Anti-diabetic drug|antidiabetic agents]] or 2 non-[[insulin]] [[Anti-diabetic drug|antidiabetic agents]] with [[Glycosylated hemoglobin|HbA1c]] measure less than 7·5% and 7·0%, respectively. <br> Reported average [[glucose]] concentration showed no difference. <br> [[Patients]] who received [[saxagliptin]] showed less [[blood sugar|blood glucose]] variation.
|-
!Vellanki et al (2019)
|'''[[Linagliptin]] + sliding-scale [[insulin]] Vs [[Basal (medicine)|basal]]-[[Bolus (medicine)|bolus]] [[insulin]] ([[Insulin glargine|glargine]]–[[insulin lispro|lispro]] or [[Insulin glargine|glargine]]–[[insulin aspart|aspart]])''' <br> Study has been done on 250 [[surgery|surgical]] [[patients]] with [[diabetes type 2]] who were on [[mouth|oral]] [[Anti-diabetic drug|antidiabetic agents]] or low dose [[insulin]] (less than 0·5 U/kg per day), with [[glucose]] concentrations of 140–400 mg/dL. <br> Reported average [[glucose]] concentration showed no difference. <br> Less chance of [[hypoglycemia]] has been reported in [[linagliptin]] group. Sole [[linagliptin]] use has not been effective in [[patients]] with [[blood sugar|blood glucose]] more than 200 mg/dl
|-
!Abuannadi et al (2013)
|'''[[Exenatide]] [[Intravenous therapy|infusion]] Vs intensive [[Diabetes management|glycemic control]] (90–119 mg/dL) or moderate [[Diabetes management|glycemic control]] (100–140 mg/dL)''' <br> Study has been done on 40 non-[[diabetes|diabetic]] [[Intensive care unit|ICU]] [[patients]] with [[coronary heart disease]] and [[diabetes type 2|type 2 diabetic]] [[patients]] who were on non-[[insulin]] [[Anti-diabetic drug|antidiabetic agents]], with [[glucose]] concentrations of 140–400 mg/dL. <br> Reported average [[glucose]] concentration showed good control in [[exenatide]] group. (Same result as moderate [[Diabetes management|glycemic control]]) <br> The main limitation has been the non-randomized study with historical controls.
|-
!Kohl et al (2014)
|'''[[Glucagon-like peptide-1|Native GLP-1]] Vs placebo''' <br> Study has been done on 77 [[heart|cardiac]] [[surgery]] [[patients]] with or without [[diabetes]] <br> Reported average [[glucose]] concentration showed lower measure in [[Glucagon-like peptide-1|GLP-1]] group.
|-
!Besch et al (2017)
|'''[[Exenatide]] [[Intravenous therapy|infusion]] Vs [[insulin]] [[Intravenous therapy|infusion]]''' <br> Study has been done on 104 [[coronary artery bypass surgery|CABG]] [[patients]] with or without [[diabetes]] (on non-[[insulin]] [[treatment]]) <br> Reported average [[glucose]] concentration showed no statistically valuable differences. <br> Study discontinued after [[Futility in clinical research|futility analysis]]. 
|-
!Polderman et al (2018)
|'''[[Liraglutide]] † Vs [[glucose]] + [[insulin]] + [[potassium]] ‡''' <br> Study has been done on 150 [[surgery|surgical]] [[patients]] with [[diabetes type 2]] who where on diet, [[mouth|oral]] [[Anti-diabetic drug|antidiabetic agents]] or [[insulin]] doses less than 1 U/kg. <br> Reported average [[glucose]] concentration measures 1 hour after [[surgery]] showed lower levels in [[liraglutide]] group. <br> [[Nausea and vomiting|Nausea]] has been reported in [[patients]] of [[liraglutide]].
|-
!Lipš et al (2017)
|'''Continuous [[exenatide]] [[Intravenous therapy|infusion]] + [[insulin]] [[treatment]] Vs [[Saline (medicine)|0·9% saline]] + [[insulin]] [[treatment]]''' <br> Study has been done on 40 [[coronary artery bypass surgery|CABG]] [[patients]] with or without [[diabetes]]. <br> Reported average [[glucose]] concentration showed lower measures in [[exenatide]] group. <br> Decreased demand for temporary pacing after [[surgery]] was the only benefit in [[heart|cardiac]] function of the [[exenatide]] group.
|-
!Fayfman et al (2019)
|'''[[Exenatide]] ¶ Vs [[exenatide]] + [[Basal (medicine)|basal]] [[insulin]] ([[insulin glargine|glargine]] or [[Insulin detemir|levemir]]) Vs [[Basal (medicine)|basal]] [[insulin]] ([[insulin glargine|glargine]] or [[Insulin detemir|levemir]] + [[insulin aspart|aspart]] or [[insulin lispro|lispro]])''' <br> Study has been done on 150 [[surgery|surgical]] or medical [[patients]] with [[diabetes type 2]] who were on diet, [[mouth|oral]] [[Anti-diabetic drug|antidiabetic agents]] or low dose [[insulin]] (less than 0·5 U/kg per day), with [[glucose]] concentrations of 140–400 mg/dL. <br> Reported average [[glucose]] concentration showed lower measures in [[exenatide]] plus [[Basal (medicine)|basal]] [[insulin]] group, compared to [[exenatide]] alone. ALthough reported average [[glucose]] concentration showed no differences between [[exenatide]] plus [[Basal (medicine)|basal]] [[insulin]] and [[Basal (medicine)|basal]] [[insulin]] groups. [[Exenatide]] plus [[Basal (medicine)|basal]] [[insulin]] group was more succesful in keeping the [[blood sugar|blood glucose]] within the target goal, compared to the other two groups. (P value = 0·023)
|-
!Kaneko et al (2018)
|'''[[Liraglutide]] Vs [[insulin]]''' <br> Study has been done on 92 [[surgery|surgical]] [[patients]] (elective [[surgery]]) with [[diabetes type 2]] <br> Reported average [[glucose]] concentration showed lower measures in [[liraglutide]] group.
|-
!Hulst et al (2020)
|'''[[Liraglutide]] ₳ Vs placebo''' <br> Study has been done on 278 [[heart|cardiac]] [[surgery]] [[patients]] with (16%) or without (84%) [[diabetes type 2]] <br> Reported average [[glucose]] concentration showed lower demand for [[insulin]] use in [[liraglutide]] group. <br> [[Hypoglycemia]] has not been reported in non of the groups.
|}
<sub>†[[Liraglutide]] has been used [[Subcutaneous tissue|subcutaneously]] with dosage of 0·6 mg before [[surgery]] and 1.2 mg after [[anesthesia]] induction.  </sub> <br>
<sub>‡Infusion of [[glucose]], [[insulin]] and [[potassium]] was 30 mintunes before [[surgery]] and continued until 4 hours after [[surgery]].</sub> <br>
<sub>¶[[Exenatide]] has been used with dose of 5 mg twice a day.</sub> <br>
<sub>₳[[Liraglutide]] has been used [[Subcutaneous tissue|subcutaneously]] with dosage of 0·6 mg on the evening before [[surgery]] and 1.2 mg after [[anesthesia]] induction. </sub>
**[[SGLT2|SGLT2 inhibitors]] are the current [[treatment]] of choice among other [[mouth|oral]] [[antidiabetic drugs]] especially for [[diabetes|diabetes type 2]] [[patients]] with concurrent [[cogestive heart failure|heart failure]] or [[diabetic nephropathy]]. It's use has been related to lower rate of readmission, death within 60 days and [[Congestive heart failure|heart failure]]. Nevertheless it's routine use in hospital setting is not recommended.<ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref><ref name="pmid32409867">{{cite journal| author=Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C | display-authors=etal| title=Correction to: 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of diabetes (EASD). | journal=Diabetologia | year= 2020 | volume= 63 | issue= 8 | pages= 1667 | pmid=32409867 | doi=10.1007/s00125-020-05151-2 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32409867  }} </ref><ref name="pmid31060732">{{cite journal| author=Thiruvenkatarajan V, Meyer EJ, Nanjappa N, Van Wijk RM, Jesudason D| title=Perioperative diabetic ketoacidosis associated with sodium-glucose co-transporter-2 inhibitors: a systematic review. | journal=Br J Anaesth | year= 2019 | volume= 123 | issue= 1 | pages= 27-36 | pmid=31060732 | doi=10.1016/j.bja.2019.03.028 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31060732  }} </ref>
**Frequent [[Diabetic ketoacidosis|euglycaemic diabetic ketoacidosis]], mostly in [[patients]] with poor [[mouth|oral]] intake and [[Urinary tract infection|genitourinary infections]] have been made worry regards [[SGLT2|SGLT2 inhibitors]] use for [[diabetes|diabetic]] [[patient|inpatients]]. [[fungus|Fungal]] [[infections]] are the common responsible [[microorganisms]] for [[Urinary tract infection|genitourinary infections]] of these [[patients]].<ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref>
**Based on a systematic reviewe[[Empagliflozin]] use has not shown any improvement compared to the placebo groups, in the following Characteristics:<ref name="pmid31912605">{{cite journal| author=Damman K, Beusekamp JC, Boorsma EM, Swart HP, Smilde TDJ, Elvan A | display-authors=etal| title=Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF). | journal=Eur J Heart Fail | year= 2020 | volume= 22 | issue= 4 | pages= 713-722 | pmid=31912605 | doi=10.1002/ejhf.1713 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31912605  }} </ref>
***[[Dyspnea]]
***[[Brain natriuretic peptide]] level
***Hospitalization period
***Response to [[diuretics]]
**Use [[metformin]] with caution in hospitalized [[patients]] especially if [[renal insufficiency|renal]] or [[hepatic failure]], [[sepsis]] and [[shock]] is present due to high chance of [[acidosis|lactic acidosis]]. To prevent such an [[Adverse effect (medicine)|adverse effect]], [[patients]] with [[Glomerular filtration rate|GFR]] in range of 30–45 mL/min per 1·73 m² should recieve lower doses of [[metformin]]. Furthermore [[metformin]] must be discontinued in [[patients]] with [[Glomerular filtration rate|GFR]] lower than 30 ml/min per 1·73 m².<ref name="pmid24326619">{{cite journal| author=Pasquel FJ, Klein R, Adigweme A, Hinedi Z, Coralli R, Pimentel JL | display-authors=etal| title=Metformin-associated lactic acidosis. | journal=Am J Med Sci | year= 2015 | volume= 349 | issue= 3 | pages= 263-7 | pmid=24326619 | doi=10.1097/MAJ.0b013e3182a562b7 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24326619  }} </ref>
**[[Metformin]] should be discontinued prior to [[iodinated contrast]] imaging if [[Glomerular filtration rate|eGFR]] <60 mL/min per 1·73 m², history of [[chronic hepatic failure|hepatic disease]], [[acute heart failure]], [[alcohol|alcoholism]] or received [[artery|intra-arterial]] [[contrast medium]].<ref name="pmid30112652">{{cite journal| author=Iyengar R, Franzese J, Gianchandani R| title=Inpatient Glycemic Management in the Setting of Renal Insufficiency/Failure/Dialysis. | journal=Curr Diab Rep | year= 2018 | volume= 18 | issue= 10 | pages= 75 | pmid=30112652 | doi=10.1007/s11892-018-1044-y | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30112652  }} </ref>
**Compared to other [[mouth|oral]] [[Anti-diabetic drug|antidiabetic agents]], [[metformin]] showed higher rate of [[gastrointestinal tract|gastrointestinal]] [[Adverse effect (medicine)|adverse effects]] in the hospitalized [[patients]].<ref name="pmid17638715">{{cite journal| author=Bolen S, Feldman L, Vassy J, Wilson L, Yeh HC, Marinopoulos S | display-authors=etal| title=Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. | journal=Ann Intern Med | year= 2007 | volume= 147 | issue= 6 | pages= 386-99 | pmid=17638715 | doi=10.7326/0003-4819-147-6-200709180-00178 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17638715  }} </ref>
**Frequent [[hypoglycemia|hypoglycemic events]] have been reported in [[sulfonylureas]] usage in the hospital setting, hence experts don't recommend it for [[treatment]] of [[diabetes|diabetic]] [[patient|inpatients]]. Facrors such as [[aging|old age]], [[renal insufficiency]] and concurrent [[insulin]] use have been related to higher risk of [[hypoglycemia]]. Although UK recommendations proposed it's effectiveness in mangement of [[hyperglycemia]] due to [[glucocorticoid]] use.<ref name="pmid30152586">{{cite journal| author=Roberts A, James J, Dhatariya K, Joint British Diabetes Societies (JBDS) for Inpatient Care| title=Management of hyperglycaemia and steroid (glucocorticoid) therapy: a guideline from the Joint British Diabetes Societies (JBDS) for Inpatient Care group. | journal=Diabet Med | year= 2018 | volume= 35 | issue= 8 | pages= 1011-1017 | pmid=30152586 | doi=10.1111/dme.13675 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30152586  }} </ref><ref name="pmid28632918">{{cite journal| author=Stuart K, Adderley NJ, Marshall T, Rayman G, Sitch A, Manley S | display-authors=etal| title=Predicting inpatient hypoglycaemia in hospitalized patients with diabetes: a retrospective analysis of 9584 admissions with diabetes. | journal=Diabet Med | year= 2017 | volume= 34 | issue= 10 | pages= 1385-1391 | pmid=28632918 | doi=10.1111/dme.13409 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28632918  }} </ref>
**Late onset of action and risk of [[Congestive heart failure|heart failure]] (due to [[water retention]]) turned [[thiazolidinediones]] into an ineffective [[treatment]] in hospital settings.<ref name="pmid17638715">{{cite journal| author=Bolen S, Feldman L, Vassy J, Wilson L, Yeh HC, Marinopoulos S | display-authors=etal| title=Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. | journal=Ann Intern Med | year= 2007 | volume= 147 | issue= 6 | pages= 386-99 | pmid=17638715 | doi=10.7326/0003-4819-147-6-200709180-00178 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17638715  }} </ref><ref name="pmid23072848">{{cite journal| author=Khalam A, Dilip C, Shinu C| title=Drug use evaluation of diabetes mellitus in hospitalized patients of a tertiary care referral hospital. | journal=J Basic Clin Physiol Pharmacol | year= 2012 | volume= 23 | issue= 4 | pages= 173-7 | pmid=23072848 | doi=10.1515/jbcpp-2012-0012 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23072848  }} </ref>
*A landmark trial done in 2009 demonstrated an increased [[mortality rate|mortality]] risk with intensive [[insulin]] [[treatment]], specifically in critically ill [[patients]]. Chance of [[hypoglycemia]] rises with intensive [[insulin]] [[therapy]] and can further complicate the situation.<ref name="pmid19318384">{{cite journal| author=NICE-SUGAR Study Investigators. Finfer S, Chittock DR, Su SY, Blair D, Foster D | display-authors=etal| title=Intensive versus conventional glucose control in critically ill patients. | journal=N Engl J Med | year= 2009 | volume= 360 | issue= 13 | pages= 1283-97 | pmid=19318384 | doi=10.1056/NEJMoa0810625 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19318384  }}  [https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=&cmd=prlinks&id=19679022 Review in: J Fam Pract. 2009 Aug;58(8):424-6]  [https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=&cmd=prlinks&id=19687479 Review in: Ann Intern Med. 2009 Aug 18;151(4):JC2-5] </ref><ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref>
*Continuous [[insulin]] infusion is recommended for critically ill [[diabetes|diabetic]] [[patients]] (such as [[Intensive care unit|ICU]] [[patients]]), which should be replaced by [[Subcutaneous tissue|subcutaneous]] [[insulin]] when [[patient]] is stable.<ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref><ref name="pmid25772640">{{cite journal| author=Kreider KE, Lien LF| title=Transitioning safely from intravenous to subcutaneous insulin. | journal=Curr Diab Rep | year= 2015 | volume= 15 | issue= 5 | pages= 23 | pmid=25772640 | doi=10.1007/s11892-015-0595-4 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25772640  }} </ref>
**The following factors should be considered when transition from continuous [[insulin]] infusion to [[Subcutaneous tissue|subcutaneous]] [[insulin]] is planned:
***[[Patients]] should have a steady [[glucose]] concentration, at least for last 4–6 hours
***Normal [[anion gap]] must be achieved (if [[patient]] have been presented with [[Diabetic ketoacidosis|DKA]], [[acidosis]] should have been resolved before transition).
***[[Patients]] should be [[Hemodynamics|hemodynamically]] stable with out [[Vasoconstriction|vasopressors]]
***[[Patients]] should be on a stable [[Diet (nutrition)|diet]]
***[[Patients]] should be on a steady [[Intravenous therapy|intravenous]] infusion rate
*Based on a [[systematic review]], universal usage of premixed [[insulin]] regimens is not trusted in hospitalized [[diabetes|diabetic]] [[patients]].<ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref>
*The following table is a summary of [[treatment]] in non-critically ill hospitalized [[patients]] with [[diabetes]]:<ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref><ref name="pmid19564476">{{cite journal| author=Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN| title=Hyperglycemic crises in adult patients with diabetes. | journal=Diabetes Care | year= 2009 | volume= 32 | issue= 7 | pages= 1335-43 | pmid=19564476 | doi=10.2337/dc09-9032 | pmc=2699725 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19564476  }} </ref>
*The following table is a summary of [[treatment]] in non-critically ill hospitalized [[patients]] with [[diabetes]]:<ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref><ref name="pmid19564476">{{cite journal| author=Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN| title=Hyperglycemic crises in adult patients with diabetes. | journal=Diabetes Care | year= 2009 | volume= 32 | issue= 7 | pages= 1335-43 | pmid=19564476 | doi=10.2337/dc09-9032 | pmc=2699725 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19564476  }} </ref>
<br>
<br>
Line 97: Line 25:
| Continuous [[insulin]] infusion § || Continuous [[insulin]] infusion OR [[Subcutaneous tissue|subcutaneous]] [[insulin]] (consider [[Diabetic ketoacidosis|DKA]] protocol) || Continuous [[insulin]] infusion
| Continuous [[insulin]] infusion § || Continuous [[insulin]] infusion OR [[Subcutaneous tissue|subcutaneous]] [[insulin]] (consider [[Diabetic ketoacidosis|DKA]] protocol) || Continuous [[insulin]] infusion
|}
|}
<sub>‡Continuous [[insulin]] infusion specially could be beneficial in [[hypoglycemia]] due to [[steroid]] use or in [[Organ transplant|solid organ transplant]] [[patients]].</sub>  
<sub>‡Continuous [[insulin]] infusion specially could be beneficial in [[hypoglycemia]] due to [[steroid]] use or in [[Organ transplant|solid organ transplant]] [[patients]].</sub> <br>
<sub>§Prompt [[treatment]] is recommended in [[patients]] with [[ST elevation myocardial infarction|myocardial infarction]] or [[ischemic stroke]] due to possible further harm due to [[hyperglycemia]]. ALthough intensive [[treatment]] is not recommended due to higher chance of [[hypoglycemia]]. </sub>
<sub>§Prompt [[treatment]] is recommended in [[patients]] with [[ST elevation myocardial infarction|myocardial infarction]] or [[ischemic stroke]] due to possible further harm due to [[hyperglycemia]]. ALthough intensive [[treatment]] is not recommended due to higher chance of [[hypoglycemia]]. </sub>
<br>
<br>
==2016 ADA Standards of Medical Care in [[Diabetes]] Guidelines<ref name="pmid26696689">{{cite journal| author=American Diabetes Association| title=13. Diabetes Care in the Hospital. | journal=Diabetes Care | year= 2016 | volume= 39 Suppl 1 | issue=  | pages= S99-104 | pmid=26696689 | doi=10.2337/dc16-S016 | pmc= | url=<ref name="pmid26696689">{{cite journal| author=American Diabetes Association| title=13. Diabetes Care in the Hospital. | journal=Diabetes Care | year= 2016 | volume= 39 Suppl 1 | issue=  | pages= S99-104 | pmid=26696689 | doi=10.2337/dc16-S016 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26696689  }} </ref>==
{|class="wikitable"
| bgcolor="Seashell"|<nowiki>"</nowiki>'''1.''' Consider performing an [[Glycosylated hemoglobin|A1C]] on all [[patient|patients]] with [[diabetes]] or [[hyperglycemia]] admitted to the hospital if not performed in the previous 3 months. ''([[American Diabetes Association#Evidence Grading System|Level of Evidence: C]])''<nowiki>"</nowiki>
|-
| bgcolor="Seashell"|<nowiki>"</nowiki>'''2.''' [[Insulin]] [[therapy]] should be initiated for [[treatment]] of persistent [[hyperglycemia]] starting at a threshold ≥180 mg/dL (10.0 mmol/L). Once [[insulin]] [[therapy]] is started, a target [[glucose]] range of 140–180 mg/dL (7.8–10.0 mmol/L) is recommended for the majority of critically ill [[patients]]''([[American Diabetes Association#Evidence Grading System|Level of Evidence: A]])''and noncritically ill [[patients]] ''([[American Diabetes Association#Evidence Grading System|Level of Evidence: C]])''<nowiki>"</nowiki>
|-
| bgcolor="Seashell"|<nowiki>"</nowiki>'''3.''' More stringent goals, such as 110–140 mg/dL (6.1–7.8 mmol/L) may be ap- propriate for selected critically ill [[patients]], as long as this can be achieved without significant [[hypoglycemia]] ''([[American Diabetes Association#Evidence Grading System|Level of Evidence: C]])''<nowiki>"</nowiki>
|-
| bgcolor="Seashell"|<nowiki>"</nowiki>'''4.''' [[Intravenous therapy|Intravenous]] [[insulin]] infusions should be administered using validated written or computerized protocols that allow for predefined adjustments in the [[insulin]] infusion rate based on glycemic fluctuations and [[insulin]] dose. ''([[American Diabetes Association#Evidence Grading System|Level of Evidence: E]])''<nowiki>"</nowiki>
|-
| bgcolor="Seashell"|<nowiki>"</nowiki>'''5.''' A [[Basal (medicine)|basal]] plus bolus correction [[insulin]] regimen is the preferred [[treatment]] for noncritically ill [[patients]] with poor [[Mouth|oral]] intake or those who are taking nothing by [[mouth]]. An [[insulin]] regimen with basal, nutritional, and correction components is the preferred [[treatment]] for [[patients]] with good nutritional intake. ''([[American Diabetes Association#Evidence Grading System|Level of Evidence: A]])''<nowiki>"</nowiki>
|-
| bgcolor="Seashell"|<nowiki>"</nowiki>'''6.''' The sole use of sliding scale [[insulin]] in the inpatient hospital setting is strongly discouraged ''([[American Diabetes Association#Evidence Grading System|Level of Evidence: A]])''<nowiki>"</nowiki>
|-
| bgcolor="Seashell"|<nowiki>"</nowiki>'''7.''' A [[hypoglycemia]] management protocol should be adopted and implemented by each hospital or hospital system. A plan for preventing and treating [[hypoglycemia]] should be established for each [[patient]]. Episodes of [[hypoglycemia]] in the hospital should be documented in the medical record and tracked. ''([[American Diabetes Association#Evidence Grading System|Level of Evidence: E]])''<nowiki>"</nowiki>
|-
| bgcolor="Seashell"|<nowiki>"</nowiki>'''8.''' The [[treatment]] regimen should be reviewed and changed if necessary to prevent further [[hypoglycemia]] when a [[b;ood sugar|blood glucose]] value is <70 mg/dL (3.9 mmol/L). ''([[American Diabetes Association#Evidence Grading System|Level of Evidence: C]])''<nowiki>"</nowiki>
|-
| bgcolor="Seashell"|<nowiki>"</nowiki>'''9.''' There should be a structured discharge plan tailored to the individual [[patient]]. ''([[American Diabetes Association#Evidence Grading System|Level of Evidence: B]])''<nowiki>"</nowiki>
|-
|}
<br>
===Insulin Treatment===
*There are some available [[clinical practice guideline]]s and [[systematic review]]s that suggest [[Basal (medicine)|basal-bolus]] [[insulin]] may lower [[blood sugar]] more efficient, nevertheless it is more likely to cause [[hypoglycemia]] with no change in clinical outcomes. <ref name="pmid28067472">{{cite journal| author=Christensen MB, Gotfredsen A, Nørgaard K| title=Efficacy of basal-bolus insulin regimens in the inpatient management of non-critically ill patients with type 2 diabetes: A systematic review and meta-analysis. | journal=Diabetes Metab Res Rev | year= 2017 | volume= 33 | issue= 5 | pages=  | pmid=28067472 | doi=10.1002/dmrr.2885 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28067472  }} </ref><ref name="pmid26826772">{{cite journal| author=Gómez Cuervo C, Sánchez Morla A, Pérez-Jacoiste Asín MA, Bisbal Pardo O, Pérez Ordoño L, Vila Santos J| title=Effective adverse event reduction with bolus-basal versus sliding scale insulin therapy in patients with diabetes during conventional hospitalization: Systematic review and meta-analysis. | journal=Endocrinol Nutr | year= 2016 | volume= 63 | issue= 4 | pages= 145-56 | pmid=26826772 | doi=10.1016/j.endonu.2015.11.008 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26826772  }} </ref><ref name="pmid29222385">{{cite journal| author=American Diabetes Association| title=14. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes-2018. | journal=Diabetes Care | year= 2018 | volume= 41 | issue= Suppl 1 | pages= S144-S151 | pmid=29222385 | doi=10.2337/dc18-S014 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29222385  }} </ref><ref name="pmid22223765">{{cite journal| author=Umpierrez GE, Hellman R, Korytkowski MT, Kosiborod M, Maynard GA, Montori VM et al.| title=Management of hyperglycemia in hospitalized patients in non-critical care setting: an endocrine society clinical practice guideline. | journal=J Clin Endocrinol Metab | year= 2012 | volume= 97 | issue= 1 | pages= 16-38 | pmid=22223765 | doi=10.1210/jc.2011-2098 | pmc= | url=http://care.diabetesjournals.org/content/41/Supplement_1/S144.long  }} </ref>.
**Key studies include:
***[[Basal (medicine)|Basal-bolus]] versus a [[Basal (medicine)|basal]] plus correction [[insulin]]<ref name="pmid23435159">{{cite journal| author=Umpierrez GE, Smiley D, Hermayer K, Khan A, Olson DE, Newton C et al.| title=Randomized study comparing a Basal-bolus with a basal plus correction insulin regimen for the hospital management of medical and surgical patients with type 2 diabetes: basal plus trial. | journal=Diabetes Care | year= 2013 | volume= 36 | issue= 8 | pages= 2169-74 | pmid=23435159 | doi=10.2337/dc12-1988 | pmc=3714500 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23435159  }} </ref>
***[[Basal (medicine)|Basal-bolus]] versus sliding scale [[insulin]]<ref name="pmid25181406">{{cite journal| author=Zaman Huri H, Permalu V, Vethakkan SR| title=Sliding-scale versus basal-bolus insulin in the management of severe or acute hyperglycemia in type 2 diabetes patients: a retrospective study. | journal=PLoS One | year= 2014 | volume= 9 | issue= 9 | pages= e106505 | pmid=25181406 | doi=10.1371/journal.pone.0106505 | pmc=4152280 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25181406  }} </ref>
***[[Basal (medicine)|Basal-bolus]] versus [[Basal (medicine)|basal]] Plus sliding scale versus sliding scale alone<ref name="pmid23435159">{{cite journal| author=Umpierrez GE, Smiley D, Hermayer K, Khan A, Olson DE, Newton C et al.| title=Randomized study comparing a Basal-bolus with a basal plus correction insulin regimen for the hospital management of medical and surgical patients with type 2 diabetes: basal plus trial. | journal=Diabetes Care | year= 2013 | volume= 36 | issue= 8 | pages= 2169-74 | pmid=23435159 | doi=10.2337/dc12-1988 | pmc=3714500 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23435159  }} </ref>.
***[[Insulin]] [[Analog (chemistry)|analogues]] versus human [[insulin]].<ref name="pmid26121460">{{cite journal| author=Bueno E, Benitez A, Rufinelli JV, Figueredo R, Alsina S, Ojeda A et al.| title=BASAL-BOLUS REGIMEN WITH INSULIN ANALOGUES VERSUS HUMAN INSULIN IN MEDICAL PATIENTS WITH TYPE 2 DIABETES: A RANDOMIZED CONTROLLED TRIAL IN LATIN AMERICA. | journal=Endocr Pract | year= 2015 | volume= 21 | issue= 7 | pages= 807-13 | pmid=26121460 | doi=10.4158/EP15675.OR | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26121460  }} </ref>
***[[Basal (medicine)|Basal-bolus]] [[insulin]] versus sliding scale [[insulin]] using the Glucommander eGlycemic Management System.<ref name="pmid 29237289">{{cite journal| author=Newsom R, Patty C, Camarena E, Sawyer R, McFarland R, Gray T et al.| title=Safely Converting an Entire Academic Medical Center From Sliding Scale to Basal Bolus Insulin via Implementation of the eGlycemic Management System. | journal=J Diabetes Sci Technol | year= 2018 | volume= 12 | issue= 1 | pages= 53-59 | pmid= 29237289 | doi=10.1177/1932296817747619 | pmc=5761993 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29237289  }} </ref>
*A landmark trial done in 2009 demonstrated an increased [[mortality rate|mortality]] risk with intensive [[insulin]] [[treatment]], specifically in critically ill [[patients]]. Chance of [[hypoglycemia]] rises with intensive [[insulin]] [[therapy]] and can further complicate the situation.<ref name="pmid19318384">{{cite journal| author=NICE-SUGAR Study Investigators. Finfer S, Chittock DR, Su SY, Blair D, Foster D | display-authors=etal| title=Intensive versus conventional glucose control in critically ill patients. | journal=N Engl J Med | year= 2009 | volume= 360 | issue= 13 | pages= 1283-97 | pmid=19318384 | doi=10.1056/NEJMoa0810625 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19318384  }}  [https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=&cmd=prlinks&id=19679022 Review in: J Fam Pract. 2009 Aug;58(8):424-6]  [https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=&cmd=prlinks&id=19687479 Review in: Ann Intern Med. 2009 Aug 18;151(4):JC2-5] </ref><ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref>
*Continuous [[insulin]] infusion is recommended for critically ill [[diabetes|diabetic]] [[patients]] (such as [[Intensive care unit|ICU]] [[patients]]), which should be replaced by [[Subcutaneous tissue|subcutaneous]] [[insulin]] when [[patient]] is stable.<ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref><ref name="pmid25772640">{{cite journal| author=Kreider KE, Lien LF| title=Transitioning safely from intravenous to subcutaneous insulin. | journal=Curr Diab Rep | year= 2015 | volume= 15 | issue= 5 | pages= 23 | pmid=25772640 | doi=10.1007/s11892-015-0595-4 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25772640  }} </ref>
**The following factors should be considered when transition from continuous [[insulin]] infusion to [[Subcutaneous tissue|subcutaneous]] [[insulin]] is planned:
***[[Patients]] should have a steady [[glucose]] concentration, at least for last 4–6 hours
***Normal [[anion gap]] must be achieved (if [[patient]] have been presented with [[Diabetic ketoacidosis|DKA]], [[acidosis]] should have been resolved before transition).
***[[Patients]] should be [[Hemodynamics|hemodynamically]] stable with out [[Vasoconstriction|vasopressors]]
***[[Patients]] should be on a stable [[Diet (nutrition)|diet]]
***[[Patients]] should be on a steady [[Intravenous therapy|intravenous]] infusion rate
*Based on a [[systematic review]] published in 2021, numerous [[Subcutaneous tissue|subcutanoeus]] [[insulin]] regimen have been studied on non-critically ill [[diabetes type 2|diabetic]] [[patients]]. The following table is a summary of the afformentioned studies: <ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref><ref name="pmid19429873">{{cite journal| author=Moghissi ES, Korytkowski MT, DiNardo M, Einhorn D, Hellman R, Hirsch IB | display-authors=etal| title=American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. | journal=Diabetes Care | year= 2009 | volume= 32 | issue= 6 | pages= 1119-31 | pmid=19429873 | doi=10.2337/dc09-9029 | pmc=2681039 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19429873  }} </ref><ref name="pmid22223765">{{cite journal| author=Umpierrez GE, Hellman R, Korytkowski MT, Kosiborod M, Maynard GA, Montori VM | display-authors=etal| title=Management of hyperglycemia in hospitalized patients in non-critical care setting: an endocrine society clinical practice guideline. | journal=J Clin Endocrinol Metab | year= 2012 | volume= 97 | issue= 1 | pages= 16-38 | pmid=22223765 | doi=10.1210/jc.2011-2098 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22223765  }} </ref><ref name="pmid21228246">{{cite journal| author=Umpierrez GE, Smiley D, Jacobs S, Peng L, Temponi A, Mulligan P | display-authors=etal| title=Randomized study of basal-bolus insulin therapy in the inpatient management of patients with type 2 diabetes undergoing general surgery (RABBIT 2 surgery). | journal=Diabetes Care | year= 2011 | volume= 34 | issue= 2 | pages= 256-61 | pmid=21228246 | doi=10.2337/dc10-1407 | pmc=3024330 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21228246  }} </ref><ref name="pmid23910952">{{cite journal| author=Mader JK, Neubauer KM, Schaupp L, Augustin T, Beck P, Spat S | display-authors=etal| title=Efficacy, usability and sequence of operations of a workflow-integrated algorithm for basal-bolus insulin therapy in hospitalized type 2 diabetes patients. | journal=Diabetes Obes Metab | year= 2014 | volume= 16 | issue= 2 | pages= 137-46 | pmid=23910952 | doi=10.1111/dom.12186 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23910952  }} </ref><ref name="pmid26121460">{{cite journal| author=Bueno E, Benitez A, Rufinelli JV, Figueredo R, Alsina S, Ojeda A | display-authors=etal| title=BASAL-BOLUS REGIMEN WITH INSULIN ANALOGUES VERSUS HUMAN INSULIN IN MEDICAL PATIENTS WITH TYPE 2 DIABETES: A RANDOMIZED CONTROLLED TRIAL IN LATIN AMERICA. | journal=Endocr Pract | year= 2015 | volume= 21 | issue= 7 | pages= 807-13 | pmid=26121460 | doi=10.4158/EP15675.OR | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26121460  }} </ref><ref name="pmid25665812">{{cite journal| author=Vellanki P, Bean R, Oyedokun FA, Pasquel FJ, Smiley D, Farrokhi F | display-authors=etal| title=Randomized controlled trial of insulin supplementation for correction of bedtime hyperglycemia in hospitalized patients with type 2 diabetes. | journal=Diabetes Care | year= 2015 | volume= 38 | issue= 4 | pages= 568-74 | pmid=25665812 | doi=10.2337/dc14-1796 | pmc=4370326 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25665812  }} </ref><ref name="pmid32273271">{{cite journal| author=Pasquel FJ, Lansang MC, Khowaja A, Urrutia MA, Cardona S, Albury B | display-authors=etal| title=A Randomized Controlled Trial Comparing Glargine U300 and Glargine U100 for the Inpatient Management of Medicine and Surgery Patients With Type 2 Diabetes: Glargine U300 Hospital Trial. | journal=Diabetes Care | year= 2020 | volume= 43 | issue= 6 | pages= 1242-1248 | pmid=32273271 | doi=10.2337/dc19-1940 | pmc=7411278 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32273271  }} </ref>
*Based on a [[systematic review]] published in 2021, numerous [[Subcutaneous tissue|subcutanoeus]] [[insulin]] regimen have been studied on non-critically ill [[diabetes type 2|diabetic]] [[patients]]. The following table is a summary of the afformentioned studies: <ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref><ref name="pmid19429873">{{cite journal| author=Moghissi ES, Korytkowski MT, DiNardo M, Einhorn D, Hellman R, Hirsch IB | display-authors=etal| title=American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. | journal=Diabetes Care | year= 2009 | volume= 32 | issue= 6 | pages= 1119-31 | pmid=19429873 | doi=10.2337/dc09-9029 | pmc=2681039 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19429873  }} </ref><ref name="pmid22223765">{{cite journal| author=Umpierrez GE, Hellman R, Korytkowski MT, Kosiborod M, Maynard GA, Montori VM | display-authors=etal| title=Management of hyperglycemia in hospitalized patients in non-critical care setting: an endocrine society clinical practice guideline. | journal=J Clin Endocrinol Metab | year= 2012 | volume= 97 | issue= 1 | pages= 16-38 | pmid=22223765 | doi=10.1210/jc.2011-2098 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22223765  }} </ref><ref name="pmid21228246">{{cite journal| author=Umpierrez GE, Smiley D, Jacobs S, Peng L, Temponi A, Mulligan P | display-authors=etal| title=Randomized study of basal-bolus insulin therapy in the inpatient management of patients with type 2 diabetes undergoing general surgery (RABBIT 2 surgery). | journal=Diabetes Care | year= 2011 | volume= 34 | issue= 2 | pages= 256-61 | pmid=21228246 | doi=10.2337/dc10-1407 | pmc=3024330 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21228246  }} </ref><ref name="pmid23910952">{{cite journal| author=Mader JK, Neubauer KM, Schaupp L, Augustin T, Beck P, Spat S | display-authors=etal| title=Efficacy, usability and sequence of operations of a workflow-integrated algorithm for basal-bolus insulin therapy in hospitalized type 2 diabetes patients. | journal=Diabetes Obes Metab | year= 2014 | volume= 16 | issue= 2 | pages= 137-46 | pmid=23910952 | doi=10.1111/dom.12186 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23910952  }} </ref><ref name="pmid26121460">{{cite journal| author=Bueno E, Benitez A, Rufinelli JV, Figueredo R, Alsina S, Ojeda A | display-authors=etal| title=BASAL-BOLUS REGIMEN WITH INSULIN ANALOGUES VERSUS HUMAN INSULIN IN MEDICAL PATIENTS WITH TYPE 2 DIABETES: A RANDOMIZED CONTROLLED TRIAL IN LATIN AMERICA. | journal=Endocr Pract | year= 2015 | volume= 21 | issue= 7 | pages= 807-13 | pmid=26121460 | doi=10.4158/EP15675.OR | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26121460  }} </ref><ref name="pmid25665812">{{cite journal| author=Vellanki P, Bean R, Oyedokun FA, Pasquel FJ, Smiley D, Farrokhi F | display-authors=etal| title=Randomized controlled trial of insulin supplementation for correction of bedtime hyperglycemia in hospitalized patients with type 2 diabetes. | journal=Diabetes Care | year= 2015 | volume= 38 | issue= 4 | pages= 568-74 | pmid=25665812 | doi=10.2337/dc14-1796 | pmc=4370326 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25665812  }} </ref><ref name="pmid32273271">{{cite journal| author=Pasquel FJ, Lansang MC, Khowaja A, Urrutia MA, Cardona S, Albury B | display-authors=etal| title=A Randomized Controlled Trial Comparing Glargine U300 and Glargine U100 for the Inpatient Management of Medicine and Surgery Patients With Type 2 Diabetes: Glargine U300 Hospital Trial. | journal=Diabetes Care | year= 2020 | volume= 43 | issue= 6 | pages= 1242-1248 | pmid=32273271 | doi=10.2337/dc19-1940 | pmc=7411278 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32273271  }} </ref>
<br>
<br>
Line 157: Line 122:
*[[Basal (medicine)|Basal]]-[[Bolus (medicine)|bolus]] approach has been reported as an effective [[treatment]] for [[hyperglycemia]], nevertheless it's usage in [[patients]] with mild [[hyperglycemia]] (<200 mg/dl) has been warned due to high risk of [[Iatrogenesis|iatrogenic]] [[hypoglycaemia]] (with rate of 12–30% in some studies).<ref name="pmid21228246">{{cite journal| author=Umpierrez GE, Smiley D, Jacobs S, Peng L, Temponi A, Mulligan P | display-authors=etal| title=Randomized study of basal-bolus insulin therapy in the inpatient management of patients with type 2 diabetes undergoing general surgery (RABBIT 2 surgery). | journal=Diabetes Care | year= 2011 | volume= 34 | issue= 2 | pages= 256-61 | pmid=21228246 | doi=10.2337/dc10-1407 | pmc=3024330 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21228246  }} </ref>  
*[[Basal (medicine)|Basal]]-[[Bolus (medicine)|bolus]] approach has been reported as an effective [[treatment]] for [[hyperglycemia]], nevertheless it's usage in [[patients]] with mild [[hyperglycemia]] (<200 mg/dl) has been warned due to high risk of [[Iatrogenesis|iatrogenic]] [[hypoglycaemia]] (with rate of 12–30% in some studies).<ref name="pmid21228246">{{cite journal| author=Umpierrez GE, Smiley D, Jacobs S, Peng L, Temponi A, Mulligan P | display-authors=etal| title=Randomized study of basal-bolus insulin therapy in the inpatient management of patients with type 2 diabetes undergoing general surgery (RABBIT 2 surgery). | journal=Diabetes Care | year= 2011 | volume= 34 | issue= 2 | pages= 256-61 | pmid=21228246 | doi=10.2337/dc10-1407 | pmc=3024330 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21228246  }} </ref>  
*Another approach of [[insulin]] [[therapy]] such as [[Basal (medicine)|basal]]-plus has been recommended for [[patients]] with mild [[hyperglycemia]], [[surgery|surgical]] [[patients]] and low [[mouth|oral]] intake. The mentioned approach is consisted of a [[Basal (medicine)|basal]] dose of [[insulin]] (0·1–0·25 U/kg/day) and corrective [[insulin]] doses if [[hyperglycemia]] developed (Monitor [[glucose]] concentration every 6 hours in NPO [[patients]], and before every meal in others). This approach has been associated with lower risk of [[hypoglycemia]] and is recommended in [[patients]] with low [[mouth|oral]] intake or [[surgery|surgical cases]].<ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref><ref name="pmid28325798">{{cite journal| author=Umpierrez GE, Pasquel FJ| title=Management of Inpatient Hyperglycemia and Diabetes in Older Adults. | journal=Diabetes Care | year= 2017 | volume= 40 | issue= 4 | pages= 509-517 | pmid=28325798 | doi=10.2337/dc16-0989 | pmc=5864102 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28325798  }} </ref>
*Another approach of [[insulin]] [[therapy]] such as [[Basal (medicine)|basal]]-plus has been recommended for [[patients]] with mild [[hyperglycemia]], [[surgery|surgical]] [[patients]] and low [[mouth|oral]] intake. The mentioned approach is consisted of a [[Basal (medicine)|basal]] dose of [[insulin]] (0·1–0·25 U/kg/day) and corrective [[insulin]] doses if [[hyperglycemia]] developed (Monitor [[glucose]] concentration every 6 hours in NPO [[patients]], and before every meal in others). This approach has been associated with lower risk of [[hypoglycemia]] and is recommended in [[patients]] with low [[mouth|oral]] intake or [[surgery|surgical cases]].<ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref><ref name="pmid28325798">{{cite journal| author=Umpierrez GE, Pasquel FJ| title=Management of Inpatient Hyperglycemia and Diabetes in Older Adults. | journal=Diabetes Care | year= 2017 | volume= 40 | issue= 4 | pages= 509-517 | pmid=28325798 | doi=10.2337/dc16-0989 | pmc=5864102 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28325798  }} </ref>
*Based on a [[systematic review]], universal usage of premixed [[insulin]] regimens is not trusted in hospitalized [[diabetes|diabetic]] [[patients]].<ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref>
*High rate of [[Iatrogenesis|iatrogenic]] [[hypoglycaemia]] in premixed [[insulin]] [[therapy]] turned this approach into an untrsuted [[hyperglycemia]] [[treatment]] in hospitalized [[diabetes|diabetic]] [[patients]]. However using premixed [[insulin]] [[therapy]] in [[patients]] taking [[Nasogastric intubation|enteral nutrition]] have been recommended (there are not enough supporting data). <ref name="pmid30152589">{{cite journal| author=Roberts AW, Penfold S, Joint British Diabetes Societies (JBDS) for Inpatient Care| title=Glycaemic management during the inpatient enteral feeding of people with stroke and diabetes. | journal=Diabet Med | year= 2018 | volume= 35 | issue= 8 | pages= 1027-1036 | pmid=30152589 | doi=10.1111/dme.13678 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30152589  }} </ref>
*High rate of [[Iatrogenesis|iatrogenic]] [[hypoglycaemia]] in premixed [[insulin]] [[therapy]] turned this approach into an untrsuted [[hyperglycemia]] [[treatment]] in hospitalized [[diabetes|diabetic]] [[patients]]. However using premixed [[insulin]] [[therapy]] in [[patients]] taking [[Nasogastric intubation|enteral nutrition]] have been recommended (there are not enough supporting data). <ref name="pmid30152589">{{cite journal| author=Roberts AW, Penfold S, Joint British Diabetes Societies (JBDS) for Inpatient Care| title=Glycaemic management during the inpatient enteral feeding of people with stroke and diabetes. | journal=Diabet Med | year= 2018 | volume= 35 | issue= 8 | pages= 1027-1036 | pmid=30152589 | doi=10.1111/dme.13678 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30152589  }} </ref>


 
===Non-Insulin Treatments===
==2016 ADA Standards of Medical Care in [[Diabetes]] Guidelines<ref name="pmid26696689">{{cite journal| author=American Diabetes Association| title=13. Diabetes Care in the Hospital. | journal=Diabetes Care | year= 2016 | volume= 39 Suppl 1 | issue=  | pages= S99-104 | pmid=26696689 | doi=10.2337/dc16-S016 | pmc= | url=<ref name="pmid26696689">{{cite journal| author=American Diabetes Association| title=13. Diabetes Care in the Hospital. | journal=Diabetes Care | year= 2016 | volume= 39 Suppl 1 | issue=  | pages= S99-104 | pmid=26696689 | doi=10.2337/dc16-S016 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26696689 }} </ref>==
*Formerly guidelines advocated to stop all [[mouth|oral]] [[Anti-diabetic drug|antidiabetic agents]] in the hospital settings of [[diabetes]] management, nevertheless some [[clinical trials]] support the effectiveness of [[mouth|oral]] [[Anti-diabetic drug|antidiabetic drugs]], solitary or in combination to [[insulin]] [[therapy]], in some hospitalized individuals. Countries such as England, Israel and India practice the usage of [[mouth|oral]] [[Anti-diabetic drug|antidiabetic agents]] such as, [[metformin]] and [[sulfonylureas]] for inpatient [[diabetes|diabetic]] [[patients]]. <ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref> <ref name="pmid31557075">{{cite journal| author=Amir M, Sinha V, Kistangari G, Lansang MC| title=CLINICAL CHARACTERISTICS OF PATIENTS WITH TYPE 2 DIABETES MELLITUS CONTINUED ON ORAL ANTIDIABETES MEDICATIONS IN THE HOSPITAL. | journal=Endocr Pract | year= 2020 | volume= 26 | issue= 2 | pages= 167-173 | pmid=31557075 | doi=10.4158/EP-2018-0524 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31557075  }} </ref><ref name="pmid28405346">{{cite journal| author=Garg R, Schuman B, Hurwitz S, Metzger C, Bhandari S| title=Safety and efficacy of saxagliptin for glycemic control in non-critically ill hospitalized patients. | journal=BMJ Open Diabetes Res Care | year= 2017 | volume= 5 | issue= 1 | pages= e000394 | pmid=28405346 | doi=10.1136/bmjdrc-2017-000394 | pmc=5372055 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28405346  }} </ref><ref name="pmid30679302">{{cite journal| author=Fayfman M, Galindo RJ, Rubin DJ, Mize DL, Anzola I, Urrutia MA | display-authors=etal| title=A Randomized Controlled Trial on the Safety and Efficacy of Exenatide Therapy for the Inpatient Management of General Medicine and Surgery Patients With Type 2 Diabetes. | journal=Diabetes Care | year= 2019 | volume= 42 | issue= 3 | pages= 450-456 | pmid=30679302 | doi=10.2337/dc18-1760 | pmc=6905476 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30679302  }} </ref>
{|class="wikitable"
====Dipeptidyl Peptidase-4 Inhibitor Medications====
| bgcolor="Seashell"|<nowiki>"</nowiki>'''1.''' Consider performing an [[Glycosylated hemoglobin|A1C]] on all [[patient|patients]] with [[diabetes]] or [[hyperglycemia]] admitted to the hospital if not performed in the previous 3 months. ''([[American Diabetes Association#Evidence Grading System|Level of Evidence: C]])''<nowiki>"</nowiki>
*[[Dipeptidyl peptidase-4 inhibitor]] [[medications]] are effective for [[Diabetes management|glycemic control]] in mild to moderate [[hyperglycemia]]. Moreover [[dipeptidyl peptidase-4 inhibitors]] are tolerated very well and there has been low rate of [[hypoglycemia]]. It's usage has been recommended alone or in combination with [[Basal (medicine)|basal]] [[insulin]] in [[patients]] with [[blood sugar|blood glucose]]lower than 180 mg/dl. <ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref>
*There are some evidences about possible effectiveness of [[sitagliptin]] in survival of [[diabetes|diabetic]] [[patients]] who are [[infection|infected]] with [[COVID-19]]. Nevertheless due to limitted data more study is required. <ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref><ref name="pmid33033068">{{cite journal| author=Nauck MA, Meier JJ| title=Reduced COVID-19 Mortality With Sitagliptin Treatment? Weighing the Dissemination of Potentially Lifesaving Findings Against the Assurance of High Scientific Standards. | journal=Diabetes Care | year= 2020 | volume= 43 | issue= 12 | pages= 2906-2909 | pmid=33033068 | doi=10.2337/dci20-0062 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33033068  }} </ref><ref name="pmid17719327">{{cite journal| author=Sokos GG, Bolukoglu H, German J, Hentosz T, Magovern GJ, Maher TD | display-authors=etal| title=Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting. | journal=Am J Cardiol | year= 2007 | volume= 100 | issue= 5 | pages= 824-9 | pmid=17719327 | doi=10.1016/j.amjcard.2007.05.022 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17719327  }} </ref><ref name="pmid29230803">{{cite journal| author=Polderman JAW, van Steen SCJ, Thiel B, Godfried MB, Houweling PL, Hollmann MW | display-authors=etal| title=Peri-operative management of patients with type-2 diabetes mellitus undergoing non-cardiac surgery using liraglutide, glucose-insulin-potassium infusion or intravenous insulin bolus regimens: a randomised controlled trial. | journal=Anaesthesia | year= 2018 | volume= 73 | issue= 3 | pages= 332-339 | pmid=29230803 | doi=10.1111/anae.14180 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29230803  }} </ref><ref name="pmid31749275">{{cite journal| author=Hulst AH, Visscher MJ, Godfried MB, Thiel B, Gerritse BM, Scohy TV | display-authors=etal| title=Liraglutide for perioperative management of hyperglycaemia in cardiac surgery patients: a multicentre randomized superiority trial. | journal=Diabetes Obes Metab | year= 2020 | volume= 22 | issue= 4 | pages= 557-565 | pmid=31749275 | doi=10.1111/dom.13927 | pmc=7079116 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31749275  }} </ref>
====Glucagon-Like Peptide-1 Analogs====
*Studies have shown effectiveness of [[glucagon-like peptide-1 analog]]s (such as [[liraglutide]] and [[exenatide]]) in hospitalized [[diabetes type 2|diabetic]] [[patients]]. Based on systematic reviews [[gastrointestinat tract|gastrointestinal]] side effects have been reported in [[patients]] who received [[glucagon-like peptide-1 analog]]s.<ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref><ref name="pmid15353407">{{cite journal| author=Nyström T, Gutniak MK, Zhang Q, Zhang F, Holst JJ, Ahrén B | display-authors=etal| title=Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. | journal=Am J Physiol Endocrinol Metab | year= 2004 | volume= 287 | issue= 6 | pages= E1209-15 | pmid=15353407 | doi=10.1152/ajpendo.00237.2004 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15353407 }} </ref>
* Studies show that [[GLP-1 agonists]] reduced [[HbA1c|glycated haemoglobin A1c]] levels to a greater extent than [[SGLT-2 inhibitors]].<ref name="PalmerTendal2021">{{cite journal|last1=Palmer|first1=Suetonia C|last2=Tendal|first2=Britta|last3=Mustafa|first3=Reem A|last4=Vandvik|first4=Per Olav|last5=Li|first5=Sheyu|last6=Hao|first6=Qiukui|last7=Tunnicliffe|first7=David|last8=Ruospo|first8=Marinella|last9=Natale|first9=Patrizia|last10=Saglimbene|first10=Valeria|last11=Nicolucci|first11=Antonio|last12=Johnson|first12=David W|last13=Tonelli|first13=Marcello|last14=Rossi|first14=Maria Chiara|last15=Badve|first15=Sunil V|last16=Cho|first16=Yeoungjee|last17=Nadeau-Fredette|first17=Annie-Claire|last18=Burke|first18=Michael|last19=Faruque|first19=Labib I|last20=Lloyd|first20=Anita|last21=Ahmad|first21=Nasreen|last22=Liu|first22=Yuanchen|last23=Tiv|first23=Sophanny|last24=Millard|first24=Tanya|last25=Gagliardi|first25=Lucia|last26=Kolanu|first26=Nithin|last27=Barmanray|first27=Rahul D|last28=McMorrow|first28=Rita|last29=Raygoza Cortez|first29=Ana Karina|last30=White|first30=Heath|last31=Chen|first31=Xiangyang|last32=Zhou|first32=Xu|last33=Liu|first33=Jiali|last34=Rodríguez|first34=Andrea Flores|last35=González-Colmenero|first35=Alejandro Díaz|last36=Wang|first36=Yang|last37=Li|first37=Ling|last38=Sutanto|first38=Surya|last39=Solis|first39=Ricardo Cesar|last40=Díaz González-Colmenero|first40=Fernando|last41=Rodriguez-Gutierrez|first41=René|last42=Walsh|first42=Michael|last43=Guyatt|first43=Gordon|last44=Strippoli|first44=Giovanni F M|title=Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials|journal=BMJ|year=2021|pages=m4573|issn=1756-1833|doi=10.1136/bmj.m4573}}</ref>
*The following table is summary of various [[randomized controlled trial]] and [[observational studies]] regards [[dipeptidyl peptidase-4 inhibitor]] and [[glucagon-like peptide-1 analogs]] use in hospital setting:<ref name="pmid23877988">{{cite journal| author=Umpierrez GE, Gianchandani R, Smiley D, Jacobs S, Wesorick DH, Newton C | display-authors=etal| title=Safety and efficacy of sitagliptin therapy for the inpatient management of general medicine and surgery patients with type 2 diabetes: a pilot, randomized, controlled study. | journal=Diabetes Care | year= 2013 | volume= 36 | issue= 11 | pages= 3430-5 | pmid=23877988 | doi=10.2337/dc13-0277 | pmc=3816910 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23877988  }} </ref><ref name="pmid27964837">{{cite journal| author=Pasquel FJ, Gianchandani R, Rubin DJ, Dungan KM, Anzola I, Gomez PC | display-authors=etal| title=Efficacy of sitagliptin for the hospital management of general medicine and surgery patients with type 2 diabetes (Sita-Hospital): a multicentre, prospective, open-label, non-inferiority randomised trial. | journal=Lancet Diabetes Endocrinol | year= 2017 | volume= 5 | issue= 2 | pages= 125-133 | pmid=27964837 | doi=10.1016/S2213-8587(16)30402-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27964837  }} </ref><ref name="pmid28405346">{{cite journal| author=Garg R, Schuman B, Hurwitz S, Metzger C, Bhandari S| title=Safety and efficacy of saxagliptin for glycemic control in non-critically ill hospitalized patients. | journal=BMJ Open Diabetes Res Care | year= 2017 | volume= 5 | issue= 1 | pages= e000394 | pmid=28405346 | doi=10.1136/bmjdrc-2017-000394 | pmc=5372055 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28405346  }} </ref><ref name="pmid30456796">{{cite journal| author=Vellanki P, Rasouli N, Baldwin D, Alexanian S, Anzola I, Urrutia M | display-authors=etal| title=Glycaemic efficacy and safety of linagliptin compared to a basal-bolus insulin regimen in patients with type 2 diabetes undergoing non-cardiac surgery: A multicentre randomized clinical trial. | journal=Diabetes Obes Metab | year= 2019 | volume= 21 | issue= 4 | pages= 837-843 | pmid=30456796 | doi=10.1111/dom.13587 | pmc=7231260 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30456796  }} </ref><ref name="pmid23186969">{{cite journal| author=Abuannadi M, Kosiborod M, Riggs L, House JA, Hamburg MS, Kennedy KF | display-authors=etal| title=Management of hyperglycemia with the administration of intravenous exenatide to patients in the cardiac intensive care unit. | journal=Endocr Pract | year= 2013 | volume= 19 | issue= 1 | pages= 81-90 | pmid=23186969 | doi=10.4158/EP12196.OR | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23186969  }} </ref><ref name="pmid24144627">{{cite journal| author=Kohl BA, Hammond MS, Cucchiara AJ, Ochroch EA| title=Intravenous GLP-1 (7-36) amide for prevention of hyperglycemia during cardiac surgery: a randomized, double-blind, placebo-controlled study. | journal=J Cardiothorac Vasc Anesth | year= 2014 | volume= 28 | issue= 3 | pages= 618-25 | pmid=24144627 | doi=10.1053/j.jvca.2013.06.021 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24144627 }} </ref><ref name="pmid28820780">{{cite journal| author=Besch G, Perrotti A, Mauny F, Puyraveau M, Baltres M, Flicoteaux G | display-authors=etal| title=Clinical Effectiveness of Intravenous Exenatide Infusion in Perioperative Glycemic Control after Coronary Artery Bypass Graft Surgery: A Phase II/III Randomized Trial. | journal=Anesthesiology | year= 2017 | volume= 127 | issue= 5 | pages= 775-787 | pmid=28820780 | doi=10.1097/ALN.0000000000001838 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28820780  }} </ref><ref name="pmid29230803">{{cite journal| author=Polderman JAW, van Steen SCJ, Thiel B, Godfried MB, Houweling PL, Hollmann MW | display-authors=etal| title=Peri-operative management of patients with type-2 diabetes mellitus undergoing non-cardiac surgery using liraglutide, glucose-insulin-potassium infusion or intravenous insulin bolus regimens: a randomised controlled trial. | journal=Anaesthesia | year= 2018 | volume= 73 | issue= 3 | pages= 332-339 | pmid=29230803 | doi=10.1111/anae.14180 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29230803 }} </ref><ref name="pmid28581209">{{cite journal| author=Lipš M, Mráz M, Kloučková J, Kopecký P, Dobiáš M, Křížová J | display-authors=etal| title=Effect of continuous exenatide infusion on cardiac function and peri-operative glucose control in patients undergoing cardiac surgery: A single-blind, randomized controlled trial. | journal=Diabetes Obes Metab | year= 2017 | volume= 19 | issue= 12 | pages= 1818-1822 | pmid=28581209 | doi=10.1111/dom.13029 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28581209  }} </ref><ref name="pmid30679302">{{cite journal| author=Fayfman M, Galindo RJ, Rubin DJ, Mize DL, Anzola I, Urrutia MA | display-authors=etal| title=A Randomized Controlled Trial on the Safety and Efficacy of Exenatide Therapy for the Inpatient Management of General Medicine and Surgery Patients With Type 2 Diabetes. | journal=Diabetes Care | year= 2019 | volume= 42 | issue= 3 | pages= 450-456 | pmid=30679302 | doi=10.2337/dc18-1760 | pmc=6905476 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30679302  }} </ref><ref name="pmid30537714">{{cite journal| author=Kaneko S, Ueda Y, Tahara Y| title=GLP1 Receptor Agonist Liraglutide Is an Effective Therapeutic Option for Perioperative Glycemic Control in Type 2 Diabetes within Enhanced Recovery After Surgery (ERAS) Protocols. | journal=Eur Surg Res | year= 2018 | volume= 59 | issue= 5-6 | pages= 349-360 | pmid=30537714 | doi=10.1159/000494768 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30537714  }} </ref><ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref><ref name="pmid31749275">{{cite journal| author=Hulst AH, Visscher MJ, Godfried MB, Thiel B, Gerritse BM, Scohy TV | display-authors=etal| title=Liraglutide for perioperative management of hyperglycaemia in cardiac surgery patients: a multicentre randomized superiority trial. | journal=Diabetes Obes Metab | year= 2020 | volume= 22 | issue= 4 | pages= 557-565 | pmid=31749275 | doi=10.1111/dom.13927 | pmc=7079116 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31749275  }} </ref>
<br>
{| border="3"
! Umpierrez et al (2013)
| '''[[Sitagliptin]] + sliding-scale [[insulin]] or [[sitagliptin]] + [[insulin glargine|glargine]] Vs [[Basal (medicine)|basal]]-[[Bolus (medicine)|bolus]] [[insulin]] ([[Insulin glargine|glargine]]–[[insulin lispro|lispro]])''' <br> Study has been done on 90 [[patients]] (medical or [[surgery|surgical]] cases) with [[diabetes type 2]] who were on [[mouth|oral]] [[Anti-diabetic drug|antidiabetic agents]] or low dose [[insulin]] (less than 0·4 U/kg per day), with [[glucose]] concentrations of 140–400 mg/dL. <br> Reported average [[glucose]] concentration showed no difference. <br> Sole [[sitagliptin]] [[treatment]] has not been effective in [[patients]] who had [[blood sugar|blood glucose]] higher than 180 mg/dL.  
|-
! Pasquel et al (2017)
| '''[[Sitagliptin]] + [[insulin glargine|glargine]] Vs [[Basal (medicine)|basal]]-[[Bolus (medicine)|bolus]] [[insulin]] ([[Insulin glargine|glargine]]–[[insulin lispro|lispro]] or [[Insulin glargine|glargine]]–[[insulin aspart|aspart]])''' <br> Study has been done on 278 [[patients]] (medical or [[surgery|surgical]] cases) with [[diabetes type 2]] who were on [[mouth|oral]] [[Anti-diabetic drug|antidiabetic agents]] or low dose [[insulin]] (less than 0·6 U/kg per day), with [[glucose]] concentrations of 140–400 mg/dL. <br> Reported average [[glucose]] concentration showed no difference.
|-
!Garg et al (2017)
|'''[[Saxagliptin]] Vs [[Basal (medicine)|basal]]-[[Bolus (medicine)|bolus]] [[insulin]] ([[Insulin glargine|glargine]]–[[insulin aspart|aspart]])''' <br> Study has been done on 66 [[patients]] (medical or [[surgery|surgical]] cases) with [[diabetes type 2]] who were on maximum 1 non-[[insulin]] [[Anti-diabetic drug|antidiabetic agents]] or 2 non-[[insulin]] [[Anti-diabetic drug|antidiabetic agents]] with [[Glycosylated hemoglobin|HbA1c]] measure less than 7·5% and 7·0%, respectively. <br> Reported average [[glucose]] concentration showed no difference. <br> [[Patients]] who received [[saxagliptin]] showed less [[blood sugar|blood glucose]] variation.
|-
|-
| bgcolor="Seashell"|<nowiki>"</nowiki>'''2.''' [[Insulin]] [[therapy]] should be initiated for [[treatment]] of persistent [[hyperglycemia]] starting at a threshold ≥180 mg/dL (10.0 mmol/L). Once [[insulin]] [[therapy]] is started, a target [[glucose]] range of 140–180 mg/dL (7.8–10.0 mmol/L) is recommended for the majority of critically ill [[patients]]''([[American Diabetes Association#Evidence Grading System|Level of Evidence: A]])''and noncritically ill [[patients]] ''([[American Diabetes Association#Evidence Grading System|Level of Evidence: C]])''<nowiki>"</nowiki>
!Vellanki et al (2019)
|'''[[Linagliptin]] + sliding-scale [[insulin]] Vs [[Basal (medicine)|basal]]-[[Bolus (medicine)|bolus]] [[insulin]] ([[Insulin glargine|glargine]]–[[insulin lispro|lispro]] or [[Insulin glargine|glargine]]–[[insulin aspart|aspart]])''' <br> Study has been done on 250 [[surgery|surgical]] [[patients]] with [[diabetes type 2]] who were on [[mouth|oral]] [[Anti-diabetic drug|antidiabetic agents]] or low dose [[insulin]] (less than 0·5 U/kg per day), with [[glucose]] concentrations of 140–400 mg/dL. <br> Reported average [[glucose]] concentration showed no difference. <br> Less chance of [[hypoglycemia]] has been reported in [[linagliptin]] group. Sole [[linagliptin]] use has not been effective in [[patients]] with [[blood sugar|blood glucose]] more than 200 mg/dl
|-
|-
| bgcolor="Seashell"|<nowiki>"</nowiki>'''3.''' More stringent goals, such as 110–140 mg/dL (6.1–7.8 mmol/L) may be ap- propriate for selected critically ill [[patients]], as long as this can be achieved without significant [[hypoglycemia]] ''([[American Diabetes Association#Evidence Grading System|Level of Evidence: C]])''<nowiki>"</nowiki>
!Abuannadi et al (2013)
|'''[[Exenatide]] [[Intravenous therapy|infusion]] Vs intensive [[Diabetes management|glycemic control]] (90–119 mg/dL) or moderate [[Diabetes management|glycemic control]] (100–140 mg/dL)''' <br> Study has been done on 40 non-[[diabetes|diabetic]] [[Intensive care unit|ICU]] [[patients]] with [[coronary heart disease]] and [[diabetes type 2|type 2 diabetic]] [[patients]] who were on non-[[insulin]] [[Anti-diabetic drug|antidiabetic agents]], with [[glucose]] concentrations of 140–400 mg/dL. <br> Reported average [[glucose]] concentration showed good control in [[exenatide]] group. (Same result as moderate [[Diabetes management|glycemic control]]) <br> The main limitation has been the non-randomized study with historical controls.
|-
|-
| bgcolor="Seashell"|<nowiki>"</nowiki>'''4.''' [[Intravenous therapy|Intravenous]] [[insulin]] infusions should be administered using validated written or computerized protocols that allow for predefined adjustments in the [[insulin]] infusion rate based on glycemic fluctuations and [[insulin]] dose. ''([[American Diabetes Association#Evidence Grading System|Level of Evidence: E]])''<nowiki>"</nowiki>
!Kohl et al (2014)
|'''[[Glucagon-like peptide-1|Native GLP-1]] Vs placebo''' <br> Study has been done on 77 [[heart|cardiac]] [[surgery]] [[patients]] with or without [[diabetes]] <br> Reported average [[glucose]] concentration showed lower measure in [[Glucagon-like peptide-1|GLP-1]] group.
|-
|-
| bgcolor="Seashell"|<nowiki>"</nowiki>'''5.''' A [[Basal (medicine)|basal]] plus bolus correction [[insulin]] regimen is the preferred [[treatment]] for noncritically ill [[patients]] with poor [[Mouth|oral]] intake or those who are taking nothing by [[mouth]]. An [[insulin]] regimen with basal, nutritional, and correction components is the preferred [[treatment]] for [[patients]] with good nutritional intake. ''([[American Diabetes Association#Evidence Grading System|Level of Evidence: A]])''<nowiki>"</nowiki>
!Besch et al (2017)
|'''[[Exenatide]] [[Intravenous therapy|infusion]] Vs [[insulin]] [[Intravenous therapy|infusion]]''' <br> Study has been done on 104 [[coronary artery bypass surgery|CABG]] [[patients]] with or without [[diabetes]] (on non-[[insulin]] [[treatment]]) <br> Reported average [[glucose]] concentration showed no statistically valuable differences. <br> Study discontinued after [[Futility in clinical research|futility analysis]]
|-
|-
| bgcolor="Seashell"|<nowiki>"</nowiki>'''6.''' The sole use of sliding scale [[insulin]] in the inpatient hospital setting is strongly discouraged ''([[American Diabetes Association#Evidence Grading System|Level of Evidence: A]])''<nowiki>"</nowiki>
!Polderman et al (2018)
|'''[[Liraglutide]] † Vs [[glucose]] + [[insulin]] + [[potassium]] ‡''' <br> Study has been done on 150 [[surgery|surgical]] [[patients]] with [[diabetes type 2]] who where on diet, [[mouth|oral]] [[Anti-diabetic drug|antidiabetic agents]] or [[insulin]] doses less than 1 U/kg. <br> Reported average [[glucose]] concentration measures 1 hour after [[surgery]] showed lower levels in [[liraglutide]] group. <br> [[Nausea and vomiting|Nausea]] has been reported in [[patients]] of [[liraglutide]].
|-
|-
| bgcolor="Seashell"|<nowiki>"</nowiki>'''7.''' A [[hypoglycemia]] management protocol should be adopted and implemented by each hospital or hospital system. A plan for preventing and treating [[hypoglycemia]] should be established for each [[patient]]. Episodes of [[hypoglycemia]] in the hospital should be documented in the medical record and tracked. ''([[American Diabetes Association#Evidence Grading System|Level of Evidence: E]])''<nowiki>"</nowiki>
!Lipš et al (2017)
|'''Continuous [[exenatide]] [[Intravenous therapy|infusion]] + [[insulin]] [[treatment]] Vs [[Saline (medicine)|0·9% saline]] + [[insulin]] [[treatment]]''' <br> Study has been done on 40 [[coronary artery bypass surgery|CABG]] [[patients]] with or without [[diabetes]]. <br> Reported average [[glucose]] concentration showed lower measures in [[exenatide]] group. <br> Decreased demand for temporary pacing after [[surgery]] was the only benefit in [[heart|cardiac]] function of the [[exenatide]] group.
|-
|-
| bgcolor="Seashell"|<nowiki>"</nowiki>'''8.''' The [[treatment]] regimen should be reviewed and changed if necessary to prevent further [[hypoglycemia]] when a [[b;ood sugar|blood glucose]] value is <70 mg/dL (3.9 mmol/L). ''([[American Diabetes Association#Evidence Grading System|Level of Evidence: C]])''<nowiki>"</nowiki>
!Fayfman et al (2019)
|'''[[Exenatide]] ¶ Vs [[exenatide]] + [[Basal (medicine)|basal]] [[insulin]] ([[insulin glargine|glargine]] or [[Insulin detemir|levemir]]) Vs [[Basal (medicine)|basal]] [[insulin]] ([[insulin glargine|glargine]] or [[Insulin detemir|levemir]] + [[insulin aspart|aspart]] or [[insulin lispro|lispro]])''' <br> Study has been done on 150 [[surgery|surgical]] or medical [[patients]] with [[diabetes type 2]] who were on diet, [[mouth|oral]] [[Anti-diabetic drug|antidiabetic agents]] or low dose [[insulin]] (less than 0·5 U/kg per day), with [[glucose]] concentrations of 140–400 mg/dL. <br> Reported average [[glucose]] concentration showed lower measures in [[exenatide]] plus [[Basal (medicine)|basal]] [[insulin]] group, compared to [[exenatide]] alone. ALthough reported average [[glucose]] concentration showed no differences between [[exenatide]] plus [[Basal (medicine)|basal]] [[insulin]] and [[Basal (medicine)|basal]] [[insulin]] groups. [[Exenatide]] plus [[Basal (medicine)|basal]] [[insulin]] group was more succesful in keeping the [[blood sugar|blood glucose]] within the target goal, compared to the other two groups. (P value = 0·023)
|-
|-
| bgcolor="Seashell"|<nowiki>"</nowiki>'''9.''' There should be a structured discharge plan tailored to the individual [[patient]]. ''([[American Diabetes Association#Evidence Grading System|Level of Evidence: B]])''<nowiki>"</nowiki>
!Kaneko et al (2018)
|'''[[Liraglutide]] Vs [[insulin]]''' <br> Study has been done on 92 [[surgery|surgical]] [[patients]] (elective [[surgery]]) with [[diabetes type 2]] <br> Reported average [[glucose]] concentration showed lower measures in [[liraglutide]] group.
|-
|-
!Hulst et al (2020)
|'''[[Liraglutide]] ₳ Vs placebo''' <br> Study has been done on 278 [[heart|cardiac]] [[surgery]] [[patients]] with (16%) or without (84%) [[diabetes type 2]] <br> Reported average [[glucose]] concentration showed lower demand for [[insulin]] use in [[liraglutide]] group. <br> [[Hypoglycemia]] has not been reported in non of the groups.
|}
|}
<sub>†[[Liraglutide]] has been used [[Subcutaneous tissue|subcutaneously]] with dosage of 0·6 mg before [[surgery]] and 1.2 mg after [[anesthesia]] induction.  </sub> <br>
<sub>‡Infusion of [[glucose]], [[insulin]] and [[potassium]] was 30 mintunes before [[surgery]] and continued until 4 hours after [[surgery]].</sub> <br>
<sub>¶[[Exenatide]] has been used with dose of 5 mg twice a day.</sub> <br>
<sub>₳[[Liraglutide]] has been used [[Subcutaneous tissue|subcutaneously]] with dosage of 0·6 mg on the evening before [[surgery]] and 1.2 mg after [[anesthesia]] induction. </sub> <br>


====SGLT2 Inhibitors====
*[[SGLT2|SGLT2 inhibitors]] are the current [[treatment]] of choice among other [[mouth|oral]] [[antidiabetic drugs]] especially for [[diabetes|diabetes type 2]] [[patients]] with concurrent [[cogestive heart failure|heart failure]] or [[diabetic nephropathy]]. It's use has been related to lower rate of readmission, death within 60 days and [[Congestive heart failure|heart failure]]. Nevertheless it's routine use in hospital setting is not recommended.<ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref><ref name="pmid32409867">{{cite journal| author=Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C | display-authors=etal| title=Correction to: 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of diabetes (EASD). | journal=Diabetologia | year= 2020 | volume= 63 | issue= 8 | pages= 1667 | pmid=32409867 | doi=10.1007/s00125-020-05151-2 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32409867  }} </ref><ref name="pmid31060732">{{cite journal| author=Thiruvenkatarajan V, Meyer EJ, Nanjappa N, Van Wijk RM, Jesudason D| title=Perioperative diabetic ketoacidosis associated with sodium-glucose co-transporter-2 inhibitors: a systematic review. | journal=Br J Anaesth | year= 2019 | volume= 123 | issue= 1 | pages= 27-36 | pmid=31060732 | doi=10.1016/j.bja.2019.03.028 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31060732  }} </ref>
*Frequent [[Diabetic ketoacidosis|euglycaemic diabetic ketoacidosis]], mostly in [[patients]] with poor [[mouth|oral]] intake and [[Urinary tract infection|genitourinary infections]] have been made worry regards [[SGLT2|SGLT2 inhibitors]] use for [[diabetes|diabetic]] [[patient|inpatients]]. [[fungus|Fungal]] [[infections]] are the common responsible [[microorganisms]] for [[Urinary tract infection|genitourinary infections]] of these [[patients]].<ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref>
*Based on a meta-analysis by Palmer et al., [[SGLT-2 inhibitors]] and [[GLP-1 receptor agonists]], together for the treatment of [[DM type 2]], reduce [[mortality]], non-fatal [[myocardial infarction]], and serious [[hyperglycemia]], and [[renal failure]].<ref name="PalmerTendal2021">{{cite journal|last1=Palmer|first1=Suetonia C|last2=Tendal|first2=Britta|last3=Mustafa|first3=Reem A|last4=Vandvik|first4=Per Olav|last5=Li|first5=Sheyu|last6=Hao|first6=Qiukui|last7=Tunnicliffe|first7=David|last8=Ruospo|first8=Marinella|last9=Natale|first9=Patrizia|last10=Saglimbene|first10=Valeria|last11=Nicolucci|first11=Antonio|last12=Johnson|first12=David W|last13=Tonelli|first13=Marcello|last14=Rossi|first14=Maria Chiara|last15=Badve|first15=Sunil V|last16=Cho|first16=Yeoungjee|last17=Nadeau-Fredette|first17=Annie-Claire|last18=Burke|first18=Michael|last19=Faruque|first19=Labib I|last20=Lloyd|first20=Anita|last21=Ahmad|first21=Nasreen|last22=Liu|first22=Yuanchen|last23=Tiv|first23=Sophanny|last24=Millard|first24=Tanya|last25=Gagliardi|first25=Lucia|last26=Kolanu|first26=Nithin|last27=Barmanray|first27=Rahul D|last28=McMorrow|first28=Rita|last29=Raygoza Cortez|first29=Ana Karina|last30=White|first30=Heath|last31=Chen|first31=Xiangyang|last32=Zhou|first32=Xu|last33=Liu|first33=Jiali|last34=Rodríguez|first34=Andrea Flores|last35=González-Colmenero|first35=Alejandro Díaz|last36=Wang|first36=Yang|last37=Li|first37=Ling|last38=Sutanto|first38=Surya|last39=Solis|first39=Ricardo Cesar|last40=Díaz González-Colmenero|first40=Fernando|last41=Rodriguez-Gutierrez|first41=René|last42=Walsh|first42=Michael|last43=Guyatt|first43=Gordon|last44=Strippoli|first44=Giovanni F M|title=Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials|journal=BMJ|year=2021|pages=m4573|issn=1756-1833|doi=10.1136/bmj.m4573}}</ref>
*Based on a systematic review [[empagliflozin]] use has not shown any improvement compared to the placebo groups, in the following Characteristics:<ref name="pmid31912605">{{cite journal| author=Damman K, Beusekamp JC, Boorsma EM, Swart HP, Smilde TDJ, Elvan A | display-authors=etal| title=Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF). | journal=Eur J Heart Fail | year= 2020 | volume= 22 | issue= 4 | pages= 713-722 | pmid=31912605 | doi=10.1002/ejhf.1713 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31912605  }} </ref>
**[[Dyspnea]]
**[[Brain natriuretic peptide]] level
**Hospitalization period
**Response to [[diuretics]]


====Metformin====
*Use [[metformin]] with caution in hospitalized [[patients]] especially if [[renal insufficiency|renal]] or [[hepatic failure]], [[sepsis]] and [[shock]] is present due to high chance of [[acidosis|lactic acidosis]]. To prevent such an [[Adverse effect (medicine)|adverse effect]], [[patients]] with [[Glomerular filtration rate|GFR]] in range of 30–45 mL/min per 1·73 m² should recieve lower doses of [[metformin]]. Furthermore [[metformin]] must be discontinued in [[patients]] with [[Glomerular filtration rate|GFR]] lower than 30 ml/min per 1·73 m².<ref name="pmid24326619">{{cite journal| author=Pasquel FJ, Klein R, Adigweme A, Hinedi Z, Coralli R, Pimentel JL | display-authors=etal| title=Metformin-associated lactic acidosis. | journal=Am J Med Sci | year= 2015 | volume= 349 | issue= 3 | pages= 263-7 | pmid=24326619 | doi=10.1097/MAJ.0b013e3182a562b7 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24326619  }} </ref>
*[[Metformin]] should be discontinued prior to [[iodinated contrast]] imaging if [[Glomerular filtration rate|eGFR]] <60 mL/min per 1·73 m², history of [[chronic hepatic failure|hepatic disease]], [[acute heart failure]], [[alcohol|alcoholism]] or received [[artery|intra-arterial]] [[contrast medium]].<ref name="pmid30112652">{{cite journal| author=Iyengar R, Franzese J, Gianchandani R| title=Inpatient Glycemic Management in the Setting of Renal Insufficiency/Failure/Dialysis. | journal=Curr Diab Rep | year= 2018 | volume= 18 | issue= 10 | pages= 75 | pmid=30112652 | doi=10.1007/s11892-018-1044-y | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30112652  }} </ref>
*Compared to other [[mouth|oral]] [[Anti-diabetic drug|antidiabetic agents]], [[metformin]] showed higher rate of [[gastrointestinal tract|gastrointestinal]] [[Adverse effect (medicine)|adverse effects]] in the hospitalized [[patients]].<ref name="pmid17638715">{{cite journal| author=Bolen S, Feldman L, Vassy J, Wilson L, Yeh HC, Marinopoulos S | display-authors=etal| title=Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. | journal=Ann Intern Med | year= 2007 | volume= 147 | issue= 6 | pages= 386-99 | pmid=17638715 | doi=10.7326/0003-4819-147-6-200709180-00178 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17638715  }} </ref>
====Sulfonylureas====
*Frequent [[hypoglycemia|hypoglycemic events]] have been reported in [[sulfonylureas]] usage in the hospital setting, hence experts don't recommend it for [[treatment]] of [[diabetes|diabetic]] [[patient|inpatients]]. Facrors such as [[aging|old age]], [[renal insufficiency]] and concurrent [[insulin]] use have been related to higher risk of [[hypoglycemia]]. Although UK recommendations proposed it's effectiveness in mangement of [[hyperglycemia]] due to [[glucocorticoid]] use.<ref name="pmid30152586">{{cite journal| author=Roberts A, James J, Dhatariya K, Joint British Diabetes Societies (JBDS) for Inpatient Care| title=Management of hyperglycaemia and steroid (glucocorticoid) therapy: a guideline from the Joint British Diabetes Societies (JBDS) for Inpatient Care group. | journal=Diabet Med | year= 2018 | volume= 35 | issue= 8 | pages= 1011-1017 | pmid=30152586 | doi=10.1111/dme.13675 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30152586  }} </ref><ref name="pmid28632918">{{cite journal| author=Stuart K, Adderley NJ, Marshall T, Rayman G, Sitch A, Manley S | display-authors=etal| title=Predicting inpatient hypoglycaemia in hospitalized patients with diabetes: a retrospective analysis of 9584 admissions with diabetes. | journal=Diabet Med | year= 2017 | volume= 34 | issue= 10 | pages= 1385-1391 | pmid=28632918 | doi=10.1111/dme.13409 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28632918  }} </ref>
====Thiazolidinediones====
*Late onset of action and risk of [[Congestive heart failure|heart failure]] (due to [[water retention]]) turned [[thiazolidinediones]] into an ineffective [[treatment]] in hospital settings.<ref name="pmid17638715">{{cite journal| author=Bolen S, Feldman L, Vassy J, Wilson L, Yeh HC, Marinopoulos S | display-authors=etal| title=Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. | journal=Ann Intern Med | year= 2007 | volume= 147 | issue= 6 | pages= 386-99 | pmid=17638715 | doi=10.7326/0003-4819-147-6-200709180-00178 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17638715  }} </ref><ref name="pmid23072848">{{cite journal| author=Khalam A, Dilip C, Shinu C| title=Drug use evaluation of diabetes mellitus in hospitalized patients of a tertiary care referral hospital. | journal=J Basic Clin Physiol Pharmacol | year= 2012 | volume= 23 | issue= 4 | pages= 173-7 | pmid=23072848 | doi=10.1515/jbcpp-2012-0012 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23072848  }} </ref>


 
===Specific Circumstances===
The following are some management considerations that are recommended in hospitalized [[diabetes|diabetic]] [[patients]] with specific circumstances.
====Medical Nutrition Therapy====
*Use low [[glucose]] content formulas in [[diabetes|diabetic]] [[patients]] who are receiving nutritional [[therapy]] to avoid [[hyperglycemia]]. <ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref>
*There are some studies that demonstrate the effectiveness of adding short acting [[insulins]] into the parenteral bag, compared to usage of solitary [[subcutaneous tissue|subcutaneous]] [[insulin]]. <ref name="pmid20040658">{{cite journal| author=Pasquel FJ, Spiegelman R, McCauley M, Smiley D, Umpierrez D, Johnson R | display-authors=etal| title=Hyperglycemia during total parenteral nutrition: an important marker of poor outcome and mortality in hospitalized patients. | journal=Diabetes Care | year= 2010 | volume= 33 | issue= 4 | pages= 739-41 | pmid=20040658 | doi=10.2337/dc09-1748 | pmc=2845017 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20040658  }} </ref><ref name="pmid31261760">{{cite journal| author=Laesser CI, Cumming P, Reber E, Stanga Z, Muka T, Bally L| title=Management of Glucose Control in Noncritically Ill, Hospitalized Patients Receiving Parenteral and/or Enteral Nutrition: A Systematic Review. | journal=J Clin Med | year= 2019 | volume= 8 | issue= 7 | pages=  | pmid=31261760 | doi=10.3390/jcm8070935 | pmc=6678336 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31261760  }} </ref>
*If laboratory evaluations show constant [[hyperglycemia]] in [[diabetes|diabetic]] or non-diabetic [[patients]] usage of [[Basal (medicine)|basal]]-[[Bolus (medicine)|bolus]] [[insulin]] is recommended.
*UK guidelines advocate use of 70/30 mixed [[insulin]] in [[diabetes|diabetic]] [[patients]] in hospital who are receiving nutrition [[therapy]].<ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref> <ref name="pmid30152589">{{cite journal| author=Roberts AW, Penfold S, Joint British Diabetes Societies (JBDS) for Inpatient Care| title=Glycaemic management during the inpatient enteral feeding of people with stroke and diabetes. | journal=Diabet Med | year= 2018 | volume= 35 | issue= 8 | pages= 1027-1036 | pmid=30152589 | doi=10.1111/dme.13678 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30152589  }} </ref>
*When [[medicine|medical]] nutritional [[therapy]] paused [[Intravenous therapy|infusion]] of 10% [[dextrose]] at rate of 50 ml/hr is recommended.<ref name="pmid30152589">{{cite journal| author=Roberts AW, Penfold S, Joint British Diabetes Societies (JBDS) for Inpatient Care| title=Glycaemic management during the inpatient enteral feeding of people with stroke and diabetes. | journal=Diabet Med | year= 2018 | volume= 35 | issue= 8 | pages= 1027-1036 | pmid=30152589 | doi=10.1111/dme.13678 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30152589  }} </ref>
*Closed loop [[insulin]] [[therapy]] has been proposed by a randomised trial done in 2019 as a possible [[treatment]] in hospitalized [[diabetes|diabetic]] [[patients]] on nutrition [[therapy]]. <ref name="pmid30935872">{{cite journal| author=Boughton CK, Bally L, Martignoni F, Hartnell S, Herzig D, Vogt A | display-authors=etal| title=Fully closed-loop insulin delivery in inpatients receiving nutritional support: a two-centre, open-label, randomised controlled trial. | journal=Lancet Diabetes Endocrinol | year= 2019 | volume= 7 | issue= 5 | pages= 368-377 | pmid=30935872 | doi=10.1016/S2213-8587(19)30061-0 | pmc=6467839 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30935872  }} </ref><ref name="pmid30935872">{{cite journal| author=Boughton CK, Bally L, Martignoni F, Hartnell S, Herzig D, Vogt A | display-authors=etal| title=Fully closed-loop insulin delivery in inpatients receiving nutritional support: a two-centre, open-label, randomised controlled trial. | journal=Lancet Diabetes Endocrinol | year= 2019 | volume= 7 | issue= 5 | pages= 368-377 | pmid=30935872 | doi=10.1016/S2213-8587(19)30061-0 | pmc=6467839 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30935872  }} </ref>
====Concurrent Glucocorticoid Use====
*Frequent [[hyperglycemia]] has been reported in hospitalized [[patients]] who are taking [[glucocorticoid]]s.<ref name="pmid25565560">{{cite journal| author=Burt MG, Drake SM, Aguilar-Loza NR, Esterman A, Stranks SN, Roberts GW| title=Efficacy of a basal bolus insulin protocol to treat prednisolone-induced hyperglycaemia in hospitalised patients. | journal=Intern Med J | year= 2015 | volume= 45 | issue= 3 | pages= 261-6 | pmid=25565560 | doi=10.1111/imj.12680 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25565560  }} </ref>
*Management of [[glucocorticoid]] induced [[hyperglycemia]], in order to achieve the glycemic goal, is much harder in [[diabetes|diabetic]] [[patients]] who were receiving home [[insulin]].<ref name="pmid29961246">{{cite journal| author=Khowaja A, Alkhaddo JB, Rana Z, Fish L| title=Glycemic Control in Hospitalized Patients with Diabetes Receiving Corticosteroids Using a Neutral Protamine Hagedorn Insulin Protocol: A Randomized Clinical Trial. | journal=Diabetes Ther | year= 2018 | volume= 9 | issue= 4 | pages= 1647-1655 | pmid=29961246 | doi=10.1007/s13300-018-0468-3 | pmc=6064602 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29961246  }} </ref>
*Based on an [[observational study]] done on [[patients]] who were recieving high dose [[dexamethasone]] with 2 [[glucose]] concentration higher than 250 mg/dL, multiple [[dose]] [[insulin]] [[therapy]] was an effective [[treatment]]. [[Insulin]] [[therapy]] in the aforementioned study initiated at 1–1·2 U/kg per day with 1/4 [[Basal (medicine)|basal]] and 3/4 prandial distribution. In the case of [[hyperglycemia|hyperglycemic]] [[patients]] without [[diabetes]] who are taking [[glucocorticoid]]s, [[insulin|isophane insulin]] in the morning could be a possible [[treatment]]. <ref name="pmid30152586">{{cite journal| author=Roberts A, James J, Dhatariya K, Joint British Diabetes Societies (JBDS) for Inpatient Care| title=Management of hyperglycaemia and steroid (glucocorticoid) therapy: a guideline from the Joint British Diabetes Societies (JBDS) for Inpatient Care group. | journal=Diabet Med | year= 2018 | volume= 35 | issue= 8 | pages= 1011-1017 | pmid=30152586 | doi=10.1111/dme.13675 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30152586  }} </ref><ref name="pmid25321387">{{cite journal| author=Brady V, Thosani S, Zhou S, Bassett R, Busaidy NL, Lavis V| title=Safe and effective dosing of basal-bolus insulin in patients receiving high-dose steroids for hyper-cyclophosphamide, doxorubicin, vincristine, and dexamethasone chemotherapy. | journal=Diabetes Technol Ther | year= 2014 | volume= 16 | issue= 12 | pages= 874-9 | pmid=25321387 | doi=10.1089/dia.2014.0115 | pmc=4241952 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25321387  }} </ref>
*Based on a [[systematic review]] done in 2020, usage of [[insulin]] twice a day with a total [[dose]] of 0·3 u/kg/day has been recommended. Recommendations divided this [[dose]] to 2/3 in the morning and 1/3 in the evening.<ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref>
*It is recommended to adjust [[insulin]] [[dose]] based on the [[glucocorticoid]] [[dose|dosage]] and [[mouth|oral]] intake. <ref name="pmid29961246">{{cite journal| author=Khowaja A, Alkhaddo JB, Rana Z, Fish L| title=Glycemic Control in Hospitalized Patients with Diabetes Receiving Corticosteroids Using a Neutral Protamine Hagedorn Insulin Protocol: A Randomized Clinical Trial. | journal=Diabetes Ther | year= 2018 | volume= 9 | issue= 4 | pages= 1647-1655 | pmid=29961246 | doi=10.1007/s13300-018-0468-3 | pmc=6064602 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29961246  }} </ref><ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref>
*[[Dexamethasone]] discontinuation can be followed by a rapid decrease in [[insulin]] requirement, hence [[insulin]] [[dose]] reduction is necessary.
*[[Sulfonylurea]] is not an effective [[treatment]] in [[diabetes|diabetic]] [[patients]] who are on [[glucorticoid]]s.
====Preoperative State====
*Appropriate [[glycemic control]] is critical in [[surgery|surgical]] [[patients]] since high [[glucose]] concentration is related to higher rates of [[Complication (medicine)|complications]]. <ref name="pmid22288687">{{cite journal| author=Dhatariya K, Levy N, Kilvert A, Watson B, Cousins D, Flanagan D | display-authors=etal| title=NHS Diabetes guideline for the perioperative management of the adult patient with diabetes. | journal=Diabet Med | year= 2012 | volume= 29 | issue= 4 | pages= 420-33 | pmid=22288687 | doi=10.1111/j.1464-5491.2012.03582.x | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22288687  }} </ref>
*[[Basal (medicine)|Basal]]-[[Bolus (medicine)|bolus]] [[insulin]] [[treatment]] has been effective in [[patients]] with [[diabetes type 2]] in the preoperative period. <ref name="pmid21228246">{{cite journal| author=Umpierrez GE, Smiley D, Jacobs S, Peng L, Temponi A, Mulligan P | display-authors=etal| title=Randomized study of basal-bolus insulin therapy in the inpatient management of patients with type 2 diabetes undergoing general surgery (RABBIT 2 surgery). | journal=Diabetes Care | year= 2011 | volume= 34 | issue= 2 | pages= 256-61 | pmid=21228246 | doi=10.2337/dc10-1407 | pmc=3024330 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21228246  }} </ref>
*Simillarly [[Basal (medicine)|basal]] plus [[insulin]] [[treatment]] approach is effective in [[patients]] with [[diabetes type 2]] in the preoperative period, hence it could be an alternative for [[Basal (medicine)|basal]]-[[Bolus (medicine)|bolus]] [[insulin]] [[treatment]].<ref name="pmid23435159">{{cite journal| author=Umpierrez GE, Smiley D, Hermayer K, Khan A, Olson DE, Newton C | display-authors=etal| title=Randomized study comparing a Basal-bolus with a basal plus correction insulin regimen for the hospital management of medical and surgical patients with type 2 diabetes: basal plus trial. | journal=Diabetes Care | year= 2013 | volume= 36 | issue= 8 | pages= 2169-74 | pmid=23435159 | doi=10.2337/dc12-1988 | pmc=3714500 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23435159  }} </ref>
*Reports of some studies support the effectiveness of [[glucagon-like peptide 1 receptor]] [[agonists]] for [[Diabetes management|glycemic control]] of [[diabetes|diabetic]] [[patients]] in peroperative state. <ref name="pmid29230803">{{cite journal| author=Polderman JAW, van Steen SCJ, Thiel B, Godfried MB, Houweling PL, Hollmann MW | display-authors=etal| title=Peri-operative management of patients with type-2 diabetes mellitus undergoing non-cardiac surgery using liraglutide, glucose-insulin-potassium infusion or intravenous insulin bolus regimens: a randomised controlled trial. | journal=Anaesthesia | year= 2018 | volume= 73 | issue= 3 | pages= 332-339 | pmid=29230803 | doi=10.1111/anae.14180 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29230803  }} </ref><ref name="pmid31749275">{{cite journal| author=Hulst AH, Visscher MJ, Godfried MB, Thiel B, Gerritse BM, Scohy TV | display-authors=etal| title=Liraglutide for perioperative management of hyperglycaemia in cardiac surgery patients: a multicentre randomized superiority trial. | journal=Diabetes Obes Metab | year= 2020 | volume= 22 | issue= 4 | pages= 557-565 | pmid=31749275 | doi=10.1111/dom.13927 | pmc=7079116 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31749275  }} </ref>
*[[SGLT2]] inhibitors is recommended by [[Food and Drug Administration|The US Food and Drug Administration]] ([[Food and Drug Administration|FDA]]) to be discontinued 3-4 days before [[surgery]] in order to reduce the risk of [[diabetic ketoacidosis|euglycaemic diabetic ketoacidosis]] in [[patients]]. <ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref>
*[[Dipeptidyl peptidase-4 inhibitor]] is not an effective [[treatment]] in [[diabetes|diabetic]] [[patients]] in preoperative period. <ref name="pmid30253968">{{cite journal| author=Fayfman M, Davis G, Duggan EW, Urrutia M, Chachkhiani D, Schindler J | display-authors=etal| title=Sitagliptin for prevention of stress hyperglycemia in patients without diabetes undergoing general surgery: A pilot randomized study. | journal=J Diabetes Complications | year= 2018 | volume= 32 | issue= 12 | pages= 1091-1096 | pmid=30253968 | doi=10.1016/j.jdiacomp.2018.08.014 | pmc=6668912 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30253968  }} </ref>
===Hospital Technologies===
====Continuous Glucose Monitoring====
*More than just checking glucose continuously, this devices give us trends and patterns in order to better study [[hyperglycemia]] and [[hypoglycemia]] events.<ref name="pmid31980123">{{cite journal| author=Davis GM, Galindo RJ, Migdal AL, Umpierrez GE| title=Diabetes Technology in the Inpatient Setting for Management of Hyperglycemia. | journal=Endocrinol Metab Clin North Am | year= 2020 | volume= 49 | issue= 1 | pages= 79-93 | pmid=31980123 | doi=10.1016/j.ecl.2019.11.002 | pmc=7453786 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31980123  }} </ref> 
*2 approved systemes by [[Food and Drug Administration]] ([[Food and Drug Administration|FDA]]) are GlucoScout and OptiScanner 5000, which intemittently collect [[Vein|venous]] [[blood]] samples (central or peripheral [[veins]]). <ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref>
*The Abbott Freestyle Libre flash glucose is another system in [[Blood glucose monitoring|continuous glucose monitoring]] which collects [[blood]] samples intermitently and alarm when high [[glucose]] concentration is detected.
*Real time continuous [[glucose]] monitoring is used in Dexcom and Medtronic devices which are recommended as an effective approach for management of [[diabetes|diabetic]] [[patients]] in hospital.<ref name="pmid32759361">{{cite journal| author=Singh LG, Satyarengga M, Marcano I, Scott WH, Pinault LF, Feng Z | display-authors=etal| title=Reducing Inpatient Hypoglycemia in the General Wards Using Real-time Continuous Glucose Monitoring: The Glucose Telemetry System, a Randomized Clinical Trial. | journal=Diabetes Care | year= 2020 | volume= 43 | issue= 11 | pages= 2736-2743 | pmid=32759361 | doi=10.2337/dc20-0840 | pmc=7576426 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32759361  }} </ref><ref name="pmid32855160">{{cite journal| author=Fortmann AL, Spierling Bagsic SR, Talavera L, Garcia IM, Sandoval H, Hottinger A | display-authors=etal| title=Glucose as the Fifth Vital Sign: A Randomized Controlled Trial of Continuous Glucose Monitoring in a Non-ICU Hospital Setting. | journal=Diabetes Care | year= 2020 | volume= 43 | issue= 11 | pages= 2873-2877 | pmid=32855160 | doi=10.2337/dc20-1016 | pmc=7576427 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32855160  }} </ref> 
*Senseonics Eversense is an implanted device which could be used for 5-6 months.
*Apart from all the benefits of [[Blood glucose monitoring|continuous glucose monitoring]] there are some concerns regarding the accuracy of [[glucose]] measures due to physiologic changes (such as [[vasoconstriction]], [[dehydration|severe dehydration]], [[hypoxemia]] and rapid changes in [[blood sugar|blood glucose]] levels due to [[diabetic ketoacidosis]]) or interaction by some agents. Agents that can possibly interact with [[glucose]] reading are [[salicylic acid]], [[paracetamol]] ([[dose|doses]] higher than 4 grams per day) and [[ascorbic acid]].<ref name="pmid32536205">{{cite journal| author=Galindo RJ, Aleppo G, Klonoff DC, Spanakis EK, Agarwal S, Vellanki P | display-authors=etal| title=Implementation of Continuous Glucose Monitoring in the Hospital: Emergent Considerations for Remote Glucose Monitoring During the COVID-19 Pandemic. | journal=J Diabetes Sci Technol | year= 2020 | volume= 14 | issue= 4 | pages= 822-832 | pmid=32536205 | doi=10.1177/1932296820932903 | pmc=7673156 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32536205  }} </ref><ref name="pmid31558981">{{cite journal| author=Montero AR, Dubin JS, Sack P, Magee MF| title=Future technology-enabled care for diabetes and hyperglycemia in the hospital setting. | journal=World J Diabetes | year= 2019 | volume= 10 | issue= 9 | pages= 473-480 | pmid=31558981 | doi=10.4239/wjd.v10.i9.473 | pmc=6748879 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31558981  }} </ref>
====Continuous Subcutaneous Insulin Pumps====
*Rate of [[hyperglycemia]] and [[hypoglycemia]] is reduced with use of continuous [[subcutaneous tissue|subcutaneous]] [[insulin]] [[Intravenous therapy|infusion]] pumps such as standalone [[insulin]] pumps.<ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref><ref name="pmid24876608">{{cite journal| author=Kannan S, Satra A, Calogeras E, Lock P, Lansang MC| title=Insulin pump patient characteristics and glucose control in the hospitalized setting. | journal=J Diabetes Sci Technol | year= 2014 | volume= 8 | issue= 3 | pages= 473-8 | pmid=24876608 | doi=10.1177/1932296814522809 | pmc=4455446 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24876608  }} </ref>
*The following are some of the [[contraindication]]s of continuous [[subcutaneous tissue|subcutaneous]] [[insulin]] pumps:<ref name="pmid30120619">{{cite journal| author=Thompson B, Leighton M, Korytkowski M, Cook CB| title=An Overview of Safety Issues on Use of Insulin Pumps and Continuous Glucose Monitoring Systems in the Hospital. | journal=Curr Diab Rep | year= 2018 | volume= 18 | issue= 10 | pages= 81 | pmid=30120619 | doi=10.1007/s11892-018-1056-7 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30120619  }} </ref><ref name="pmid29681173">{{cite journal| author=Thompson B, Korytkowski M, Klonoff DC, Cook CB| title=Consensus Statement on Use of Continuous Subcutaneous Insulin Infusion Therapy in the Hospital. | journal=J Diabetes Sci Technol | year= 2018 | volume= 12 | issue= 4 | pages= 880-889 | pmid=29681173 | doi=10.1177/1932296818769933 | pmc=6134295 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29681173  }} </ref>
**[[hyperglycemia|Hyperglycemia]] crisis
**Absence of trained [[medicine|medical]] provider
**Low level of [[consciousness]] (excluding short-term [[anaesthesia]])
**Incapability of [[patients]] to maintain an appropriate pump setting
**Incapability of [[patients]] to manage their [[diabetes]]
**Absence of required supplies
*Pumps should be removed during some investigations such as [[Magnetic resonance imaging|MRI]]. <ref name="pmid29936424">{{cite journal| author=Umpierrez GE, Klonoff DC| title=Diabetes Technology Update: Use of Insulin Pumps and Continuous Glucose Monitoring in the Hospital. | journal=Diabetes Care | year= 2018 | volume= 41 | issue= 8 | pages= 1579-1589 | pmid=29936424 | doi=10.2337/dci18-0002 | pmc=6054505 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29936424  }} </ref>
====Closed Loop Insulin Delivery System====
*Closed loop system is a combination of [[Blood glucose monitoring|continuous glucose monitoring]] and [[subcutaneous tissue|subcutaneous]] [[insulin]] pumps, which is also known as artificial [[pancreas]] system.<ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref>
*Medtronic 670G, Diabeloop and Tandem Control-IQ are 3 currently commercially available systems that are commonly used by [[patients]] with [[diabetes type 1]].<ref name="pmid33515493">{{cite journal| author=Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE| title=Management of diabetes and hyperglycaemia in the hospital. | journal=Lancet Diabetes Endocrinol | year= 2021 | volume= 9 | issue= 3 | pages= 174-188 | pmid=33515493 | doi=10.1016/S2213-8587(20)30381-8 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33515493  }} </ref>
*A trial evaluated the effect of closed loop system on [[patients]] with [[diabetes type 2]] reported better [[Diabetes management|glycemic control]], compared with the control group (p<0∙0011). <ref name="pmid29940126">{{cite journal| author=Bally L, Thabit H, Hartnell S, Andereggen E, Ruan Y, Wilinska ME | display-authors=etal| title=Closed-Loop Insulin Delivery for Glycemic Control in Noncritical Care. | journal=N Engl J Med | year= 2018 | volume= 379 | issue= 6 | pages= 547-556 | pmid=29940126 | doi=10.1056/NEJMoa1805233 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29940126  }} </ref>
*Another study investigated the effectiveness of this method on [[diabetes|diabetic]] [[patients]] with [[Chronic renal failure|end stage renal disease]] which demonstrated better [[Diabetes management|glycemic control]]. <ref name="pmid31133457">{{cite journal| author=Bally L, Gubler P, Thabit H, Hartnell S, Ruan Y, Wilinska ME | display-authors=etal| title=Fully closed-loop insulin delivery improves glucose control of inpatients with type 2 diabetes receiving hemodialysis. | journal=Kidney Int | year= 2019 | volume= 96 | issue= 3 | pages= 593-596 | pmid=31133457 | doi=10.1016/j.kint.2019.03.006 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31133457  }} </ref>


==References==
==References==

Latest revision as of 23:38, 1 August 2021

2016 ADA Guideline Recommendations

Types of Diabetes Mellitus

Main Diabetes Page

Diabetes type I

Diabetes type II

Gestational Diabetes Mellitus

2016 ADA Standard of Medical Care Guideline Recommendations

Strategies for Improving Care

Classification and Diagnosis of Diabetes

Foundations of Care and Comprehensive Medical Evaluation

Diabetes Self-Management, Education, and Support
Nutritional Therapy

Prevention or Delay of Type II Diabetes

Glycemic Targets

Obesity Management for Treatment of Type II Diabetes

Approaches to Glycemic Treatment

Cardiovascular Disease and Risk Management

Hypertension and Blood Pressure Control
Lipid Management
Antiplatelet Agents
Coronary Heart Disease

Microvascular Complications and Foot Care

Diabetic Kidney Disease
Diabetic Retinopathy
Diabetic Neuropathy
Diabetic Footcare

Older Adults with Diabetes

Children and Adolescents with Diabetes

Management of Cardiovascular Risk Factors in Children and Adolescents with Diabetes
Microvascular Complications in Children and Adolescents with Diabetes

Management of Diabetes in Pregnancy

Diabetes Care in the Hospital Setting

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Anahita Deylamsalehi, M.D.[2]; Shivani Chaparala M.B.B.S [3]; Tarek Nafee, M.D. [4]


Patient status Mild hyperglycaemia Moderate hyperglycaemia Severe hyperglycaemia
Definition Blood glucose < 200
Patients who are taking less than 2 anti-diabetic drugs (such as oral anti-diabetic drug or GLP-1 receptor agonists)
201 < Blood glucose <300
Patients who are taking multiple anti-diabetic drug (such as oral anti-diabetic drug or GLP-1 receptor agonists)
Patients who are taking less than 0·6 U/kg insulin per day
Blood glucose > 301
Patients who are taking multiple anti-diabetic drug (such as oral anti-diabetic drug or GLP-1 receptor agonists)
Patients who are taking more than 0·6 U/kg insulin per day
Approach Low dose basal insulin OR oral anti-diabetic drug†, if there are no contraindications.
Further blood glucose correction can be applied by rapid-acting insulin (before meals or every 6 hours)
Basal insulin OR oral anti-diabetic drug†, if there are no contraindications.
Initial insulin dose: 0·2–0·3 U/kg per day (start from 0·15 U/kg per day (if using basal insulin alone) or 0·3 U/kg per day (if using basal–bolus) for patients with high risk of hypoglycemia).
Further blood glucose correction can be applied by rapid-acting insulin (before meals or every 6 hours)
Basal–bolus insulin regimen
Initial insulin dose: Reduce patient's home insulin regimen by 20% OR 0·3 U/kg per day (half basal and half bolus)
If patient has poor intake, hold the prandial insulin.

†One of the options which has been studied in randomized controlled trials is dipeptidyl peptidase-4 inhibitor. Although metformin use is common, use it with caution due to high risk of lactic acidosis, especially in high risk patients (such as sepsis, hypoxia, renal insufficiency, shock and hepatic failure)



Patient status Patients with surgical or other medical conditions‡ Mild to moderate DKA Severe DKA or HHS
Approach Continuous insulin infusion § Continuous insulin infusion OR subcutaneous insulin (consider DKA protocol) Continuous insulin infusion

‡Continuous insulin infusion specially could be beneficial in hypoglycemia due to steroid use or in solid organ transplant patients.
§Prompt treatment is recommended in patients with myocardial infarction or ischemic stroke due to possible further harm due to hyperglycemia. ALthough intensive treatment is not recommended due to higher chance of hypoglycemia.

2016 ADA Standards of Medical Care in Diabetes GuidelinesClosing </ref> missing for <ref> tag

"1. Consider performing an A1C on all patients with diabetes or hyperglycemia admitted to the hospital if not performed in the previous 3 months. (Level of Evidence: C)"
"2. Insulin therapy should be initiated for treatment of persistent hyperglycemia starting at a threshold ≥180 mg/dL (10.0 mmol/L). Once insulin therapy is started, a target glucose range of 140–180 mg/dL (7.8–10.0 mmol/L) is recommended for the majority of critically ill patients(Level of Evidence: A)and noncritically ill patients (Level of Evidence: C)"
"3. More stringent goals, such as 110–140 mg/dL (6.1–7.8 mmol/L) may be ap- propriate for selected critically ill patients, as long as this can be achieved without significant hypoglycemia (Level of Evidence: C)"
"4. Intravenous insulin infusions should be administered using validated written or computerized protocols that allow for predefined adjustments in the insulin infusion rate based on glycemic fluctuations and insulin dose. (Level of Evidence: E)"
"5. A basal plus bolus correction insulin regimen is the preferred treatment for noncritically ill patients with poor oral intake or those who are taking nothing by mouth. An insulin regimen with basal, nutritional, and correction components is the preferred treatment for patients with good nutritional intake. (Level of Evidence: A)"
"6. The sole use of sliding scale insulin in the inpatient hospital setting is strongly discouraged (Level of Evidence: A)"
"7. A hypoglycemia management protocol should be adopted and implemented by each hospital or hospital system. A plan for preventing and treating hypoglycemia should be established for each patient. Episodes of hypoglycemia in the hospital should be documented in the medical record and tracked. (Level of Evidence: E)"
"8. The treatment regimen should be reviewed and changed if necessary to prevent further hypoglycemia when a blood glucose value is <70 mg/dL (3.9 mmol/L). (Level of Evidence: C)"
"9. There should be a structured discharge plan tailored to the individual patient. (Level of Evidence: B)"


Insulin Treatment


Umpierrez et al (2007) Glargineglulisine (basal-bolus) Vs sliding-scale insulin
Study has been done on 130 patients with diabetes type 2 who were on oral antidiabetic agents or low dose insulin (less than 0·4 U/kg per day), with glucose concentrations of 140–400 mg/dL.
Reported average glucose concentration in basal-bolus group has been 166 mg/dL (SD: 1.8) Vs average glucose concentration of 193 mg/dL in sliding-scale insulin group (P value < 0·001).
Non of the patients developed hypoglycemia (glucose concentrations less than 40 mg/dl).
Umpierrez et al (2009) Human insulin (NPH and regular) † Vs detemiraspart (basal-bolus)
Study has been done on 130 patients with diabetes type 2 who were on various type of treatments, with glucose concentrations of 140–400 mg/dL.
Reported average glucose concentration showed no difference.
4·5% of patients in detemiraspart group developed hypoglycemia (glucose concentrations less than 40 mg/dl Vs 1·6% of patients in human insulin.
Umpierrez et al (2011) Glargineglulisine (basal-bolus) Vs sliding-scale insulin
Study has been done on 211 surgical patients with diabetes type 2 who were on oral antidiabetic agents or low dose insulin (less than 0·4 U/kg per day), with glucose concentrations of 140–400 mg/dL.
Reported average glucose concentration showed better glycemic control in basal-bolus group (P value = 0·003 ).
Patients in basal-bolus group showed lower rate of general complications₪, nevertheless rates of hypoglycemia were higher (4% in basal-bolus group Vs 0% in sliding-scale insulin group).
Schroeder et al (2012) NPH and regular‡ Vs sliding-scale insulin
Study has been done on 141 orthopaedic surgery patients with diabetes type 2 or history of frequent hyperglycemia (>180 mg/dL).
Reported average glucose concentration in NPH and regular group has been 161·2 mg/dL Vs average glucose concentration of 175·8 mg/dL in sliding-scale insulin group (P value < 0·0005).
Two episodes of severe hypoglycemia have been reported in NPH and regular group.
Umpierrez et al (2013) Basal-plus (glargineglulisine) Vs basal-bolus (glargineglulisine) Vs sliding-scale insulin
Study has been done on 375 patients with diabetes type 2 who were on oral antidiabetic agents or low dose insulin (less than 0·4 U/kg per day), with glucose concentrations of 140–400 mg/dL.
Reported average glucose concentrations were akin in both basal-plus and basal-bolus groups. Treatment failure was higher in sliding-scale insulin group (19%), compared to basal-bolus (0%) or basal-plus (2%) groups.
Mader et al (2014) Glargineaspart (basal-bolus) Vs standard treatment (such as oral antidiabetic agents), insulin or combination of both
Study has been done on 74 patients with diabetes type 2 who were on various type of treatments, with glucose concentrations higher than 140 mg/dL.
Reported average glucose concentration in basal-bolus group (33%) was higher compared to standard treatment group (23%) (P value 0·001) ¶
Bueno et al (2015) Glargineglulisine (basal-bolus) Vs NPH and regular
Study has been done on 134 patients with diabetes type 2 who were not a surgical case.
Reported average glucose concentrations were akin in both NPH and regular and basal-bolus groups.
Hypoglycemic events were reported as 35% in basal-bolus group, compared to 38% in NPH and regular group.
Bellido et al (2015) Glargineglulisine (basal-bolus) Vs premixed NPH and regular (70/30)¥
Study has been done on 72 patients with diabetes type 2 who were either medical or surgical cases, who were on oral antidiabetic agents, insulin or a combination of both.§
Reported average glucose concentration showed no difference.
Objectionably high rate of hypoglycemia have been reported in premixed NPH and regular group.
Vellanki et al (2015) Glargineaspart (basal-bolus) without bedtime addition Vs Glargineaspart (basal-bolus) with bedtime addition
Study has been done on 206 patients with diabetes type 2 who were medical or surgical cases with glucose concentrations of 140–400 mg/dL. Patients were on oral antidiabetic agents, insulin or a combination of both.
Reported average glucose concentration showed no difference.
Non of the patients developed hypoglycemia (glucose concentrations less than 40 mg/dl).
Gracia-Ramos et al (2016) Glarginelispro (basal-plus) Vs premixed insulin analog (lispro 25/75) ¤
Study has been done on 54 patients with diabetes type 2 who were on oral antidiabetic agents or low dose insulin (less than 0·4 U/kg per day), with glucose concentrations of 140–400 mg/dL.
Reported average glucose concentrations showed no difference.
Rate of hypoglycemia was simillar in both groups (16%).
Pasquel et al (2020) Basal-bolus (glargine U300glulisine) Vs basal-bolus (glargine U100glulisine)
Study has been done on 176 patients with diabetes type 2 who were on various type of treatments, with glucose concentrations of 140–400 mg/dL.
Reported average glucose concentration showed no difference.
Significant lower rate of hypoglycemic events in glargine U300 group. (P value = 0·023)

†Two-thirds before breakfast and one-third before dinner
Patients in basal-bolus group showed lower rate of general complications such as postoperative wound infection, bacteremia, pneumonia, renal insufficiency and respiratory failure.
‡Three times a day
¶Related article didn't provide the absolute numbers
NPH insulin has been used twise a day. Regular insulin has been used before meals
¥60% before breakfast and 40% before dinner
§Study terminated after interim analysis.
¤Two-thirds with breakfast and one-third with dinner

Non-Insulin Treatments

Dipeptidyl Peptidase-4 Inhibitor Medications

Glucagon-Like Peptide-1 Analogs


Umpierrez et al (2013) Sitagliptin + sliding-scale insulin or sitagliptin + glargine Vs basal-bolus insulin (glarginelispro)
Study has been done on 90 patients (medical or surgical cases) with diabetes type 2 who were on oral antidiabetic agents or low dose insulin (less than 0·4 U/kg per day), with glucose concentrations of 140–400 mg/dL.
Reported average glucose concentration showed no difference.
Sole sitagliptin treatment has not been effective in patients who had blood glucose higher than 180 mg/dL.
Pasquel et al (2017) Sitagliptin + glargine Vs basal-bolus insulin (glarginelispro or glargineaspart)
Study has been done on 278 patients (medical or surgical cases) with diabetes type 2 who were on oral antidiabetic agents or low dose insulin (less than 0·6 U/kg per day), with glucose concentrations of 140–400 mg/dL.
Reported average glucose concentration showed no difference.
Garg et al (2017) Saxagliptin Vs basal-bolus insulin (glargineaspart)
Study has been done on 66 patients (medical or surgical cases) with diabetes type 2 who were on maximum 1 non-insulin antidiabetic agents or 2 non-insulin antidiabetic agents with HbA1c measure less than 7·5% and 7·0%, respectively.
Reported average glucose concentration showed no difference.
Patients who received saxagliptin showed less blood glucose variation.
Vellanki et al (2019) Linagliptin + sliding-scale insulin Vs basal-bolus insulin (glarginelispro or glargineaspart)
Study has been done on 250 surgical patients with diabetes type 2 who were on oral antidiabetic agents or low dose insulin (less than 0·5 U/kg per day), with glucose concentrations of 140–400 mg/dL.
Reported average glucose concentration showed no difference.
Less chance of hypoglycemia has been reported in linagliptin group. Sole linagliptin use has not been effective in patients with blood glucose more than 200 mg/dl
Abuannadi et al (2013) Exenatide infusion Vs intensive glycemic control (90–119 mg/dL) or moderate glycemic control (100–140 mg/dL)
Study has been done on 40 non-diabetic ICU patients with coronary heart disease and type 2 diabetic patients who were on non-insulin antidiabetic agents, with glucose concentrations of 140–400 mg/dL.
Reported average glucose concentration showed good control in exenatide group. (Same result as moderate glycemic control)
The main limitation has been the non-randomized study with historical controls.
Kohl et al (2014) Native GLP-1 Vs placebo
Study has been done on 77 cardiac surgery patients with or without diabetes
Reported average glucose concentration showed lower measure in GLP-1 group.
Besch et al (2017) Exenatide infusion Vs insulin infusion
Study has been done on 104 CABG patients with or without diabetes (on non-insulin treatment)
Reported average glucose concentration showed no statistically valuable differences.
Study discontinued after futility analysis.
Polderman et al (2018) Liraglutide † Vs glucose + insulin + potassium
Study has been done on 150 surgical patients with diabetes type 2 who where on diet, oral antidiabetic agents or insulin doses less than 1 U/kg.
Reported average glucose concentration measures 1 hour after surgery showed lower levels in liraglutide group.
Nausea has been reported in patients of liraglutide.
Lipš et al (2017) Continuous exenatide infusion + insulin treatment Vs 0·9% saline + insulin treatment
Study has been done on 40 CABG patients with or without diabetes.
Reported average glucose concentration showed lower measures in exenatide group.
Decreased demand for temporary pacing after surgery was the only benefit in cardiac function of the exenatide group.
Fayfman et al (2019) Exenatide ¶ Vs exenatide + basal insulin (glargine or levemir) Vs basal insulin (glargine or levemir + aspart or lispro)
Study has been done on 150 surgical or medical patients with diabetes type 2 who were on diet, oral antidiabetic agents or low dose insulin (less than 0·5 U/kg per day), with glucose concentrations of 140–400 mg/dL.
Reported average glucose concentration showed lower measures in exenatide plus basal insulin group, compared to exenatide alone. ALthough reported average glucose concentration showed no differences between exenatide plus basal insulin and basal insulin groups. Exenatide plus basal insulin group was more succesful in keeping the blood glucose within the target goal, compared to the other two groups. (P value = 0·023)
Kaneko et al (2018) Liraglutide Vs insulin
Study has been done on 92 surgical patients (elective surgery) with diabetes type 2
Reported average glucose concentration showed lower measures in liraglutide group.
Hulst et al (2020) Liraglutide ₳ Vs placebo
Study has been done on 278 cardiac surgery patients with (16%) or without (84%) diabetes type 2
Reported average glucose concentration showed lower demand for insulin use in liraglutide group.
Hypoglycemia has not been reported in non of the groups.

Liraglutide has been used subcutaneously with dosage of 0·6 mg before surgery and 1.2 mg after anesthesia induction.
‡Infusion of glucose, insulin and potassium was 30 mintunes before surgery and continued until 4 hours after surgery.
Exenatide has been used with dose of 5 mg twice a day.
Liraglutide has been used subcutaneously with dosage of 0·6 mg on the evening before surgery and 1.2 mg after anesthesia induction.

SGLT2 Inhibitors

Metformin

Sulfonylureas

Thiazolidinediones

Specific Circumstances

The following are some management considerations that are recommended in hospitalized diabetic patients with specific circumstances.

Medical Nutrition Therapy

Concurrent Glucocorticoid Use

Preoperative State

Hospital Technologies

Continuous Glucose Monitoring

Continuous Subcutaneous Insulin Pumps

Closed Loop Insulin Delivery System

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE (2021). "Management of diabetes and hyperglycaemia in the hospital". Lancet Diabetes Endocrinol. 9 (3): 174–188. doi:10.1016/S2213-8587(20)30381-8. PMID 33515493 Check |pmid= value (help).
  2. 2.0 2.1 Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN (2009). "Hyperglycemic crises in adult patients with diabetes". Diabetes Care. 32 (7): 1335–43. doi:10.2337/dc09-9032. PMC 2699725. PMID 19564476.
  3. Johnston KC, Bruno A, Pauls Q, Hall CE, Barrett KM, Barsan W; et al. (2019). "Intensive vs Standard Treatment of Hyperglycemia and Functional Outcome in Patients With Acute Ischemic Stroke: The SHINE Randomized Clinical Trial". JAMA. 322 (4): 326–335. doi:10.1001/jama.2019.9346. PMC 6652154 Check |pmc= value (help). PMID 31334795. Review in: Ann Intern Med. 2019 Dec 17;171(12):JC67
  4. Christensen MB, Gotfredsen A, Nørgaard K (2017). "Efficacy of basal-bolus insulin regimens in the inpatient management of non-critically ill patients with type 2 diabetes: A systematic review and meta-analysis". Diabetes Metab Res Rev. 33 (5). doi:10.1002/dmrr.2885. PMID 28067472.
  5. Gómez Cuervo C, Sánchez Morla A, Pérez-Jacoiste Asín MA, Bisbal Pardo O, Pérez Ordoño L, Vila Santos J (2016). "Effective adverse event reduction with bolus-basal versus sliding scale insulin therapy in patients with diabetes during conventional hospitalization: Systematic review and meta-analysis". Endocrinol Nutr. 63 (4): 145–56. doi:10.1016/j.endonu.2015.11.008. PMID 26826772.
  6. American Diabetes Association (2018). "14. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes-2018". Diabetes Care. 41 (Suppl 1): S144–S151. doi:10.2337/dc18-S014. PMID 29222385.
  7. 7.0 7.1 Umpierrez GE, Hellman R, Korytkowski MT, Kosiborod M, Maynard GA, Montori VM; et al. (2012). "Management of hyperglycemia in hospitalized patients in non-critical care setting: an endocrine society clinical practice guideline". J Clin Endocrinol Metab. 97 (1): 16–38. doi:10.1210/jc.2011-2098. PMID 22223765.
  8. 8.0 8.1 8.2 Umpierrez GE, Smiley D, Hermayer K, Khan A, Olson DE, Newton C; et al. (2013). "Randomized study comparing a Basal-bolus with a basal plus correction insulin regimen for the hospital management of medical and surgical patients with type 2 diabetes: basal plus trial". Diabetes Care. 36 (8): 2169–74. doi:10.2337/dc12-1988. PMC 3714500. PMID 23435159.
  9. Zaman Huri H, Permalu V, Vethakkan SR (2014). "Sliding-scale versus basal-bolus insulin in the management of severe or acute hyperglycemia in type 2 diabetes patients: a retrospective study". PLoS One. 9 (9): e106505. doi:10.1371/journal.pone.0106505. PMC 4152280. PMID 25181406.
  10. 10.0 10.1 Bueno E, Benitez A, Rufinelli JV, Figueredo R, Alsina S, Ojeda A; et al. (2015). "BASAL-BOLUS REGIMEN WITH INSULIN ANALOGUES VERSUS HUMAN INSULIN IN MEDICAL PATIENTS WITH TYPE 2 DIABETES: A RANDOMIZED CONTROLLED TRIAL IN LATIN AMERICA". Endocr Pract. 21 (7): 807–13. doi:10.4158/EP15675.OR. PMID 26121460.
  11. Newsom R, Patty C, Camarena E, Sawyer R, McFarland R, Gray T; et al. (2018). "Safely Converting an Entire Academic Medical Center From Sliding Scale to Basal Bolus Insulin via Implementation of the eGlycemic Management System". J Diabetes Sci Technol. 12 (1): 53–59. doi:10.1177/1932296817747619. PMC 5761993. PMID 29237289.
  12. NICE-SUGAR Study Investigators. Finfer S, Chittock DR, Su SY, Blair D, Foster D; et al. (2009). "Intensive versus conventional glucose control in critically ill patients". N Engl J Med. 360 (13): 1283–97. doi:10.1056/NEJMoa0810625. PMID 19318384. Review in: J Fam Pract. 2009 Aug;58(8):424-6 Review in: Ann Intern Med. 2009 Aug 18;151(4):JC2-5
  13. Kreider KE, Lien LF (2015). "Transitioning safely from intravenous to subcutaneous insulin". Curr Diab Rep. 15 (5): 23. doi:10.1007/s11892-015-0595-4. PMID 25772640.
  14. Moghissi ES, Korytkowski MT, DiNardo M, Einhorn D, Hellman R, Hirsch IB; et al. (2009). "American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control". Diabetes Care. 32 (6): 1119–31. doi:10.2337/dc09-9029. PMC 2681039. PMID 19429873.
  15. 15.0 15.1 15.2 Umpierrez GE, Smiley D, Jacobs S, Peng L, Temponi A, Mulligan P; et al. (2011). "Randomized study of basal-bolus insulin therapy in the inpatient management of patients with type 2 diabetes undergoing general surgery (RABBIT 2 surgery)". Diabetes Care. 34 (2): 256–61. doi:10.2337/dc10-1407. PMC 3024330. PMID 21228246.
  16. Mader JK, Neubauer KM, Schaupp L, Augustin T, Beck P, Spat S; et al. (2014). "Efficacy, usability and sequence of operations of a workflow-integrated algorithm for basal-bolus insulin therapy in hospitalized type 2 diabetes patients". Diabetes Obes Metab. 16 (2): 137–46. doi:10.1111/dom.12186. PMID 23910952.
  17. Vellanki P, Bean R, Oyedokun FA, Pasquel FJ, Smiley D, Farrokhi F; et al. (2015). "Randomized controlled trial of insulin supplementation for correction of bedtime hyperglycemia in hospitalized patients with type 2 diabetes". Diabetes Care. 38 (4): 568–74. doi:10.2337/dc14-1796. PMC 4370326. PMID 25665812.
  18. Pasquel FJ, Lansang MC, Khowaja A, Urrutia MA, Cardona S, Albury B; et al. (2020). "A Randomized Controlled Trial Comparing Glargine U300 and Glargine U100 for the Inpatient Management of Medicine and Surgery Patients With Type 2 Diabetes: Glargine U300 Hospital Trial". Diabetes Care. 43 (6): 1242–1248. doi:10.2337/dc19-1940. PMC 7411278 Check |pmc= value (help). PMID 32273271 Check |pmid= value (help).
  19. Umpierrez GE, Pasquel FJ (2017). "Management of Inpatient Hyperglycemia and Diabetes in Older Adults". Diabetes Care. 40 (4): 509–517. doi:10.2337/dc16-0989. PMC 5864102. PMID 28325798.
  20. 20.0 20.1 20.2 Roberts AW, Penfold S, Joint British Diabetes Societies (JBDS) for Inpatient Care (2018). "Glycaemic management during the inpatient enteral feeding of people with stroke and diabetes". Diabet Med. 35 (8): 1027–1036. doi:10.1111/dme.13678. PMID 30152589.
  21. Amir M, Sinha V, Kistangari G, Lansang MC (2020). "CLINICAL CHARACTERISTICS OF PATIENTS WITH TYPE 2 DIABETES MELLITUS CONTINUED ON ORAL ANTIDIABETES MEDICATIONS IN THE HOSPITAL". Endocr Pract. 26 (2): 167–173. doi:10.4158/EP-2018-0524. PMID 31557075.
  22. 22.0 22.1 Garg R, Schuman B, Hurwitz S, Metzger C, Bhandari S (2017). "Safety and efficacy of saxagliptin for glycemic control in non-critically ill hospitalized patients". BMJ Open Diabetes Res Care. 5 (1): e000394. doi:10.1136/bmjdrc-2017-000394. PMC 5372055. PMID 28405346.
  23. 23.0 23.1 Fayfman M, Galindo RJ, Rubin DJ, Mize DL, Anzola I, Urrutia MA; et al. (2019). "A Randomized Controlled Trial on the Safety and Efficacy of Exenatide Therapy for the Inpatient Management of General Medicine and Surgery Patients With Type 2 Diabetes". Diabetes Care. 42 (3): 450–456. doi:10.2337/dc18-1760. PMC 6905476 Check |pmc= value (help). PMID 30679302.
  24. Nauck MA, Meier JJ (2020). "Reduced COVID-19 Mortality With Sitagliptin Treatment? Weighing the Dissemination of Potentially Lifesaving Findings Against the Assurance of High Scientific Standards". Diabetes Care. 43 (12): 2906–2909. doi:10.2337/dci20-0062. PMID 33033068 Check |pmid= value (help).
  25. Sokos GG, Bolukoglu H, German J, Hentosz T, Magovern GJ, Maher TD; et al. (2007). "Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting". Am J Cardiol. 100 (5): 824–9. doi:10.1016/j.amjcard.2007.05.022. PMID 17719327.
  26. 26.0 26.1 26.2 Polderman JAW, van Steen SCJ, Thiel B, Godfried MB, Houweling PL, Hollmann MW; et al. (2018). "Peri-operative management of patients with type-2 diabetes mellitus undergoing non-cardiac surgery using liraglutide, glucose-insulin-potassium infusion or intravenous insulin bolus regimens: a randomised controlled trial". Anaesthesia. 73 (3): 332–339. doi:10.1111/anae.14180. PMID 29230803.
  27. 27.0 27.1 27.2 Hulst AH, Visscher MJ, Godfried MB, Thiel B, Gerritse BM, Scohy TV; et al. (2020). "Liraglutide for perioperative management of hyperglycaemia in cardiac surgery patients: a multicentre randomized superiority trial". Diabetes Obes Metab. 22 (4): 557–565. doi:10.1111/dom.13927. PMC 7079116 Check |pmc= value (help). PMID 31749275.
  28. Nyström T, Gutniak MK, Zhang Q, Zhang F, Holst JJ, Ahrén B; et al. (2004). "Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease". Am J Physiol Endocrinol Metab. 287 (6): E1209–15. doi:10.1152/ajpendo.00237.2004. PMID 15353407.
  29. 29.0 29.1 Palmer, Suetonia C; Tendal, Britta; Mustafa, Reem A; Vandvik, Per Olav; Li, Sheyu; Hao, Qiukui; Tunnicliffe, David; Ruospo, Marinella; Natale, Patrizia; Saglimbene, Valeria; Nicolucci, Antonio; Johnson, David W; Tonelli, Marcello; Rossi, Maria Chiara; Badve, Sunil V; Cho, Yeoungjee; Nadeau-Fredette, Annie-Claire; Burke, Michael; Faruque, Labib I; Lloyd, Anita; Ahmad, Nasreen; Liu, Yuanchen; Tiv, Sophanny; Millard, Tanya; Gagliardi, Lucia; Kolanu, Nithin; Barmanray, Rahul D; McMorrow, Rita; Raygoza Cortez, Ana Karina; White, Heath; Chen, Xiangyang; Zhou, Xu; Liu, Jiali; Rodríguez, Andrea Flores; González-Colmenero, Alejandro Díaz; Wang, Yang; Li, Ling; Sutanto, Surya; Solis, Ricardo Cesar; Díaz González-Colmenero, Fernando; Rodriguez-Gutierrez, René; Walsh, Michael; Guyatt, Gordon; Strippoli, Giovanni F M (2021). "Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials". BMJ: m4573. doi:10.1136/bmj.m4573. ISSN 1756-1833.
  30. Umpierrez GE, Gianchandani R, Smiley D, Jacobs S, Wesorick DH, Newton C; et al. (2013). "Safety and efficacy of sitagliptin therapy for the inpatient management of general medicine and surgery patients with type 2 diabetes: a pilot, randomized, controlled study". Diabetes Care. 36 (11): 3430–5. doi:10.2337/dc13-0277. PMC 3816910. PMID 23877988.
  31. Pasquel FJ, Gianchandani R, Rubin DJ, Dungan KM, Anzola I, Gomez PC; et al. (2017). "Efficacy of sitagliptin for the hospital management of general medicine and surgery patients with type 2 diabetes (Sita-Hospital): a multicentre, prospective, open-label, non-inferiority randomised trial". Lancet Diabetes Endocrinol. 5 (2): 125–133. doi:10.1016/S2213-8587(16)30402-8. PMID 27964837.
  32. Vellanki P, Rasouli N, Baldwin D, Alexanian S, Anzola I, Urrutia M; et al. (2019). "Glycaemic efficacy and safety of linagliptin compared to a basal-bolus insulin regimen in patients with type 2 diabetes undergoing non-cardiac surgery: A multicentre randomized clinical trial". Diabetes Obes Metab. 21 (4): 837–843. doi:10.1111/dom.13587. PMC 7231260 Check |pmc= value (help). PMID 30456796.
  33. Abuannadi M, Kosiborod M, Riggs L, House JA, Hamburg MS, Kennedy KF; et al. (2013). "Management of hyperglycemia with the administration of intravenous exenatide to patients in the cardiac intensive care unit". Endocr Pract. 19 (1): 81–90. doi:10.4158/EP12196.OR. PMID 23186969.
  34. Kohl BA, Hammond MS, Cucchiara AJ, Ochroch EA (2014). "Intravenous GLP-1 (7-36) amide for prevention of hyperglycemia during cardiac surgery: a randomized, double-blind, placebo-controlled study". J Cardiothorac Vasc Anesth. 28 (3): 618–25. doi:10.1053/j.jvca.2013.06.021. PMID 24144627.
  35. Besch G, Perrotti A, Mauny F, Puyraveau M, Baltres M, Flicoteaux G; et al. (2017). "Clinical Effectiveness of Intravenous Exenatide Infusion in Perioperative Glycemic Control after Coronary Artery Bypass Graft Surgery: A Phase II/III Randomized Trial". Anesthesiology. 127 (5): 775–787. doi:10.1097/ALN.0000000000001838. PMID 28820780.
  36. Lipš M, Mráz M, Kloučková J, Kopecký P, Dobiáš M, Křížová J; et al. (2017). "Effect of continuous exenatide infusion on cardiac function and peri-operative glucose control in patients undergoing cardiac surgery: A single-blind, randomized controlled trial". Diabetes Obes Metab. 19 (12): 1818–1822. doi:10.1111/dom.13029. PMID 28581209.
  37. Kaneko S, Ueda Y, Tahara Y (2018). "GLP1 Receptor Agonist Liraglutide Is an Effective Therapeutic Option for Perioperative Glycemic Control in Type 2 Diabetes within Enhanced Recovery After Surgery (ERAS) Protocols". Eur Surg Res. 59 (5–6): 349–360. doi:10.1159/000494768. PMID 30537714.
  38. Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C; et al. (2020). "Correction to: 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of diabetes (EASD)". Diabetologia. 63 (8): 1667. doi:10.1007/s00125-020-05151-2. PMID 32409867 Check |pmid= value (help).
  39. Thiruvenkatarajan V, Meyer EJ, Nanjappa N, Van Wijk RM, Jesudason D (2019). "Perioperative diabetic ketoacidosis associated with sodium-glucose co-transporter-2 inhibitors: a systematic review". Br J Anaesth. 123 (1): 27–36. doi:10.1016/j.bja.2019.03.028. PMID 31060732.
  40. Damman K, Beusekamp JC, Boorsma EM, Swart HP, Smilde TDJ, Elvan A; et al. (2020). "Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF)". Eur J Heart Fail. 22 (4): 713–722. doi:10.1002/ejhf.1713. PMID 31912605.
  41. Pasquel FJ, Klein R, Adigweme A, Hinedi Z, Coralli R, Pimentel JL; et al. (2015). "Metformin-associated lactic acidosis". Am J Med Sci. 349 (3): 263–7. doi:10.1097/MAJ.0b013e3182a562b7. PMID 24326619.
  42. Iyengar R, Franzese J, Gianchandani R (2018). "Inpatient Glycemic Management in the Setting of Renal Insufficiency/Failure/Dialysis". Curr Diab Rep. 18 (10): 75. doi:10.1007/s11892-018-1044-y. PMID 30112652.
  43. 43.0 43.1 Bolen S, Feldman L, Vassy J, Wilson L, Yeh HC, Marinopoulos S; et al. (2007). "Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus". Ann Intern Med. 147 (6): 386–99. doi:10.7326/0003-4819-147-6-200709180-00178. PMID 17638715.
  44. 44.0 44.1 Roberts A, James J, Dhatariya K, Joint British Diabetes Societies (JBDS) for Inpatient Care (2018). "Management of hyperglycaemia and steroid (glucocorticoid) therapy: a guideline from the Joint British Diabetes Societies (JBDS) for Inpatient Care group". Diabet Med. 35 (8): 1011–1017. doi:10.1111/dme.13675. PMID 30152586.
  45. Stuart K, Adderley NJ, Marshall T, Rayman G, Sitch A, Manley S; et al. (2017). "Predicting inpatient hypoglycaemia in hospitalized patients with diabetes: a retrospective analysis of 9584 admissions with diabetes". Diabet Med. 34 (10): 1385–1391. doi:10.1111/dme.13409. PMID 28632918.
  46. Khalam A, Dilip C, Shinu C (2012). "Drug use evaluation of diabetes mellitus in hospitalized patients of a tertiary care referral hospital". J Basic Clin Physiol Pharmacol. 23 (4): 173–7. doi:10.1515/jbcpp-2012-0012. PMID 23072848.
  47. Pasquel FJ, Spiegelman R, McCauley M, Smiley D, Umpierrez D, Johnson R; et al. (2010). "Hyperglycemia during total parenteral nutrition: an important marker of poor outcome and mortality in hospitalized patients". Diabetes Care. 33 (4): 739–41. doi:10.2337/dc09-1748. PMC 2845017. PMID 20040658.
  48. Laesser CI, Cumming P, Reber E, Stanga Z, Muka T, Bally L (2019). "Management of Glucose Control in Noncritically Ill, Hospitalized Patients Receiving Parenteral and/or Enteral Nutrition: A Systematic Review". J Clin Med. 8 (7). doi:10.3390/jcm8070935. PMC 6678336 Check |pmc= value (help). PMID 31261760.
  49. 49.0 49.1 Boughton CK, Bally L, Martignoni F, Hartnell S, Herzig D, Vogt A; et al. (2019). "Fully closed-loop insulin delivery in inpatients receiving nutritional support: a two-centre, open-label, randomised controlled trial". Lancet Diabetes Endocrinol. 7 (5): 368–377. doi:10.1016/S2213-8587(19)30061-0. PMC 6467839. PMID 30935872.
  50. Burt MG, Drake SM, Aguilar-Loza NR, Esterman A, Stranks SN, Roberts GW (2015). "Efficacy of a basal bolus insulin protocol to treat prednisolone-induced hyperglycaemia in hospitalised patients". Intern Med J. 45 (3): 261–6. doi:10.1111/imj.12680. PMID 25565560.
  51. 51.0 51.1 Khowaja A, Alkhaddo JB, Rana Z, Fish L (2018). "Glycemic Control in Hospitalized Patients with Diabetes Receiving Corticosteroids Using a Neutral Protamine Hagedorn Insulin Protocol: A Randomized Clinical Trial". Diabetes Ther. 9 (4): 1647–1655. doi:10.1007/s13300-018-0468-3. PMC 6064602. PMID 29961246.
  52. Brady V, Thosani S, Zhou S, Bassett R, Busaidy NL, Lavis V (2014). "Safe and effective dosing of basal-bolus insulin in patients receiving high-dose steroids for hyper-cyclophosphamide, doxorubicin, vincristine, and dexamethasone chemotherapy". Diabetes Technol Ther. 16 (12): 874–9. doi:10.1089/dia.2014.0115. PMC 4241952. PMID 25321387.
  53. Dhatariya K, Levy N, Kilvert A, Watson B, Cousins D, Flanagan D; et al. (2012). "NHS Diabetes guideline for the perioperative management of the adult patient with diabetes". Diabet Med. 29 (4): 420–33. doi:10.1111/j.1464-5491.2012.03582.x. PMID 22288687.
  54. Fayfman M, Davis G, Duggan EW, Urrutia M, Chachkhiani D, Schindler J; et al. (2018). "Sitagliptin for prevention of stress hyperglycemia in patients without diabetes undergoing general surgery: A pilot randomized study". J Diabetes Complications. 32 (12): 1091–1096. doi:10.1016/j.jdiacomp.2018.08.014. PMC 6668912 Check |pmc= value (help). PMID 30253968.
  55. Davis GM, Galindo RJ, Migdal AL, Umpierrez GE (2020). "Diabetes Technology in the Inpatient Setting for Management of Hyperglycemia". Endocrinol Metab Clin North Am. 49 (1): 79–93. doi:10.1016/j.ecl.2019.11.002. PMC 7453786 Check |pmc= value (help). PMID 31980123.
  56. Singh LG, Satyarengga M, Marcano I, Scott WH, Pinault LF, Feng Z; et al. (2020). "Reducing Inpatient Hypoglycemia in the General Wards Using Real-time Continuous Glucose Monitoring: The Glucose Telemetry System, a Randomized Clinical Trial". Diabetes Care. 43 (11): 2736–2743. doi:10.2337/dc20-0840. PMC 7576426 Check |pmc= value (help). PMID 32759361 Check |pmid= value (help).
  57. Fortmann AL, Spierling Bagsic SR, Talavera L, Garcia IM, Sandoval H, Hottinger A; et al. (2020). "Glucose as the Fifth Vital Sign: A Randomized Controlled Trial of Continuous Glucose Monitoring in a Non-ICU Hospital Setting". Diabetes Care. 43 (11): 2873–2877. doi:10.2337/dc20-1016. PMC 7576427 Check |pmc= value (help). PMID 32855160 Check |pmid= value (help).
  58. Galindo RJ, Aleppo G, Klonoff DC, Spanakis EK, Agarwal S, Vellanki P; et al. (2020). "Implementation of Continuous Glucose Monitoring in the Hospital: Emergent Considerations for Remote Glucose Monitoring During the COVID-19 Pandemic". J Diabetes Sci Technol. 14 (4): 822–832. doi:10.1177/1932296820932903. PMC 7673156 Check |pmc= value (help). PMID 32536205 Check |pmid= value (help).
  59. Montero AR, Dubin JS, Sack P, Magee MF (2019). "Future technology-enabled care for diabetes and hyperglycemia in the hospital setting". World J Diabetes. 10 (9): 473–480. doi:10.4239/wjd.v10.i9.473. PMC 6748879 Check |pmc= value (help). PMID 31558981.
  60. Kannan S, Satra A, Calogeras E, Lock P, Lansang MC (2014). "Insulin pump patient characteristics and glucose control in the hospitalized setting". J Diabetes Sci Technol. 8 (3): 473–8. doi:10.1177/1932296814522809. PMC 4455446. PMID 24876608.
  61. Thompson B, Leighton M, Korytkowski M, Cook CB (2018). "An Overview of Safety Issues on Use of Insulin Pumps and Continuous Glucose Monitoring Systems in the Hospital". Curr Diab Rep. 18 (10): 81. doi:10.1007/s11892-018-1056-7. PMID 30120619.
  62. Thompson B, Korytkowski M, Klonoff DC, Cook CB (2018). "Consensus Statement on Use of Continuous Subcutaneous Insulin Infusion Therapy in the Hospital". J Diabetes Sci Technol. 12 (4): 880–889. doi:10.1177/1932296818769933. PMC 6134295. PMID 29681173.
  63. Umpierrez GE, Klonoff DC (2018). "Diabetes Technology Update: Use of Insulin Pumps and Continuous Glucose Monitoring in the Hospital". Diabetes Care. 41 (8): 1579–1589. doi:10.2337/dci18-0002. PMC 6054505. PMID 29936424.
  64. Bally L, Thabit H, Hartnell S, Andereggen E, Ruan Y, Wilinska ME; et al. (2018). "Closed-Loop Insulin Delivery for Glycemic Control in Noncritical Care". N Engl J Med. 379 (6): 547–556. doi:10.1056/NEJMoa1805233. PMID 29940126.
  65. Bally L, Gubler P, Thabit H, Hartnell S, Ruan Y, Wilinska ME; et al. (2019). "Fully closed-loop insulin delivery improves glucose control of inpatients with type 2 diabetes receiving hemodialysis". Kidney Int. 96 (3): 593–596. doi:10.1016/j.kint.2019.03.006. PMID 31133457.

Template:WHTemplate:WS