Congestive heart failure and obstructive sleep apnea: Difference between revisions

Jump to navigation Jump to search
No edit summary
 
(20 intermediate revisions by 2 users not shown)
Line 10: Line 10:
|}
|}
{{Congestive heart failure}}
{{Congestive heart failure}}
{{CMG}}
{{CMG}} {{AE}} {{Sara.Zand}} [[User:Edzelco|Edzel Lorraine Co, D.M.D., M.D.]] [Mailto:efco@alum.up.edu.ph]


==Overview==
==Overview==
Line 18: Line 18:
*[[Sleep apnea]] is defined as partial or complete cessation of [[breathing]] during night-time [[sleep]], resulting in repeated arousal from sleep, [[oxyhemoglobin]] desaturation, and daytime [[sleepiness]].
*[[Sleep apnea]] is defined as partial or complete cessation of [[breathing]] during night-time [[sleep]], resulting in repeated arousal from sleep, [[oxyhemoglobin]] desaturation, and daytime [[sleepiness]].
*[[ Apnea]] is as complete cessation of [[airflow]] for >10 s.
*[[ Apnea]] is as complete cessation of [[airflow]] for >10 s.
*[[Hypopnea]], or partial cessation of [[airflow]], is defined as a 50% to 90% reduction in airflow for >10 s, and >3% decrease in [[oxyhemoglobin]] saturation ([[SaO2]]) terminated by [[arousal]].
*[[Hypopnea]], or partial cessation of [[airflow]], is defined as a 50% to 90% reduction in airflow for >10 s, and >3% decrease in [[oxyhemoglobin]] saturation ([[SaO2]]) terminated by [[arousal]].<ref name="pmid20142029">{{cite journal |vauthors=Chowdhury M, Adams S, Whellan DJ |title=Sleep-disordered breathing and heart failure: focus on obstructive sleep apnea and treatment with continuous positive airway pressure |journal=J Card Fail |volume=16 |issue=2 |pages=164–74 |date=February 2010 |pmid=20142029 |doi=10.1016/j.cardfail.2009.08.006 |url=}}</ref>
*The 3 types of [[apnea]] include [[central]], [[obstructive]], and mixed.
*The 3 types of [[apnea]] include [[central]], [[obstructive]], and mixed.
* [[Central sleep apnea]] ([[CSA]]) is characterized by a complete withdrawal of [[central respiratory drive]] to the [[inspiratory]] [[muscles]], including the [[diaphragm]], and results in the simultaneous absence of [[naso-oral]] [[airflow]] and [[thoracoabdominal]] excursions.
* [[Central sleep apnea]] ([[CSA]]) is characterized by a complete withdrawal of [[central respiratory drive]] to the [[inspiratory]] [[muscles]], including the [[diaphragm]], and results in the simultaneous absence of [[naso-oral]] [[airflow]] and [[thoracoabdominal]] excursions.
* In  [[obstructive sleep apnea]] ([[OSA]]), the [[thoracic]] [[inspiratory muscles]], including the [[diaphragm]], are active, so thoracoabdominal excursions are seen.
* In  [[obstructive sleep apnea]] ([[OSA]]), the [[thoracic]] [[inspiratory muscles]], including the [[diaphragm]], are active, so thoracoabdominal excursions are seen.
* Absence of airflow results from upper-airway occlusion caused by lost [[pharyngeal]] dilator muscle tone, with consequent [[pharyngeal]] collapse.  
* Absence of airflow results from upper-airway occlusion caused by lost [[pharyngeal]] dilator muscle tone, with consequent [[pharyngeal]] collapse.  
* [[Obstructive sleep apnea]] is classified as mild ([[apnea-hypopnea index]] or [[AHI]], 5–14), moderate ([[AHI]], 15–30), or severe ([[AHI]], >30)
*Mixed [[apnea]] has an initial central component followed by an [[obstructive]] component.
*Mixed [[apnea]] has an initial central component followed by an [[obstructive]] component.
*  Two types of [[hypopnea]] include [[obstructive]] or [[central]].
*  Two types of [[hypopnea]] include [[obstructive]] or [[central]].
Line 30: Line 31:
* [[Hypopnea]] or [[apnea]] occurs in the presence of [[pharynx]] collapse upon normal withdrawal of [[pharyngeal]] [[dilator muscle]] tone during [[sleep]].  
* [[Hypopnea]] or [[apnea]] occurs in the presence of [[pharynx]] collapse upon normal withdrawal of [[pharyngeal]] [[dilator muscle]] tone during [[sleep]].  
* [[Obesity]] and [[fat]] deposition around the [[pharynx]] are responsible of [[pharyngeal]] narrowing.
* [[Obesity]] and [[fat]] deposition around the [[pharynx]] are responsible of [[pharyngeal]] narrowing.
* [[Edema]] of the [[peripharyngeal]] when lying [[asleep]] due to [[leg]] [[fluid]] displacement during the day predisposing the individual to [[OSA]].
* During sleeping period, [[edema]] of the [[peripharyngeal]] area  due to [[leg]] [[fluid]] redistribution, may predispose the [[patients]] to [[OSA]].<ref name="pmid670014">{{cite journal |vauthors=Remmers JE, deGroot WJ, Sauerland EK, Anch AM |title=Pathogenesis of upper airway occlusion during sleep |journal=J Appl Physiol Respir Environ Exerc Physiol |volume=44 |issue=6 |pages=931–8 |date=June 1978 |pmid=670014 |doi=10.1152/jappl.1978.44.6.931 |url=}}</ref>
* [[Obstructive sleep apnea ]]  causes a drop in [[intrathoracic pressure]], [[hypoxia]], and [[arousal]].
* [[Obstructive sleep apnea ]]  causes a drop in [[intrathoracic pressure]], [[hypoxia]], and [[arousal]].<ref name="pmid7353253">{{cite journal |vauthors=Brinker JA, Weiss JL, Lappé DL, Rabson JL, Summer WR, Permutt S, Weisfeldt ML |title=Leftward septal displacement during right ventricular loading in man |journal=Circulation |volume=61 |issue=3 |pages=626–33 |date=March 1980 |pmid=7353253 |doi=10.1161/01.cir.61.3.626 |url=}}</ref>
* The drop in intrathoracic pressure increases [[left ventricular]] (LV) transmural pressure, and [[afterload]].
* The drop in intrathoracic pressure increases [[left ventricular]] (LV) transmural pressure, and [[afterload]].
* This drop in [[pressure]] increases [[venous]] return, causing [[right ventricular]] distention and a leftward shift of the [[interventricular]] septum and consequent decreased [[LV]] filling.
* This drop in [[pressure]] increases [[venous]] return, causing [[right ventricular]] distention and a leftward shift of the [[interventricular]] septum and consequent decreased [[LV]] filling.
Line 42: Line 43:


*[[Hypoxemia]] caused [[systolic]] and [[diastolic dysfunction]] may also lessen [[oxygen]] delivery to the [[myocardium]].<ref name="pmid10074486">{{cite journal |vauthors=Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JS, Wiener CM, Sylvester JT, Semenza GL |title=Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha |journal=J Clin Invest |volume=103 |issue=5 |pages=691–6 |date=March 1999 |pmid=10074486 |pmc=408131 |doi=10.1172/JCI5912 |url=}}</ref>
*[[Hypoxemia]] caused [[systolic]] and [[diastolic dysfunction]] may also lessen [[oxygen]] delivery to the [[myocardium]].<ref name="pmid10074486">{{cite journal |vauthors=Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JS, Wiener CM, Sylvester JT, Semenza GL |title=Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha |journal=J Clin Invest |volume=103 |issue=5 |pages=691–6 |date=March 1999 |pmid=10074486 |pmc=408131 |doi=10.1172/JCI5912 |url=}}</ref>
*Increased free [[oxygen]] radicals and [[inflammation]] may cause [[myocardial ischemia]], [[arrhythmias]], and [[sudden cardiac death]].
*Increased free [[oxygen]] radicals and [[inflammation]] may cause [[myocardial ischemia]], [[arrhythmias]], and [[sudden cardiac death]].<ref name="pmid2909295">{{cite journal |vauthors=Wyman RM, Farhi ER, Bing OH, Johnson RG, Weintraub RM, Grossman W |title=Comparative effects of hypoxia and ischemia in the isolated, blood-perfused dog heart: evaluation of left ventricular diastolic chamber distensibility and wall thickness |journal=Circ Res |volume=64 |issue=1 |pages=121–8 |date=January 1989 |pmid=2909295 |doi=10.1161/01.res.64.1.121 |url=}}</ref>
* Plasma [[nitrite]] concentrations, and [[endothelial-mediated vasodilation]] decrease in [[patients]] with [[OSA]].
* Plasma [[nitrite]] concentrations, and [[endothelial-mediated vasodilation]] decrease in [[patients]] with [[OSA]].
* [[Reactive oxygen]] species selectively activate inflammatory pathways.
* [[Reactive oxygen]] species selectively activate inflammatory pathways.
*Activation of [[NFκB]] leads to increased production of [[tumor necrosis factor-α]], [[interleukin-6]], [[interleukin-8]], and [[C-reactive protein]], as well as [[adhesion molecules]] such as intracellular and vascular cell adhesion molecules, [[E selecting]], and [[CD15]], [[CD32]].
*Activation of [[NFκB]] leads to increased production of [[tumor necrosis factor-α]], [[interleukin-6]], [[interleukin-8]], and [[C-reactive protein]], as well as [[adhesion molecules]] such as intracellular and vascular cell adhesion molecules, [[E selecting]], and [[CD15]], [[CD32]].
*Activate inflammatory pathways can lead to [[endothelial]] damage, [[atherogenesis]], and [[heart failure]].
*Activate inflammatory pathways can lead to [[endothelial]] damage, [[atherogenesis]], and [[heart failure]].
*Activate profibrotic [[transforming growth factor-β]] during [[inflammatory process]] leads to increased deposition of [[extracellular matrix]] and consequent [[myocardial fibrosis]], and to worsening [[LV diastolic function]].
*Activate profibrotic [[transforming growth factor-β]] during [[inflammatory process]] leads to increased deposition of [[extracellular matrix]] and consequent [[myocardial fibrosis]], and to worsening [[LV diastolic function]].<ref name="pmid21075869">{{cite journal |vauthors=Westermann D, Lindner D, Kasner M, Zietsch C, Savvatis K, Escher F, von Schlippenbach J, Skurk C, Steendijk P, Riad A, Poller W, Schultheiss HP, Tschöpe C |title=Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction |journal=Circ Heart Fail |volume=4 |issue=1 |pages=44–52 |date=January 2011 |pmid=21075869 |doi=10.1161/CIRCHEARTFAILURE.109.931451 |url=}}</ref>
* Common risk factors of [[OSA]] in [[patients]] with [[HFrEF]] include [[older]] age, [[male]] sex, higher [[BMI]], and [[habitual snoring]].<ref name="pmid19398074">{{cite journal |vauthors=Yumino D, Wang H, Floras JS, Newton GE, Mak S, Ruttanaumpawan P, Parker JD, Bradley TD |title=Prevalence and physiological predictors of sleep apnea in patients with heart failure and systolic dysfunction |journal=J Card Fail |volume=15 |issue=4 |pages=279–85 |date=May 2009 |pmid=19398074 |doi=10.1016/j.cardfail.2008.11.015 |url=}}</ref>
* Common risk factors of [[OSA]] in [[patients]] with [[HFrEF]] include [[older]] age, [[male]] sex, higher [[BMI]], and [[habitual snoring]].<ref name="pmid19398074">{{cite journal |vauthors=Yumino D, Wang H, Floras JS, Newton GE, Mak S, Ruttanaumpawan P, Parker JD, Bradley TD |title=Prevalence and physiological predictors of sleep apnea in patients with heart failure and systolic dysfunction |journal=J Card Fail |volume=15 |issue=4 |pages=279–85 |date=May 2009 |pmid=19398074 |doi=10.1016/j.cardfail.2008.11.015 |url=}}</ref>
*In [[patients]] with [[HFrEF]] and [[HFpEF]], [[OSA]] is more [[prevalent]] than in the [[general population]].
*In [[patients]] with [[HFrEF]] and [[HFpEF]], [[OSA]] is more [[prevalent]] than in the [[general population]].
Line 59: Line 60:
* There are no clinical trials regarding the effects of chronic [[CPAP]] therapy in [[patients]] with [[OSA]] and [[HFpEF]]. However, [[CPAP]] therapy may have beneficial effects on [[diastolic function]] as follows:
* There are no clinical trials regarding the effects of chronic [[CPAP]] therapy in [[patients]] with [[OSA]] and [[HFpEF]]. However, [[CPAP]] therapy may have beneficial effects on [[diastolic function]] as follows:
* Decreased [[diastolic blood pressure]]
* Decreased [[diastolic blood pressure]]
*Improved [[systolic]] and [[diastolic function]] (increased [[E/A ratio]], decreased [[IVRT]])
*Improved [[systolic]] and [[diastolic function]] (increased [[E/A ratio]], decreased [[IVRT]])<ref name="pmid12907548">{{cite journal |vauthors=Cloward TV, Walker JM, Farney RJ, Anderson JL |title=Left ventricular hypertrophy is a common echocardiographic abnormality in severe obstructive sleep apnea and reverses with nasal continuous positive airway pressure |journal=Chest |volume=124 |issue=2 |pages=594–601 |date=August 2003 |pmid=12907548 |doi=10.1378/chest.124.2.594 |url=}}</ref>
*Regression of LV [[hypertrophy]]<ref name="pmid12907548">{{cite journal |vauthors=Cloward TV, Walker JM, Farney RJ, Anderson JL |title=Left ventricular hypertrophy is a common echocardiographic abnormality in severe obstructive sleep apnea and reverses with nasal continuous positive airway pressure |journal=Chest |volume=124 |issue=2 |pages=594–601 |date=August 2003 |pmid=12907548 |doi=10.1378/chest.124.2.594 |url=}}</ref>
*Regression of LV [[hypertrophy]]<ref name="pmid12907548">{{cite journal |vauthors=Cloward TV, Walker JM, Farney RJ, Anderson JL |title=Left ventricular hypertrophy is a common echocardiographic abnormality in severe obstructive sleep apnea and reverses with nasal continuous positive airway pressure |journal=Chest |volume=124 |issue=2 |pages=594–601 |date=August 2003 |pmid=12907548 |doi=10.1378/chest.124.2.594 |url=}}</ref>
* Reduced [[LV]] wall thickness ([[interventricular septum]] and LV [[posterior wall]])
* Reduced [[LV]] wall thickness ([[interventricular septum]] and LV [[posterior wall]])<ref name="pmid18845553">{{cite journal |vauthors=Akar Bayram N, Ciftci B, Durmaz T, Keles T, Yeter E, Akcay M, Bozkurt E |title=Effects of continuous positive airway pressure therapy on left ventricular function assessed by tissue Doppler imaging in patients with obstructive sleep apnoea syndrome |journal=Eur J Echocardiogr |volume=10 |issue=3 |pages=376–82 |date=May 2009 |pmid=18845553 |doi=10.1093/ejechocard/jen257 |url=}}</ref>
* Improved [[diastolic velocities]]
* Improved [[diastolic velocities]]
* [[Mortality rate]] was not decreased after use of [[CPAP]] in [[heart failure]] [[patients]] ([[HFpEF]], [[HFrEF]]) with [[OSA]].
::* [[Mortality rate]] was not decreased after use of [[CPAP]] in [[heart failure]] [[patients]] ([[HFpEF]], [[HFrEF]]) with [[OSA]].<ref name="pmid20961913">{{cite journal |vauthors=Jilek C, Krenn M, Sebah D, Obermeier R, Braune A, Kehl V, Schroll S, Montalvan S, Riegger GA, Pfeifer M, Arzt M |title=Prognostic impact of sleep disordered breathing and its treatment in heart failure: an observational study |journal=Eur J Heart Fail |volume=13 |issue=1 |pages=68–75 |date=January 2011 |pmid=20961913 |doi=10.1093/eurjhf/hfq183 |url=}}</ref>
 
== 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT) <ref name="pmid35363500">{{cite journal| author=Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM | display-authors=etal| title=2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. | journal=Circulation | year= 2022 | volume= 145 | issue= 18 | pages= e876-e894 | pmid=35363500 | doi=10.1161/CIR.0000000000001062 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=35363500  }} </ref> ==
 
===Management of Sleep Disorders===
 
{|class="wikitable" style="width:80%"
|-
|colspan="1" style="text-align:center; background:LemonChiffon| [[ACC AHA guidelines classification scheme#Classification of Recommendations|Class IIa]]
|-
| bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''1.''' In patients with HF and suspicion of sleep-disordered breathing, a formal sleep assessment is reasonable to confirm the diagnosis and differentiate between obstructive and central sleep apnea. <ref name="pmid23222879">{{cite journal| author=Arzt M, Schroll S, Series F, Lewis K, Benjamin A, Escourrou P | display-authors=etal| title=Auto-servoventilation in heart failure with sleep apnoea: a randomised controlled trial. | journal=Eur Respir J | year= 2013 | volume= 42 | issue= 5 | pages= 1244-54 | pmid=23222879 | doi=10.1183/09031936.00083312 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23222879  }} </ref><ref name="pmid17562959">{{cite journal| author=Arzt M, Floras JS, Logan AG, Kimoff RJ, Series F, Morrison D | display-authors=etal| title=Suppression of central sleep apnea by continuous positive airway pressure and transplant-free survival in heart failure: a post hoc analysis of the Canadian Continuous Positive Airway Pressure for Patients with Central Sleep Apnea and Heart Failure Trial (CANPAP). | journal=Circulation | year= 2007 | volume= 115 | issue= 25 | pages= 3173-80 | pmid=17562959 | doi=10.1161/CIRCULATIONAHA.106.683482 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17562959  }} </ref>''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: C-LD]])'' <nowiki>"</nowiki>
 
|-
| bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''2.''' In patients with HF and obstructive sleeep apnea, continuous positive airway pressure may be reasonable to improve sleep quality and decrease daytime sleepiness.  <ref name="pmid23222879">{{cite journal| author=Arzt M, Schroll S, Series F, Lewis K, Benjamin A, Escourrou P | display-authors=etal| title=Auto-servoventilation in heart failure with sleep apnoea: a randomised controlled trial. | journal=Eur Respir J | year= 2013 | volume= 42 | issue= 5 | pages= 1244-54 | pmid=23222879 | doi=10.1183/09031936.00083312 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23222879  }} </ref><ref name="pmid28335841">{{cite journal| author=O'Connor CM, Whellan DJ, Fiuzat M, Punjabi NM, Tasissa G, Anstrom KJ | display-authors=etal| title=Cardiovascular Outcomes With Minute Ventilation-Targeted Adaptive Servo-Ventilation Therapy in Heart Failure: The CAT-HF Trial. | journal=J Am Coll Cardiol | year= 2017 | volume= 69 | issue= 12 | pages= 1577-1587 | pmid=28335841 | doi=10.1016/j.jacc.2017.01.041 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28335841  }} </ref><ref name="pmid26323938">{{cite journal| author=Cowie MR, Woehrle H, Wegscheider K, Angermann C, d'Ortho MP, Erdmann E | display-authors=etal| title=Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure. | journal=N Engl J Med | year= 2015 | volume= 373 | issue= 12 | pages= 1095-105 | pmid=26323938 | doi=10.1056/NEJMoa1506459 | pmc=4779593 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26323938  }} </ref><ref name="pmid31797360">{{cite journal| author=Yamamoto S, Yamaga T, Nishie K, Nagata C, Mori R| title=Positive airway pressure therapy for the treatment of central sleep apnoea associated with heart failure. | journal=Cochrane Database Syst Rev | year= 2019 | volume= 12 | issue=  | pages= CD012803 | pmid=31797360 | doi=10.1002/14651858.CD012803.pub2 | pmc=6891032 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31797360  }} </ref>''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: B-R]])'' <nowiki>"</nowiki>
 
|}
 
{|class="wikitable" style="width:80%"
|-
|colspan="1" style="text-align:center; background:LightCoral| [[ACC AHA guidelines classification scheme#Classification of Recommendations|Class III]] (Harm)
|-
| bgcolor="LightCoral"|<nowiki>"</nowiki>'''3.''' In patients with NYHA class II to IV HFrEF and central sleep apnea, adaptive servo-ventilation causes harm. <ref name="pmid28335841">{{cite journal| author=O'Connor CM, Whellan DJ, Fiuzat M, Punjabi NM, Tasissa G, Anstrom KJ | display-authors=etal| title=Cardiovascular Outcomes With Minute Ventilation-Targeted Adaptive Servo-Ventilation Therapy in Heart Failure: The CAT-HF Trial. | journal=J Am Coll Cardiol | year= 2017 | volume= 69 | issue= 12 | pages= 1577-1587 | pmid=28335841 | doi=10.1016/j.jacc.2017.01.041 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28335841  }} </ref><ref name="pmid26323938">{{cite journal| author=Cowie MR, Woehrle H, Wegscheider K, Angermann C, d'Ortho MP, Erdmann E | display-authors=etal| title=Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure. | journal=N Engl J Med | year= 2015 | volume= 373 | issue= 12 | pages= 1095-105 | pmid=26323938 | doi=10.1056/NEJMoa1506459 | pmc=4779593 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26323938  }} </ref> ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: B-R]])'' <nowiki>"</nowiki>
 
|}
 
==Source==
*[https://www.ahajournals.org/doi/epub/10.1161/CIR.0000000000001063.full.pdf 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines]<ref name="pmid35363499">{{cite journal |vauthors=Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Deswal A, Drazner MH, Dunlay SM, Evers LR, Fang JC, Fedson SE, Fonarow GC, Hayek SS, Hernandez AF, Khazanie P, Kittleson MM, Lee CS, Link MS, Milano CA, Nnacheta LC, Sandhu AT, Stevenson LW, Vardeny O, Vest AR, Yancy CW |title=2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines |journal=Circulation |volume=145 |issue=18 |pages=e895–e1032 |date=May 2022 |pmid=35363499 |doi=10.1161/CIR.0000000000001063 |url=}} </ref>


==References==
==References==

Latest revision as of 08:13, 31 July 2022



Resident
Survival
Guide
File:Critical Pathways.gif

Congestive Heart Failure Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Systolic Dysfunction
Diastolic Dysfunction
HFpEF
HFrEF

Causes

Differentiating Congestive heart failure from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Clinical Assessment

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

Cardiac MRI

Echocardiography

Exercise Stress Test

Myocardial Viability Studies

Cardiac Catheterization

Other Imaging Studies

Other Diagnostic Studies

Treatment

Invasive Hemodynamic Monitoring

Medical Therapy:

Summary
Acute Pharmacotherapy
Chronic Pharmacotherapy in HFpEF
Chronic Pharmacotherapy in HFrEF
Diuretics
ACE Inhibitors
Angiotensin receptor blockers
Aldosterone Antagonists
Beta Blockers
Ca Channel Blockers
Nitrates
Hydralazine
Positive Inotropics
Anticoagulants
Angiotensin Receptor-Neprilysin Inhibitor
Antiarrhythmic Drugs
Nutritional Supplements
Hormonal Therapies
Drugs to Avoid
Drug Interactions
Treatment of underlying causes
Associated conditions

Exercise Training

Surgical Therapy:

Biventricular Pacing or Cardiac Resynchronization Therapy (CRT)
Implantation of Intracardiac Defibrillator
Ultrafiltration
Cardiac Surgery
Left Ventricular Assist Devices (LVADs)
Cardiac Transplantation

ACC/AHA Guideline Recommendations

Initial and Serial Evaluation of the HF Patient
Hospitalized Patient
Patients With a Prior MI
Sudden Cardiac Death Prevention
Surgical/Percutaneous/Transcather Interventional Treatments of HF
Patients at high risk for developing heart failure (Stage A)
Patients with cardiac structural abnormalities or remodeling who have not developed heart failure symptoms (Stage B)
Patients with current or prior symptoms of heart failure (Stage C)
Patients with refractory end-stage heart failure (Stage D)
Coordinating Care for Patients With Chronic HF
Quality Metrics/Performance Measures

Implementation of Practice Guidelines

Congestive heart failure end-of-life considerations

Specific Groups:

Special Populations
Patients who have concomitant disorders
Obstructive Sleep Apnea in the Patient with CHF
NSTEMI with Heart Failure and Cardiogenic Shock

Congestive heart failure and obstructive sleep apnea On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Congestive heart failure and obstructive sleep apnea

CDC on Congestive heart failure and obstructive sleep apnea

Congestive heart failure and obstructive sleep apnea in the news

Blogs on Congestive heart failure and obstructive sleep apnea

Directions to Hospitals Treating Congestive heart failure and obstructive sleep apnea

Risk calculators and risk factors for Congestive heart failure and obstructive sleep apnea

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Sara Zand, M.D.[2] Edzel Lorraine Co, D.M.D., M.D. [3]

Overview

Obstructive sleep apnea is a sleep-related breathing disorder with effects on cardiovascular system by increasing the risk of hypertension, coronary artery disease, cardiac arrhythmias, sudden cardiac death, and heart failure. Obstructive sleep apnea contributes to the development and progression of HF. Hypoxia caused activation of inflammatory pathway leading to endothelial damage, atherogenesis, and heart failure. Activate profibrotic transforming growth factor-β during inflammatory process may cause increased deposition of extracellular matrix and consequent myocardial fibrosis and worsening LV diastolic function.

Sleep apnea in heart failure disease

Pathophysiology

Effect of CPAP in patients with HFrEF

Effect of CPAP in patients with HFpEF

2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT) [17]

Management of Sleep Disorders

Class IIa
"1. In patients with HF and suspicion of sleep-disordered breathing, a formal sleep assessment is reasonable to confirm the diagnosis and differentiate between obstructive and central sleep apnea. [18][19](Level of Evidence: C-LD) "
"2. In patients with HF and obstructive sleeep apnea, continuous positive airway pressure may be reasonable to improve sleep quality and decrease daytime sleepiness. [18][20][21][22](Level of Evidence: B-R) "
Class III (Harm)
"3. In patients with NYHA class II to IV HFrEF and central sleep apnea, adaptive servo-ventilation causes harm. [20][21] (Level of Evidence: B-R) "

Source

References

  1. Chowdhury M, Adams S, Whellan DJ (February 2010). "Sleep-disordered breathing and heart failure: focus on obstructive sleep apnea and treatment with continuous positive airway pressure". J Card Fail. 16 (2): 164–74. doi:10.1016/j.cardfail.2009.08.006. PMID 20142029.
  2. Remmers JE, deGroot WJ, Sauerland EK, Anch AM (June 1978). "Pathogenesis of upper airway occlusion during sleep". J Appl Physiol Respir Environ Exerc Physiol. 44 (6): 931–8. doi:10.1152/jappl.1978.44.6.931. PMID 670014.
  3. Brinker JA, Weiss JL, Lappé DL, Rabson JL, Summer WR, Permutt S, Weisfeldt ML (March 1980). "Leftward septal displacement during right ventricular loading in man". Circulation. 61 (3): 626–33. doi:10.1161/01.cir.61.3.626. PMID 7353253.
  4. Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JS, Wiener CM, Sylvester JT, Semenza GL (March 1999). "Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha". J Clin Invest. 103 (5): 691–6. doi:10.1172/JCI5912. PMC 408131. PMID 10074486.
  5. Wyman RM, Farhi ER, Bing OH, Johnson RG, Weintraub RM, Grossman W (January 1989). "Comparative effects of hypoxia and ischemia in the isolated, blood-perfused dog heart: evaluation of left ventricular diastolic chamber distensibility and wall thickness". Circ Res. 64 (1): 121–8. doi:10.1161/01.res.64.1.121. PMID 2909295.
  6. Westermann D, Lindner D, Kasner M, Zietsch C, Savvatis K, Escher F, von Schlippenbach J, Skurk C, Steendijk P, Riad A, Poller W, Schultheiss HP, Tschöpe C (January 2011). "Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction". Circ Heart Fail. 4 (1): 44–52. doi:10.1161/CIRCHEARTFAILURE.109.931451. PMID 21075869.
  7. 7.0 7.1 Yumino D, Wang H, Floras JS, Newton GE, Mak S, Ruttanaumpawan P, Parker JD, Bradley TD (May 2009). "Prevalence and physiological predictors of sleep apnea in patients with heart failure and systolic dysfunction". J Card Fail. 15 (4): 279–85. doi:10.1016/j.cardfail.2008.11.015. PMID 19398074.
  8. 8.0 8.1 Vazir A, Hastings PC, Dayer M, McIntyre HF, Henein MY, Poole-Wilson PA, Cowie MR, Morrell MJ, Simonds AK (March 2007). "A high prevalence of sleep disordered breathing in men with mild symptomatic chronic heart failure due to left ventricular systolic dysfunction". Eur J Heart Fail. 9 (3): 243–50. doi:10.1016/j.ejheart.2006.08.001. PMID 17030014.
  9. Javaheri S (January 2006). "Sleep disorders in systolic heart failure: a prospective study of 100 male patients. The final report". Int J Cardiol. 106 (1): 21–8. doi:10.1016/j.ijcard.2004.12.068. PMID 16321661.
  10. Usui K, Bradley TD, Spaak J, Ryan CM, Kubo T, Kaneko Y, Floras JS (June 2005). "Inhibition of awake sympathetic nerve activity of heart failure patients with obstructive sleep apnea by nocturnal continuous positive airway pressure". J Am Coll Cardiol. 45 (12): 2008–11. doi:10.1016/j.jacc.2004.12.080. PMID 15963401.
  11. Gilman MP, Floras JS, Usui K, Kaneko Y, Leung RS, Bradley TD (February 2008). "Continuous positive airway pressure increases heart rate variability in heart failure patients with obstructive sleep apnoea". Clin Sci (Lond). 114 (3): 243–9. doi:10.1042/CS20070172. PMID 17824846.
  12. Kaneko Y, Floras JS, Usui K, Plante J, Tkacova R, Kubo T, Ando S, Bradley TD (March 2003). "Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea". N Engl J Med. 348 (13): 1233–41. doi:10.1056/NEJMoa022479. PMID 12660387.
  13. Mansfield DR, Gollogly NC, Kaye DM, Richardson M, Bergin P, Naughton MT (February 2004). "Controlled trial of continuous positive airway pressure in obstructive sleep apnea and heart failure". Am J Respir Crit Care Med. 169 (3): 361–6. doi:10.1164/rccm.200306-752OC. PMID 14597482.
  14. 14.0 14.1 Cloward TV, Walker JM, Farney RJ, Anderson JL (August 2003). "Left ventricular hypertrophy is a common echocardiographic abnormality in severe obstructive sleep apnea and reverses with nasal continuous positive airway pressure". Chest. 124 (2): 594–601. doi:10.1378/chest.124.2.594. PMID 12907548.
  15. Akar Bayram N, Ciftci B, Durmaz T, Keles T, Yeter E, Akcay M, Bozkurt E (May 2009). "Effects of continuous positive airway pressure therapy on left ventricular function assessed by tissue Doppler imaging in patients with obstructive sleep apnoea syndrome". Eur J Echocardiogr. 10 (3): 376–82. doi:10.1093/ejechocard/jen257. PMID 18845553.
  16. Jilek C, Krenn M, Sebah D, Obermeier R, Braune A, Kehl V, Schroll S, Montalvan S, Riegger GA, Pfeifer M, Arzt M (January 2011). "Prognostic impact of sleep disordered breathing and its treatment in heart failure: an observational study". Eur J Heart Fail. 13 (1): 68–75. doi:10.1093/eurjhf/hfq183. PMID 20961913.
  17. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM; et al. (2022). "2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines". Circulation. 145 (18): e876–e894. doi:10.1161/CIR.0000000000001062. PMID 35363500 Check |pmid= value (help).
  18. 18.0 18.1 Arzt M, Schroll S, Series F, Lewis K, Benjamin A, Escourrou P; et al. (2013). "Auto-servoventilation in heart failure with sleep apnoea: a randomised controlled trial". Eur Respir J. 42 (5): 1244–54. doi:10.1183/09031936.00083312. PMID 23222879.
  19. Arzt M, Floras JS, Logan AG, Kimoff RJ, Series F, Morrison D; et al. (2007). "Suppression of central sleep apnea by continuous positive airway pressure and transplant-free survival in heart failure: a post hoc analysis of the Canadian Continuous Positive Airway Pressure for Patients with Central Sleep Apnea and Heart Failure Trial (CANPAP)". Circulation. 115 (25): 3173–80. doi:10.1161/CIRCULATIONAHA.106.683482. PMID 17562959.
  20. 20.0 20.1 O'Connor CM, Whellan DJ, Fiuzat M, Punjabi NM, Tasissa G, Anstrom KJ; et al. (2017). "Cardiovascular Outcomes With Minute Ventilation-Targeted Adaptive Servo-Ventilation Therapy in Heart Failure: The CAT-HF Trial". J Am Coll Cardiol. 69 (12): 1577–1587. doi:10.1016/j.jacc.2017.01.041. PMID 28335841.
  21. 21.0 21.1 Cowie MR, Woehrle H, Wegscheider K, Angermann C, d'Ortho MP, Erdmann E; et al. (2015). "Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure". N Engl J Med. 373 (12): 1095–105. doi:10.1056/NEJMoa1506459. PMC 4779593. PMID 26323938.
  22. Yamamoto S, Yamaga T, Nishie K, Nagata C, Mori R (2019). "Positive airway pressure therapy for the treatment of central sleep apnoea associated with heart failure". Cochrane Database Syst Rev. 12: CD012803. doi:10.1002/14651858.CD012803.pub2. PMC 6891032 Check |pmc= value (help). PMID 31797360.
  23. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Deswal A, Drazner MH, Dunlay SM, Evers LR, Fang JC, Fedson SE, Fonarow GC, Hayek SS, Hernandez AF, Khazanie P, Kittleson MM, Lee CS, Link MS, Milano CA, Nnacheta LC, Sandhu AT, Stevenson LW, Vardeny O, Vest AR, Yancy CW (May 2022). "2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines". Circulation. 145 (18): e895–e1032. doi:10.1161/CIR.0000000000001063. PMID 35363499 Check |pmid= value (help).

Template:WikiDoc Sources