PCI in the calcified lesion: Difference between revisions

Jump to navigation Jump to search
Elord (talk | contribs)
No edit summary
Rim Halaby (talk | contribs)
 
(58 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{SI}}
#Redirect [[Coronary artery calcification#Treatment]]
{{WikiDoc Cardiology Network Infobox}}
{{CMG}}<br/>
'''Associate Editors-In-Chief:''' John N. Mafi, M.D.; Randall K. Harada, M.D.; Thomas Tu, M.D.; Brian C. Bigelow, M.D.
 
{{Editor Help}}
 
 
== Challenges of Calcified Lesions ==
 
* The presence of coronary calcification reduces the compliance of the vessel, and may predispose to dissections at calcified plaque–normal wall interface after balloon angioplasty
 
* The presence of coronary calcification also reduces the ability to cross chronic total occlusions, and, in severely calcified lesions, stent strut expansion is inversely correlated with the circumferential arc of calcium. <ref name="pmid11170322">{{cite journal |author=Vavuranakis M, Toutouzas K, Stefanadis C, Chrisohou C, Markou D, Toutouzas P |title=Stent deployment in calcified lesions: can we overcome calcific restraint with high-pressure balloon inflations? |journal=Catheter Cardiovasc Interv |volume=52 |issue=2 |pages=164–72 |year=2001 |month=February |pmid=11170322 |doi= |url=}}</ref>
 
* The presence of extensive coronary calcification poses unique challenges for PCI as calcium in the vessel wall leads to irregular and inflexible lumens, and makes the delivery of guidewires, balloons, and stents much more challenging. 
 
* Extensive coronary calcification also renders the vessel wall rigid, necessitating higher balloon inflation pressures to obtain complete stent expansion, and, on occasion, leading to “undilatable” lesions that resist any achievable balloon expansion pressure.
 
 
'''Calcification in Saphenous Vein Grafts (SVGs)'''
 
Calcifications noted within SVGs are generally within the reference vessel wall rather than within the lesion, and are associated with older graft age, insulin–dependent diabetics, and smoking. <ref name="pmid15723972">{{cite journal |author=Castagna MT, Mintz GS, Ohlmann P, ''et al.'' |title=Incidence, location, magnitude, and clinical correlates of saphenous vein graft calcification: an intravascular ultrasound and angiographic study |journal=Circulation |volume=111 |issue=9 |pages=1148–52 |year=2005 |month=March |pmid=15723972 |doi=10.1161/01.CIR.0000157160.69812.55 |url=}}</ref>
 
== Angiographic Evaluation ==
Coronary artery calcium is an important marker for coronary atherosclerosis.  Conventional coronary angiography has limited sensitivity for the detection of smaller amounts of calcium, and only moderately sensitive for the detection of extensive lesion calcium (sensitivity 60% and 85% for three- and four-quadrant calcium, respectively). <ref name="pmid7895353">{{cite journal |author=Mintz GS, Popma JJ, Pichard AD, ''et al.'' |title=Patterns of calcification in coronary artery disease. A statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions |journal=Circulation |volume=91 |issue=7 |pages=1959–65 |year=1995 |month=April |pmid=7895353 |doi= |url=}}</ref> 
 
== Treatment ==
 
There are a variety of diagnostic and treatment options for calcified lesions, but better early outcomes may be achieved by using a multi-device interventional strategy.
 
===Percutaneous Transluminal Coronary Angioplasty (PTCA)===
 
[[PTCA|Percutaneous transluminal coronary angioplasty (PTCA)]]is an invasive [[Cardiology|cardiologic]] therapeutic procedure to treat the [[stenosis|stenotic]] (narrowed) [[coronary artery|coronary arteries]] of the [[heart]].  The term [[balloon angioplasty]] is commonly used to describe this procedure, which describes the inflation of a balloon within the coronary artery to crush the plaque into the walls of the artery.
 
In the treatment of calcified lesions, additional considerations must be made.  For one, interventional cardiologists should consider using hydrophilic guidewires, as heavy calcification may make wire advancement difficult.  Also, calcified plaques usually require higher balloon pressures to fully expand than normal plaques.  Because of this, non-compliant balloons may be a better choice than compliant or semi-compliant balloons.  This is because differential expansion of compliant or semi-compliant balloons inside a particular lesion may jeopardize less diseased segments if the balloon expands greater than the vessel's native diameter.  On the contrary, non-compliant balloons allow for a more uniform expansion at high pressures and therefore may be a better choice to apply focused pressure at the calcified plaque.  Another option is to place a second "buddy" wire adjacent to the balloon to improve the ability to dilate calcified plaque.
 
If pre-dilatation fails to fully expand a calcified [[stenosis]], then the risks and benefits of stent deployment should be carefully considered due to the risk of incomplete expansion and future [[restenosis]].
 
===Intravascular Ultrasound (IVUS)===
 
[[IVUS|Intravascular Ultrasound]] is a [[medical imaging]] methodology using a specially designed [[catheter]] with a miniaturized [[ultrasound]] probe attached to the distal end the catheter.  The proximal end of the [[catheter]] is attached to computerized [[ultrasound]] equipment. It allows the application of [[ultrasound]] technology to see from inside [[blood vessel]]s out through the surrounding [[blood]] column, visualizing the [[endothelium]] (inner wall) of [[blood vessel]]s in living individuals.  IVUS is used in the coronary arteries to determine the amount of [[atheroma|atheromatous plaque]] built up at any particular point in the epicardial coronary artery.
 
While coronary angiography by [[fluroscopy]] is limited in its detection and severity assessment of coronary calcification, IVUS can assess the extent of calcification and may be particularly useful for instances when the reason for poor balloon expansion is uncertain.  Although this approach has its advantages over angiography, heavy involvement of superficial, sub-endothelial calcification may require [[rotational atherectomy]].
 
===Cutting Balloon and FX MiniRailTM===
 
A [[cutting balloon]] is an [[angioplasty]] device used in [[PCI|percutaneous coronary interventions]]. It has a special balloon tip with small blades, that are activated when the balloon is inflated. This procedure is different from [[rotational atherectomy], in which a diamond tipped device spins at high revolutions to cut away calcific (chalky) [[atheroma]] usually prior to coronary stenting.
 
This technique can be useful in treating calcified lesions because the microsurgical blades on the surface of the balloon may help to score and modify calcified plaques.  Generally, if a cutting balloon will cross the lesion, a [[stent]] can be delivered.  Although this technique has its advantages, there are certain additional considerations that must be made before deciding to use this procedure.  For one, despite their usefulness, these balloons are often more difficult to deliver past tortuous or calcified segments, so extra care must be used.  Also, there were no significant differences observed in rates of [[restenosis]] when using this procedure.
 
===Rotational Atherectomy===
 
[[Rotational atherectomy]] is a minimally invasive method of removing plaque and blockage from an [[artery]] in the body and subsequently widening arteries narrowed by arterial disease.  Unlike [[angioplasty]] and [[stents]] of blocked arteries that simply push blockages aside into the wall of the artery, rotational atherectomy involves inserting a thin catheter with a rotating blade on its end into the artery.  The rotating edge is used to remove plaque buildups, thereby opening the artery and restoring normal blood flow.
 
[[Rotational atherectomy]] creates micro-fractures, removes calcified plaque, and increases vessel compliance, thereby facilitating [[Percutaneous transluminal coronary angioplasty|PTCA]]. Despite its usefulness in treating calcified lesions, certain precautions should be taken.  In an effort to limit the risk of vessel [[laceration]], smaller diameter [[Burr (cutter)|burrs] are now recommended.  A general guideline to use is that the initial burr:luminal ratio should be 1:2.  Additional caution should be taken when a coronary [[dissection]] is present, as rotational atherectomy may propagate the dissection. 
 
* '''Rotational atherectomy in severe lesion calcification:''' Rotational atherectomy is the preferred pretreatment method in patients with severe lesion calcification, particularly ostial lesions, and facilitates the delivery and expansion of coronary stents by creating microdissection planes within the fibrocalcific plaque. Yet even with these contemporary methods, the presence of moderate or severe coronary calcification is associated with reduced procedural success and higher complication rates<ref name="pmid12127606">{{cite journal |author=Wilensky RL, Selzer F, Johnston J, ''et al.'' |title=Relation of percutaneous coronary intervention of complex lesions to clinical outcomes (from the NHLBI Dynamic Registry) |journal=Am. J. Cardiol. |volume=90 |issue=3 |pages=216–21 |year=2002 |month=August |pmid=12127606 |doi= |url=}}</ref>, including stent dislodgement. 
 
* '''Rotational atherectomy in mild-moderate calcifications:''' In less severely calcified lesion, no differences in restenosis rates were found after paclitaxel-eluting stent implantation in calcified and non calcified vessels. <ref name="pmid16253590">{{cite journal |author=Moussa I, Ellis SG, Jones M, ''et al.'' |title=Impact of coronary culprit lesion calcium in patients undergoing paclitaxel-eluting stent implantation (a TAXUS-IV sub study) |journal=Am. J. Cardiol. |volume=96 |issue=9 |pages=1242–7 |year=2005 |month=November |pmid=16253590 |doi=10.1016/j.amjcard.2005.06.064 |url=}}</ref>
 
===Directional Coronary Atherectomy (DCA)===
 
Directional coronary atherectomy involves inserting a thin, flexible [[catheter]] with a small blade on its end into the artery, which cuts off [[plaque]] buildups.  These plaque shavings are caught with the catheter and are subsequently removed from the artery <ref>http://www.lvhn.org/lvh/Your_LVH/Health_Care_Services/Heart_Care_MIMS/Most_Advanced_Treatments|3487</ref>
 
One problem that may arise with the procedure is that heavy calcification proximal to the target lesion may limit deliverability of the device and its success. 
 
===Excimer Laser Coronary Atherectomy/Angioplasty (ECLA)===
 
ECLA uses a laser, instead of a traditional blade, to perform atherectomy and angioplasty.  The excimer laser is a pulsed ultraviolet laser that can ablate calcified plaque while also causing minimal thermal tissue injury. <ref name="pmid1860207">{{cite journal |author=Cook SL, Eigler NL, Shefer A, Goldenberg T, Forrester JS, Litvack F |title=Percutaneous excimer laser coronary angioplasty of lesions not ideal for balloon angioplasty |journal=Circulation |volume=84 |issue=2 |pages=632–43 |year=1991 |month=August |pmid=1860207 |doi= |url=}}</ref>
 
One advantage of using ELCA is that it facilitates [[PTCA]], as it fractures calcified plaques.  However, it also has a higher equipment cost and has a lesser ease of use than [[rotational atherectomy]].  Furthermore, it is more commonly used in lower extremity peripheral arterial disease than in [[CAD|coronary artery disease (CAD)]].
 
===Stents===
 
In [[cardiology]], a [[stent]] is a tube that is inserted into an artery to counteract significant decreases in vessel diameter by acutely propping it open.
 
In the treatment of calcified lesion, stents are frequently used in conjunction with [[PTCA]] or [[atherectomy]] to decrease the risk of [[restenosis]].  Extra care should be taken in deploying stents in lesions where incomplete expansion occurs following pre-dilation.
 
 
==References==
<references/>
 
 
{{SIB}}
[[Category:Cardiology]]
{{WikiDoc Help Menu}}
{{WikiDoc Sources}}
{{mdr}}

Latest revision as of 16:23, 6 September 2013