Implantable cardioverter defibrillator: Difference between revisions
No edit summary |
Dima Nimri (talk | contribs) |
||
(64 intermediate revisions by 12 users not shown) | |||
Line 1: | Line 1: | ||
__NOTOC__ | |||
{{Implantable Cardioverter Defibrillator ACC/AHA/HRS Guidelines}} | |||
{{SI}} | {{SI}} | ||
{{CMG}} | {{CMG}}; {{AE}}{{DN}} | ||
==Overview== | ==Overview== | ||
Line 6: | Line 8: | ||
==Implantation== | ==Implantation== | ||
The process of implantation of an ICD is similar to implantation of a [[artificial pacemaker|pacemaker]]. Similar to pacemakers, these devices typically include [[electrode]] wire(s) which pass through a vein to the right chambers of the heart, usually being lodged in the apex of the right ventricle. The difference is that pacemakers are more often temporary and generally designed to consistently correct bradycardia, while ICDs are often permanent safeguards against sudden abnormalities. | The process of implantation of an ICD is similar to implantation of a [[artificial pacemaker|pacemaker]]. Similar to pacemakers, these devices typically include [[electrode]] wire(s) which pass through a vein to the right chambers of the heart, usually being lodged in the apex of the right ventricle. The difference is that pacemakers are more often temporary and generally designed to consistently correct bradycardia, while ICDs are often permanent safeguards against sudden abnormalities. | ||
Line 24: | Line 25: | ||
==History== | ==History== | ||
The development of the ICD was pioneered at [[Sinai Hospital]] in | |||
The development of the ICD was pioneered at [[Sinai Hospital]] in Baltimore by a team including [[Michel Mirowski]], Morton Mower, and William Staewen.<ref>Mirowski M, Mower MM, Staewen WS, et al: Standby automatic defibrillator: An approach to prevention of sudden coronary death. Arch Intern Med 126:158-161, 1970</ref> Mirowski teamed up with Mower and Staewen and together they commenced their research in 1969 but it was 11 years before they treated their first patient. Similar developmental work was carried out almost coincidentally by Schuder and colleagues at the University of Missouri. | |||
More than a decade of research went into the development of an implantable defibrillator that would automatically sense the onset of ventricular fibrillation and deliver an electric countershock within 15–20 seconds, converting the rhythm to [[sinus rhythm]]. Improved versions were programmed to be able to detect ventricular tachycardia, often a forerunner of ventricular fibrillation. These were then called implantable cardioverters. | More than a decade of research went into the development of an implantable defibrillator that would automatically sense the onset of ventricular fibrillation and deliver an electric countershock within 15–20 seconds, converting the rhythm to [[sinus rhythm]]. Improved versions were programmed to be able to detect ventricular tachycardia, often a forerunner of ventricular fibrillation. These were then called implantable cardioverters. | ||
Line 33: | Line 35: | ||
Internal cardioverter defibrillators have also been used twice in dogs to prevent sudden death from arrhythmia. The first defibrillator was implanted at Washington State University by a team of cardiologists led by Dr Lynne Johnson in 2003. The patient was a Boxer dog with life threatening arrhythmias from arrhythmogenic right ventricular cardiomyopathy, an inherited disease. On July 21, 2008, a second ICD was implanted in a 6-month-old German Shepherd dog with inherited ventricular arrhythmias. The 5-hour long surgery took place at Louisiana State University and was led by Dr Romain Pariaut. So far, these pets are the only two client-owned dogs that have received such a high-tech treatment. | Internal cardioverter defibrillators have also been used twice in dogs to prevent sudden death from arrhythmia. The first defibrillator was implanted at Washington State University by a team of cardiologists led by Dr Lynne Johnson in 2003. The patient was a Boxer dog with life threatening arrhythmias from arrhythmogenic right ventricular cardiomyopathy, an inherited disease. On July 21, 2008, a second ICD was implanted in a 6-month-old German Shepherd dog with inherited ventricular arrhythmias. The 5-hour long surgery took place at Louisiana State University and was led by Dr Romain Pariaut. So far, these pets are the only two client-owned dogs that have received such a high-tech treatment. | ||
==Cardiovascular Implantable Electronic Device Infections== | |||
===Antimicrobial Regimen=== | |||
:* 1.1. '''Early post-implantation inflammation'''<ref name="pmid25355810">{{cite journal| author=Sandoe JA, Barlow G, Chambers JB, Gammage M, Guleri A, Howard P et al.| title=Guidelines for the diagnosis, prevention and management of implantable cardiac electronic device infection. Report of a joint Working Party project on behalf of the British Society for Antimicrobial Chemotherapy (BSAC, host organization), British Heart Rhythm Society (BHRS), British Cardiovascular Society (BCS), British Heart Valve Society (BHVS) and British Society for Echocardiography (BSE). | journal=J Antimicrob Chemother | year= 2015 | volume= 70 | issue= 2 | pages= 325-59 | pmid=25355810 | doi=10.1093/jac/dku383 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25355810 }} </ref><ref name="pmid25550318">{{cite journal| author=Harrison JL, Prendergast BD, Sandoe JA| title=Guidelines for the diagnosis, management and prevention of implantable cardiac electronic device infection. | journal=Heart | year= 2015 | volume= 101 | issue= 4 | pages= 250-2 | pmid=25550318 | doi=10.1136/heartjnl-2014-306873 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25550318 }} </ref><ref name="pmid20048212">{{cite journal| author=Baddour LM, Epstein AE, Erickson CC, Knight BP, Levison ME, Lockhart PB et al.| title=Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association. | journal=Circulation | year= 2010 | volume= 121 | issue= 3 | pages= 458-77 | pmid=20048212 | doi=10.1161/CIRCULATIONAHA.109.192665 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20048212 }} </ref> | |||
::* Preferred regimen: [[Flucloxacillin]] 0.5–1 g PO tid | |||
:* 1.2. '''Penicillin allergy or MRSA Colonisation''' | |||
::* Preferred regimen: [[Doxycycline]] 100 mg PO bid {{or}} [[Linezolid]] 600 mg PO bid {{or}} [[Clindamycin]] 450 mg po qid | |||
::* Note: Benefit of and need for antimicrobial therapy in early post-implantation [[inflammation]] is unclear. | |||
:* 1.3. '''Early post-implantation inflammation in penicillin-allergic or MRSA-colonized patient''' | |||
::* Preferred regimen: [[Doxycycline]] 100 mg PO bid {{or}} [[Linezolid]] 600 mg PO bid {{or}} [[Clindamycin]] 450 mg PO qid | |||
:* 1.4. '''Uncomplicated generator pocket infection''' | |||
::* Preferred regimen: [[Vancomycin]] 1 g IV q12h {{or}} [[Daptomycin]] 4 mg/kg IV qd {{or}} [[Teicoplanin]] 6 mg/kg to a maximum of 1 g IV given at 0, 12 and 24 h and then qd | |||
:* 1.5. '''ICED-LI or ICED-IE or complicated generator pocket infection pending blood cultures, e.g. in severe sepsis''' | |||
::* Preferred regimen: [[Vancomycin]] 1 g IV q12h {{and}} [[Meropenem]] 1 g IV q8h {{or}} [[Daptomycin]] 8–10 mg/kg IV qd {{and}} [[Meropenem]] 1 g IV q8h | |||
::* Note: [[Gentamicin]] or other anti-Gram-negative agents may be appropriate depending on local epidemiology. | |||
:* 1.6. '''ICED-LI or ICED-IE or generator pocket infection with negative blood cultures''' | |||
::* Preferred regimen: [[Vancomycin]] 1 g IV q12h {{and}} [[Gentamicin]] 1 mg/kg IV q12h {{or}} [[Daptomycin]] 8–10 mg/kg IV qd {{and}} [[Gentamicin]] 1 mg/kg [[IV]] q12h | |||
::* Note: Duration of antimicrobial therapy should be at least 4 to 6 weeks for complicated [[infection]] (ie, [[endocarditis]], [[septic thrombophlebitis]], or [[osteomyelitis]] or if bloodstream [[infection]] persists despite device removal and appropriate initial antimicrobial therapy. | |||
---- | |||
==Causes== | |||
===Common Causes=== | |||
*[[staphylococcus|Coagulase-negative staphylococcus]] <ref name="BaddourEpstein2010">{{cite journal|last1=Baddour|first1=L. M.|last2=Epstein|first2=A. E.|last3=Erickson|first3=C. C.|last4=Knight|first4=B. P.|last5=Levison|first5=M. E.|last6=Lockhart|first6=P. B.|last7=Masoudi|first7=F. A.|last8=Okum|first8=E. J.|last9=Wilson|first9=W. R.|last10=Beerman|first10=L. B.|last11=Bolger|first11=A. F.|last12=Estes|first12=N. A. M.|last13=Gewitz|first13=M.|last14=Newburger|first14=J. W.|last15=Schron|first15=E. B.|last16=Taubert|first16=K. A.|title=Update on Cardiovascular Implantable Electronic Device Infections and Their Management: A Scientific Statement From the American Heart Association|journal=Circulation|volume=121|issue=3|year=2010|pages=458–477|issn=0009-7322|doi=10.1161/CIRCULATIONAHA.109.192665}}</ref><ref name="SohailUslan2007">{{cite journal|last1=Sohail|first1=Muhammad R.|last2=Uslan|first2=Daniel Z.|last3=Khan|first3=Akbar H.|last4=Friedman|first4=Paul A.|last5=Hayes|first5=David L.|last6=Wilson|first6=Walter R.|last7=Steckelberg|first7=James M.|last8=Stoner|first8=Sarah|last9=Baddour|first9=Larry M.|title=Management and Outcome of Permanent Pacemaker and Implantable Cardioverter-Defibrillator Infections|journal=Journal of the American College of Cardiology|volume=49|issue=18|year=2007|pages=1851–1859|issn=07351097|doi=10.1016/j.jacc.2007.01.072}}</ref> | |||
*[[Staphylococcus aureus]] <ref name="SohailUslan2007">{{cite journal|last1=Sohail|first1=Muhammad R.|last2=Uslan|first2=Daniel Z.|last3=Khan|first3=Akbar H.|last4=Friedman|first4=Paul A.|last5=Hayes|first5=David L.|last6=Wilson|first6=Walter R.|last7=Steckelberg|first7=James M.|last8=Stoner|first8=Sarah|last9=Baddour|first9=Larry M.|title=Management and Outcome of Permanent Pacemaker and Implantable Cardioverter-Defibrillator Infections|journal=Journal of the American College of Cardiology|volume=49|issue=18|year=2007|pages=1851–1859|issn=07351097|doi=10.1016/j.jacc.2007.01.072}}</ref> | |||
*[[Staphylococcus epidermidis]] | |||
===Causes in Alphabetical Order=== | |||
*[[Aspergillus fumigatus]] | |||
*[[Candida]] | |||
*[[staphylococcus|Coagulase-negative staphylococcus]] | |||
*[[Corynebacterium]] | |||
*[[Gram-negative bacilli]] | |||
*[[Propionibacterium acnes]] | |||
*[[Pseudomonas aeruginosa]] | |||
*[[Streptococci]] | |||
==Living with an ICD== | ==Living with an ICD== | ||
People that have an implanted cardioverter-defibrillator can live full and happy lives. Usually the ICD improves the living conditions of a patient significantly. As with a pacemaker, living with an ICD does impose some restrictions on the person's lifestyle. | People that have an implanted cardioverter-defibrillator can live full and happy lives. Usually the ICD improves the living conditions of a patient significantly. As with a pacemaker, living with an ICD does impose some restrictions on the person's lifestyle. | ||
Line 60: | Line 102: | ||
A recent study by Birnie et al. at the University of Ottawa Heart Institute has demonstrated that ICDs are underused in both the United States and Canada.<ref>{{cite journal|url=http://www.cmaj.ca/cgi/reprint/177/1/41|journal=Canadian Medical Association Journal|title=Use of implantable cardioverter defibrillators in Canadian and IS survivors of out-of-hospital cardiac arrest|last=Birnie|first=David H|coauthors=Sambell, Christie; Johansen, Helen; Williams, Katherine; Lemery, Robert; Green, Martin S; Gollob, Michael H; Lee, Douglas S; Tang, Anthony SL|accessdate=2007-07-29|month=July | year=2007|volume=177|issue=1|doi=10.1503/cmaj.060730|pages=41|pmid=17606938|pmc=1896034}}</ref> An accompanying editorial by Dr. Chris Simpson of Queen's University explores some of the economic, geographic, social and political reasons for this.<ref>{{cite journal|url=http://www.cmaj.ca/cgi/reprint/177/1/49|title=Implantable cardioverter defibrillators work - so why aren't we using them?|last=Simpson|first=Christopher S|journal=Canadian Medical Association Journal|month=July | year=2007|accessdate=2007-07-29|volume=177|issue=1|doi=10.1503/cmaj.070470|pages=49|pmid=17606939|pmc=1896028}}</ref> | A recent study by Birnie et al. at the University of Ottawa Heart Institute has demonstrated that ICDs are underused in both the United States and Canada.<ref>{{cite journal|url=http://www.cmaj.ca/cgi/reprint/177/1/41|journal=Canadian Medical Association Journal|title=Use of implantable cardioverter defibrillators in Canadian and IS survivors of out-of-hospital cardiac arrest|last=Birnie|first=David H|coauthors=Sambell, Christie; Johansen, Helen; Williams, Katherine; Lemery, Robert; Green, Martin S; Gollob, Michael H; Lee, Douglas S; Tang, Anthony SL|accessdate=2007-07-29|month=July | year=2007|volume=177|issue=1|doi=10.1503/cmaj.060730|pages=41|pmid=17606938|pmc=1896034}}</ref> An accompanying editorial by Dr. Chris Simpson of Queen's University explores some of the economic, geographic, social and political reasons for this.<ref>{{cite journal|url=http://www.cmaj.ca/cgi/reprint/177/1/49|title=Implantable cardioverter defibrillators work - so why aren't we using them?|last=Simpson|first=Christopher S|journal=Canadian Medical Association Journal|month=July | year=2007|accessdate=2007-07-29|volume=177|issue=1|doi=10.1503/cmaj.070470|pages=49|pmid=17606939|pmc=1896028}}</ref> | ||
==Sources== | ==Sources== | ||
Line 156: | Line 108: | ||
*ACC/AHA Guidelines for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices: Executive Summary--a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Pacemaker Implantation) <ref name="pmid9570207">{{cite journal |author=Gregoratos G, Cheitlin MD, Conill A, ''et al'' |title=ACC/AHA Guidelines for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices: Executive Summary--a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Pacemaker Implantation) |journal=Circulation |volume=97 |issue=13 |pages=1325-35 |year=1998 |month=April |pmid=9570207}}</ref> | *ACC/AHA Guidelines for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices: Executive Summary--a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Pacemaker Implantation) <ref name="pmid9570207">{{cite journal |author=Gregoratos G, Cheitlin MD, Conill A, ''et al'' |title=ACC/AHA Guidelines for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices: Executive Summary--a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Pacemaker Implantation) |journal=Circulation |volume=97 |issue=13 |pages=1325-35 |year=1998 |month=April |pmid=9570207}}</ref> | ||
==Related Chapters== | |||
== | |||
*[[Cardiopulmonary resuscitation|CPR]] | *[[Cardiopulmonary resuscitation|CPR]] | ||
*[[Advanced cardiac life support]] | *[[Advanced cardiac life support]] | ||
Line 168: | Line 114: | ||
*[[Defibrillation]] | *[[Defibrillation]] | ||
*[[Artificial pacemaker]] | *[[Artificial pacemaker]] | ||
* | *Wearable Cardioverter Defibrillator | ||
==References== | ==References== | ||
Line 174: | Line 120: | ||
{{Emergency medicine}} | {{Emergency medicine}} | ||
[[Category:Cardiology]] | [[Category:Cardiology]] | ||
[[Category:Cardiac electrophysiology]] | [[Category:Cardiac electrophysiology]] | ||
[[Category:Implants]] | [[Category:Implants]] | ||
[[Category: | [[Category: Overview complete]] | ||
[[de:Implantierbarer Kardioverter-Defibrillator]] | [[de:Implantierbarer Kardioverter-Defibrillator]] |
Latest revision as of 17:29, 26 October 2016
ICD Guidelines Microchapters |
Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities |
Expert Consensus on the Use of Implantable Cardioverter-Defibrillator Therapy in Patients Who Are Not Included or Not Well Represented in Clinical Trials |
ICD Implantation in the Context of an Abnormal Troponin that is Not Due to a Myocardial Infarction |
ICD Implantation Less Than 9 Months From The Initial Diagnosis of Nonischemic Cardiomyopathy |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [2]; Associate Editor(s)-in-Chief: Dima Nimri, M.D. [3]
Overview
An implantable cardioverter-defibrillator (ICD) is a small battery-powered electrical impulse generator which is implanted in patients who are at risk of sudden cardiac death due to ventricular fibrillation and ventricular tachycardia. The device is programmed to detect cardiac arrhythmia and correct it by delivering a jolt of electricity. In current variants, the ability to revert ventricular fibrillation has been extended to include both atrial and ventricular arrhythmias as well as the ability to perform biventricular pacing in patients with congestive heart failure or bradycardia.
Implantation
The process of implantation of an ICD is similar to implantation of a pacemaker. Similar to pacemakers, these devices typically include electrode wire(s) which pass through a vein to the right chambers of the heart, usually being lodged in the apex of the right ventricle. The difference is that pacemakers are more often temporary and generally designed to consistently correct bradycardia, while ICDs are often permanent safeguards against sudden abnormalities.
The most recent development is the subcutaneous ICD (S-ICD). Current state-of-the-art electronics and batteries have enabled an implantable device to deliver enough energy to defibrillate the heart without the need for a lead in or on the heart. This prevents lead-related problems and the risk of dangerous infections in or near the heart. This ICD is positioned just under the skin and outside the ribcage. It can be placed during a minor procedure under conscious sedation. A study of 300 patients is in progress for US approvals.[1]
Working mechanism
ICDs constantly monitor the rate and rhythm of the heart and can deliver therapies, by way of an electrical shock, when the electrical manifestations of the heart activity exceeds the preset number. More modern devices can distinguish between ventricular fibrillation and ventricular tachycardia (VT), and may try to pace the heart faster than its intrinsic rate in the case of VT, to try to break the tachycardia before it progresses to ventricular fibrillation. This is known as fast-pacing, overdrive pacing, or anti-tachycardia pacing (ATP). ATP is only effective if the underlying rhythm is ventricular tachycardia, and is never effective if the rhythm is ventricular fibrillation.
Many modern ICDs use a combination of various methods to determine if a fast rhythm is normal, ventricular tachycardia, or ventricular fibrillation.
Rate discrimination evaluates the rate of the lower chambers of the heart (the ventricles) and compares it to the rate in the upper chambers of the heart (the atria). If the rate in the atria is faster than or equal to the rate in the ventricles, then the rhythm is most likely not ventricular in origin, and is usually more benign. If this is the case, the ICD does not provide any therapy.
Rhythm discrimination will see how regular a ventricular tachycardia is. Generally, ventricular tachycardia is regular. If the rhythm is irregular, it is usually due to conduction of an irregular rhythm that originates in the atria, such as atrial fibrillation.
Morphology discrimination checks the morphology of every ventricular beat and compares it to what the ICD believes is a normally conducted ventricular impulse for the patient. This normal ventricular impulse is often an average of a multiple of beats of the patient taken in the recent past.
History
The development of the ICD was pioneered at Sinai Hospital in Baltimore by a team including Michel Mirowski, Morton Mower, and William Staewen.[2] Mirowski teamed up with Mower and Staewen and together they commenced their research in 1969 but it was 11 years before they treated their first patient. Similar developmental work was carried out almost coincidentally by Schuder and colleagues at the University of Missouri.
More than a decade of research went into the development of an implantable defibrillator that would automatically sense the onset of ventricular fibrillation and deliver an electric countershock within 15–20 seconds, converting the rhythm to sinus rhythm. Improved versions were programmed to be able to detect ventricular tachycardia, often a forerunner of ventricular fibrillation. These were then called implantable cardioverters.
The work was commenced against much skepticism even by leading experts in the field of arrhythmias and sudden death. There was doubt that their ideas would ever become a clinical reality. In 1972 Bernard Lown, the inventor of the external defibrillator, stated in the journal Circulation - "The very rare patient who has frequent bouts of ventricular fibrillation is best treated in a coronary care unit and is better served by an effective antiarrhythmic program or surgical correction of inadequate coronary blood flow or ventricular malfunction. In fact, the implanted defibrillator system represents an imperfect solution in search of a plausible and practical application".
The problems to be overcome were the design of a system which would allow detection of ventricular fibrillation or ventricular tachycardia. Despite the lack of financial backing and grants, they persisted and the first device was implanted in February 1980 at Johns Hopkins Hospital by Dr. Levi Watkins, Jr. Modern ICDs do not require a thoracotomy and possess pacing, cardioversion, and defibrillation capabilities.
Internal cardioverter defibrillators have also been used twice in dogs to prevent sudden death from arrhythmia. The first defibrillator was implanted at Washington State University by a team of cardiologists led by Dr Lynne Johnson in 2003. The patient was a Boxer dog with life threatening arrhythmias from arrhythmogenic right ventricular cardiomyopathy, an inherited disease. On July 21, 2008, a second ICD was implanted in a 6-month-old German Shepherd dog with inherited ventricular arrhythmias. The 5-hour long surgery took place at Louisiana State University and was led by Dr Romain Pariaut. So far, these pets are the only two client-owned dogs that have received such a high-tech treatment.
Cardiovascular Implantable Electronic Device Infections
Antimicrobial Regimen
-
- Preferred regimen: Flucloxacillin 0.5–1 g PO tid
- 1.2. Penicillin allergy or MRSA Colonisation
- Preferred regimen: Doxycycline 100 mg PO bid OR Linezolid 600 mg PO bid OR Clindamycin 450 mg po qid
- Note: Benefit of and need for antimicrobial therapy in early post-implantation inflammation is unclear.
- 1.3. Early post-implantation inflammation in penicillin-allergic or MRSA-colonized patient
- Preferred regimen: Doxycycline 100 mg PO bid OR Linezolid 600 mg PO bid OR Clindamycin 450 mg PO qid
- 1.4. Uncomplicated generator pocket infection
- Preferred regimen: Vancomycin 1 g IV q12h OR Daptomycin 4 mg/kg IV qd OR Teicoplanin 6 mg/kg to a maximum of 1 g IV given at 0, 12 and 24 h and then qd
- 1.5. ICED-LI or ICED-IE or complicated generator pocket infection pending blood cultures, e.g. in severe sepsis
- Preferred regimen: Vancomycin 1 g IV q12h AND Meropenem 1 g IV q8h OR Daptomycin 8–10 mg/kg IV qd AND Meropenem 1 g IV q8h
- Note: Gentamicin or other anti-Gram-negative agents may be appropriate depending on local epidemiology.
- 1.6. ICED-LI or ICED-IE or generator pocket infection with negative blood cultures
- Preferred regimen: Vancomycin 1 g IV q12h AND Gentamicin 1 mg/kg IV q12h OR Daptomycin 8–10 mg/kg IV qd AND Gentamicin 1 mg/kg IV q12h
- Note: Duration of antimicrobial therapy should be at least 4 to 6 weeks for complicated infection (ie, endocarditis, septic thrombophlebitis, or osteomyelitis or if bloodstream infection persists despite device removal and appropriate initial antimicrobial therapy.
Causes
Common Causes
Causes in Alphabetical Order
- Aspergillus fumigatus
- Candida
- Coagulase-negative staphylococcus
- Corynebacterium
- Gram-negative bacilli
- Propionibacterium acnes
- Pseudomonas aeruginosa
- Streptococci
Living with an ICD
People that have an implanted cardioverter-defibrillator can live full and happy lives. Usually the ICD improves the living conditions of a patient significantly. As with a pacemaker, living with an ICD does impose some restrictions on the person's lifestyle.
Quality of Life
Implantable cardioverter defibrillators have demonstrated clear life-saving benefits but concerns about patient acceptance and psychological adjustment to the ICD have been the focus of much research.[8] Researchers including those from the field of cardiac psychology have concluded that the QoL of ICD patients is at least equal to, or better than those taking anti-arrhythmic medications.[9] The largest study of examined 2,521 patients with stable heart failure in the SCD-HeFT trial.[10] Results indicated that there were no differences between ICD treated and medication-treated groups at 30 months in patient reported QoL.[11] Psychological adjustment following ICD implantation has also been well-studied. Anxiety is a common psychological side effect with approximately 13-38% of ICD patients reporting clinically significant anxiety.[12][13] The primary etiological factors contributing to anxiety in ICD patients has not been determined, however. Depressive symptoms are also common but incidence of these problems have shown to be similar to those observed in other cardiac patient groups with approximately 24-41% of patients with ICDs experiencing depressive symptoms.[13]
Problems in psychosocial adjustment to ICDs, including the experience of anxiety, among spouses or other romantic partners are also prevalent[14]. This phenomenon may be related, at least in part, to shared shock anxiety and avoidance of physical and sexual contact [15].
Physical activities
Almost all forms of physical activities can be performed by patients with an ICD. All forms of sports that do not pose a risk of damaging the ICD can be enjoyed by the patient. Special care should be placed not to put excessive strain on the shoulder, arm and torso area where the ICD is implanted. Doing so may damage the ICD or the leads going from the unit to the patient's heart.
Electronic equipment
As a general rule, all electronic equipment is safe to use for patients with an ICD if kept at relative small distance from the unit. Most electronic equipment such as cellphones, Devices that generate radio waves or radio interference should be kept at least 15 centimetres (6 in) from the ICD.[16]
Electronic equipment used in a professional environment or equipment using large magnets or generating magnetic fields must be avoided by patients with an ICD. Both the magnetic fields and the EMI (Electromagnetic Interference) in an MRI scanner can interfere with the correct working of the ICD. As with other metallic objects, an ICD is a contraindication to the use of magnetic resonance imaging. Experiments are on the way for solving this kind of problem. For example Medtronic showed interesting results with a pacemaker.[17]
Clinical trials
A number of clinical trials have demonstrated the superiority of the ICD over AAD (antiarrhythmic drugs) in the prevention of death from malignant arrhythmias. The SCD-HeFT trial (published in 2005) showed a significant all-cause mortality benefit for patients with ICD. Congestive heart failure patients that were implanted with an ICD had an all-cause death risk 23% lower than placebo and an absolute decrease in mortality of 7.2 percentage points after five years in the overall population.1 Reporting in 1999, the Antiarrhythmics Versus Implantable Defibrillators (AVID) trial consisted of 1,016 patients, and deaths in those treated with AAD were more frequent (n=122) compared with deaths in the ICD groups (n=80, p < 0.001)[4]. In 2002 the MADITII trial showed benefit of ICD treatment in patients after myocardial infarction with reduced left ventricular function (EF<30).
Initially ICDs were implanted via thoracotomy with defibrillator patches applied to the epicardium or pericardium. The device was attached via subcutaneous and transvenous leads to the device contained in a subcutaneous abdominal wall pocket. The device itself acts as an electrode. Most ICDs nowadays are implanted transvenously with the devices placed in the left pectoral region similar to pacemakers. Intravascular spring or coil electrodes are used to defibrillate. The devices have become smaller and less invasive as the technology advances. Current ICDs weigh only 70 grams and are about 12.9 mm thick.
A recent study by Birnie et al. at the University of Ottawa Heart Institute has demonstrated that ICDs are underused in both the United States and Canada.[18] An accompanying editorial by Dr. Chris Simpson of Queen's University explores some of the economic, geographic, social and political reasons for this.[19]
Sources
- ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices): developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons [20]
- ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/NASPE Committee to Update the 1998 Pacemaker Guidelines) [21]
- ACC/AHA Guidelines for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices: Executive Summary--a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Pacemaker Implantation) [22]
Related Chapters
- CPR
- Advanced cardiac life support
- Cardioversion
- Defibrillation
- Artificial pacemaker
- Wearable Cardioverter Defibrillator
References
- ↑ Bardy, Gust H. (2010). "An Entirely Subcutaneous Implantable Cardioverter–Defibrillator". New England Journal of Medicine. doi:PMID: 20463331 Check
|doi=
value (help). Retrieved 13 May 2010. Unknown parameter|coauthors=
ignored (help); Unknown parameter|month=
ignored (help) - ↑ Mirowski M, Mower MM, Staewen WS, et al: Standby automatic defibrillator: An approach to prevention of sudden coronary death. Arch Intern Med 126:158-161, 1970
- ↑ Sandoe JA, Barlow G, Chambers JB, Gammage M, Guleri A, Howard P; et al. (2015). "Guidelines for the diagnosis, prevention and management of implantable cardiac electronic device infection. Report of a joint Working Party project on behalf of the British Society for Antimicrobial Chemotherapy (BSAC, host organization), British Heart Rhythm Society (BHRS), British Cardiovascular Society (BCS), British Heart Valve Society (BHVS) and British Society for Echocardiography (BSE)". J Antimicrob Chemother. 70 (2): 325–59. doi:10.1093/jac/dku383. PMID 25355810.
- ↑ Harrison JL, Prendergast BD, Sandoe JA (2015). "Guidelines for the diagnosis, management and prevention of implantable cardiac electronic device infection". Heart. 101 (4): 250–2. doi:10.1136/heartjnl-2014-306873. PMID 25550318.
- ↑ Baddour LM, Epstein AE, Erickson CC, Knight BP, Levison ME, Lockhart PB; et al. (2010). "Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association". Circulation. 121 (3): 458–77. doi:10.1161/CIRCULATIONAHA.109.192665. PMID 20048212.
- ↑ Baddour, L. M.; Epstein, A. E.; Erickson, C. C.; Knight, B. P.; Levison, M. E.; Lockhart, P. B.; Masoudi, F. A.; Okum, E. J.; Wilson, W. R.; Beerman, L. B.; Bolger, A. F.; Estes, N. A. M.; Gewitz, M.; Newburger, J. W.; Schron, E. B.; Taubert, K. A. (2010). "Update on Cardiovascular Implantable Electronic Device Infections and Their Management: A Scientific Statement From the American Heart Association". Circulation. 121 (3): 458–477. doi:10.1161/CIRCULATIONAHA.109.192665. ISSN 0009-7322.
- ↑ 7.0 7.1 Sohail, Muhammad R.; Uslan, Daniel Z.; Khan, Akbar H.; Friedman, Paul A.; Hayes, David L.; Wilson, Walter R.; Steckelberg, James M.; Stoner, Sarah; Baddour, Larry M. (2007). "Management and Outcome of Permanent Pacemaker and Implantable Cardioverter-Defibrillator Infections". Journal of the American College of Cardiology. 49 (18): 1851–1859. doi:10.1016/j.jacc.2007.01.072. ISSN 0735-1097.
- ↑ Burns JL, Serber ER, Keim S, Sears SF. Measuring patient acceptance of implantable cardiac device therapy: initial psychometric investigation of the Florida Patient Acceptance Survey. J Cardiovasc Electrophysiol 2005;16:384-390.
- ↑ Sears S, Matchett M, Conti J. Effective management of ICD patient psychosocial issues and patient critical events. J Cardiovasc Electrophysiol 2009;20(11):1297-304
- ↑ Bardy, Lee, Mark et al., 2005
- ↑ Mark DB, Anstrom KJ, Sun JL, Clapp-Channing NE, Tsiatis AA, Davidson-Ray L, Lee KL, Bardy GH. Quality of life with defibrillator therapy or amiodarone in heart failure. N Engl J Med 2008; 359(10):999-1008
- ↑ Bilge AK, Ozben B, Demircan S, et al. Depression and anxiety status of patients with implantable cardioverter defibrillator and precipitating factors. Pacing Clin Electrophysiol. 2006 Jun;29(6):619-26
- ↑ 13.0 13.1 Sears SF, Jr., Todaro JF, Lewis TS, Sotile W, Conti JB. Examining the psychosocial impact of implantable cardioverter defibrillators: a literature review. Clin Cardiol 1999;22:481-489
- ↑ Vasquez-Sowell L, Sears SF, Walker RL, Kuhl EA, Conti JB. Anxiety and marital adjustment in patients with Implantable Cardioverter Defibrillator and their spouses. Journal of Cardiopulmonary Rehabilitation and Prevention 2007;27:46-49
- ↑ Vasquez LD, Sears SF, Shea JB, Vasquez PM. Sexual health for patients with an Implantable Cardioverter Defibrillator. Circulation 2010;122:465-467
- ↑ Medtronic Patient Website FAQ: Can magnets affect my device? [1]
- ↑ http://wwwp.medtronic.com/Newsroom/NewsReleaseDetails.do?itemId=1242305667391&format=print&lang=en_US
- ↑ Birnie, David H (2007). "Use of implantable cardioverter defibrillators in Canadian and IS survivors of out-of-hospital cardiac arrest". Canadian Medical Association Journal. 177 (1): 41. doi:10.1503/cmaj.060730. PMC 1896034. PMID 17606938. Retrieved 2007-07-29. Unknown parameter
|month=
ignored (help); Unknown parameter|coauthors=
ignored (help) - ↑ Simpson, Christopher S (2007). "Implantable cardioverter defibrillators work - so why aren't we using them?". Canadian Medical Association Journal. 177 (1): 49. doi:10.1503/cmaj.070470. PMC 1896028. PMID 17606939. Retrieved 2007-07-29. Unknown parameter
|month=
ignored (help) - ↑ Epstein AE, DiMarco JP, Ellenbogen KA; et al. (2008). "ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices): developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons". Circulation. 117 (21): e350–408. PMID 18483207. Text "doi:10.1161/CIRCUALTIONAHA.108.189742 " ignored (help); Unknown parameter
|month=
ignored (help) - ↑ Gregoratos G, Abrams J, Epstein AE; et al. (2002). "ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/NASPE Committee to Update the 1998 Pacemaker Guidelines)". Circulation. 106 (16): 2145–61. PMID 12379588. Text "doi:10.1161/01.CIR.0000035996.46455.09 " ignored (help); Unknown parameter
|month=
ignored (help) - ↑ Gregoratos G, Cheitlin MD, Conill A; et al. (1998). "ACC/AHA Guidelines for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices: Executive Summary--a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Pacemaker Implantation)". Circulation. 97 (13): 1325–35. PMID 9570207. Unknown parameter
|month=
ignored (help)