Chronic stable angina exercise echocardiography: Difference between revisions
m Robot: Changing Category:Up to date to Category:Up-To-Date |
Aysha Aslam (talk | contribs) /* Cardiac Stress Imaging as the Initial Test for Diagnosis in Patients With Chronic Stable Angina Who Are Able to Exercise (DO NOT EDIT){{cite journal| author=Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP et al.| title=2012 ACCF/AHA... |
||
(34 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
__NOTOC__ | |||
{{Chronic stable angina}} | {{Chronic stable angina}} | ||
'''Editors-In-Chief:''' [[C. Michael Gibson, M.S., M.D.]] [mailto: | '''Editors-In-Chief:''' [[C. Michael Gibson, M.S., M.D.]] [mailto:charlesmichaelgibson@gmail.com] Phone:617-632-7753; '''Associate Editor(s)-In-Chief:''' {{CZ}}; Smita Kohli, M.D.; [[Lakshmi Gopalakrishnan|Lakshmi Gopalakrishnan, M.B.B.S.]] | ||
==Overview== | ==Overview== | ||
[[Stress echocardiography]] is echocardiography with different stressors such as exercise or pharmacological | [[Stress echocardiography]] is echocardiography that is paired with different forms of stressors, such as exercise or pharmacological. Exercise stress echocardiography is the preferred stress echocardiography modality. However, it is not suitable for all patients and may not be feasible in populations that do not meet a minimum level of fitness. In patients who are ineligible for exercise stress echocardiography, pharmacological stress echocardiography can be a useful alternative. Common pharmacological stressors include: [[adenosine]], [[dipyridamole]], and [[dobutamine]]. As a testing modality, exercise echocardiography is noted as more sensitive, more specific and has a higher predictive value than [[Chronic stable angina exercise electrocardiography|exercise ECG]]. Exercise echocardiography can be helpful in the evaluation of regional wall motion response, location and extent of [[ischemia]] during stress in patients with [[MI]]. During exercise, the normal myocardium is hyperdynamic while in patients with [[MI]], the ischemic myocardium is either akinetic or hypokinetic. | ||
Exercise | ==Exercise Echocardiography== | ||
==Advantages of | ===Advantages of Stress Echocardiography=== | ||
* | *Aids in detection of [[coronary artery disease|coronary artery disease (CAD)]]. | ||
*Stress echocardiography is a | *In patients with known or suspected [[CAD]], stress echocardiography can assess the prognosis of [[CAD]]. | ||
*In patients with [[ischemic cardiomyopathy|chronic ischemic LV dysfunction]], prediction of full | *Stress echocardiography is noted as a specific testing modality for the assessment of myocardial viability after acute [[MI]].<ref name="pmid10841962">Anselmi M, Golia G, Maines M, Marino P, Goj C, Turri M et al. (2000) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=10841962 Comparison between low-dose dobutamine echocardiography and thallium-201 scintigraphy in the detection of myocardial viability in patients with recent myocardial infarction.] ''Int J Cardiol'' 73 (3):213-23. PMID: [http://pubmed.gov/10841962 10841962]</ref> | ||
*The capability of stress echocardiography to detect ischemia earlier in the ischemic cascade <ref name="pmid12927194">Mädler CF, Payne N, Wilkenshoff U, Cohen A, Derumeaux GA, Piérard LA et al. (2003) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=12927194 Non-invasive diagnosis of coronary artery disease by quantitative stress echocardiography: optimal diagnostic models using off-line tissue Doppler in the MYDISE study.] ''Eur Heart J'' 24 (17):1584-94. PMID: [http://pubmed.gov/12927194 12927194]</ref> <ref name="pmid15489101">Yip G, Khandheria B, Belohlavek M, Pislaru C, Seward J, Bailey K et al. (2004) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=15489101 Strain echocardiography tracks dobutamine-induced decrease in regional myocardial perfusion in nonocclusive coronary stenosis.] ''J Am Coll Cardiol'' 44 (8):1664-71. [http://dx.doi.org/10.1016/j.jacc.2004.02.065 DOI:10.1016/j.jacc.2004.02.065] PMID: [http://pubmed.gov/15489101 15489101]</ref> has been greatly improved with the advent of | *In patients with [[ischemic cardiomyopathy|chronic ischemic LV dysfunction]], stress echocardiography can assist in prediction of full functional recovery of the myocardium after revascularisation.<ref name="pmid11568075">Bax JJ, Visser FC, Poldermans D, Elhendy A, Cornel JH, Boersma E et al. (2001) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=11568075 Time course of functional recovery of stunned and hibernating segments after surgical revascularization.] ''Circulation'' 104 (12 Suppl 1):I314-8. PMID: [http://pubmed.gov/11568075 11568075]</ref> | ||
*The capability of stress echocardiography to detect ischemia earlier in the ischemic cascade<ref name="pmid12927194">Mädler CF, Payne N, Wilkenshoff U, Cohen A, Derumeaux GA, Piérard LA et al. (2003) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=12927194 Non-invasive diagnosis of coronary artery disease by quantitative stress echocardiography: optimal diagnostic models using off-line tissue Doppler in the MYDISE study.] ''Eur Heart J'' 24 (17):1584-94. PMID: [http://pubmed.gov/12927194 12927194]</ref><ref name="pmid15489101">Yip G, Khandheria B, Belohlavek M, Pislaru C, Seward J, Bailey K et al. (2004) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=15489101 Strain echocardiography tracks dobutamine-induced decrease in regional myocardial perfusion in nonocclusive coronary stenosis.] ''J Am Coll Cardiol'' 44 (8):1664-71. [http://dx.doi.org/10.1016/j.jacc.2004.02.065 DOI:10.1016/j.jacc.2004.02.065] PMID: [http://pubmed.gov/15489101 15489101]</ref> has been greatly improved with the advent of tissue Doppler imaging<ref name="pmid11230833">Cain P, Baglin T, Case C, Spicer D, Short L, Marwick TH (2001) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=11230833 Application of tissue Doppler to interpretation of dobutamine echocardiography and comparison with quantitative coronary angiography.] ''Am J Cardiol'' 87 (5):525-31. PMID: [http://pubmed.gov/11230833 11230833]</ref> and strain rate imaging.<ref name="pmid12682001">Voigt JU, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U et al. (2003) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=12682001 Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia.] ''Circulation'' 107 (16):2120-6. [http://dx.doi.org/10.1161/01.CIR.0000065249.69988.AA DOI:10.1161/01.CIR.0000065249.69988.AA] PMID: [http://pubmed.gov/12682001 12682001]</ref><ref name="pmid14652617">Yip G, Abraham T, Belohlavek M, Khandheria BK (2003) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=14652617 Clinical applications of strain rate imaging.] ''J Am Soc Echocardiogr'' 16 (12):1334-42. [http://dx.doi.org/10.1067/j.echo.2003.09.004 DOI:10.1067/j.echo.2003.09.004] PMID: [http://pubmed.gov/14652617 14652617]</ref> | |||
:*Tissue Doppler imaging is useful in the quantification of myocardial wall motion and strain. | :*Tissue Doppler imaging is useful in the quantification of myocardial wall motion and strain. | ||
:*Strain rate imaging is useful to determine regional deformation | :*Strain rate imaging is useful to determine regional deformation where strain can be defined as the difference per unit length. | ||
==Diagnostic | ===Diagnostic Criteria=== | ||
* | *Signs suggestive of severe [[CAD]] on exercise echocardiography include: | ||
:* | :*Reduction on global systolic function | ||
:*LV dilation, | :*LV dilation, | ||
:* | :*New or progressively worsening [[mitral regurgitation|mitral regurgitation (MR)]] | ||
==Sensitivity and Specificity== | ===Sensitivity and Specificity=== | ||
*Exercise echocardiography has been reported to have a sensitivity | *Exercise echocardiography has been reported to have a sensitivity between 74% to 100%. | ||
*The specificity has been reported to be between 64% to 93% for detecting [[CAD]]. | |||
*In one meta-analysis, the sensitivity of exercise echocardiography was between 80-85%. Specificity was reported between 84-86%.<ref name="pmid12727146">Schinkel AF, Bax JJ, Geleijnse ML, Boersma E, Elhendy A, Roelandt JR et al. (2003) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=12727146 Noninvasive evaluation of ischaemic heart disease: myocardial perfusion imaging or stress echocardiography?] ''Eur Heart J'' 24 (9):789-800. PMID: [http://pubmed.gov/12727146 12727146]</ref> | |||
*A good level of agreement has also been reported between [[stress echocardiography]] and [[Chronic stable angina perfusion scintigraphy with pharmacologic stress|stress scintigraphy]]. | |||
:*With the use of high dose of [[dobutamine]] (up to 50 gm/kg/min), a method of dobutamine stress echocardiography can be performed with 86% to 96% of sensitivity and 66% to 95% of specificity. | |||
:*Lower doses of [[dobutamine]] can also be used to detect [[hibernating myocardium]]. Areas of hibernating myocardium exhibit poor or absent contraction at rest but normal contraction during dobutamine infusion. By comparison, areas damaged by myocardial infarction or fibrosis exhibit no improvement with dobutamine. | |||
''For more information on exercise/pharmacologic stress echocardiography, click [[Exercise stress testing#Exercise/Pharmacologic Stress Echocardiography|here]].'' | |||
''For more information on comparison of exercise SPECT imaging and exercise echocardiography, click [[Exercise stress testing#Comparison of exercise SPECT imaging and Exercise Echocardiography|here]].'' | |||
==ACC/AHA/ACP–ASIM Guidelines for the Management of Patients With Chronic Stable Angina (DO NOT EDIT)<ref name="pmid23166210">{{cite journal| author=Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP et al.| title=2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. | journal=Circulation | year= 2012 | volume= 126 | issue= 25 | pages= 3097-137 | pmid=23166210 | doi=10.1161/CIR.0b013e3182776f83 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23166210 }} </ref>== | |||
: | ===Cardiac Stress Imaging as the Initial Test for Diagnosis in Patients With Chronic Stable Angina Who Are Able to Exercise (DO NOT EDIT)<ref name="pmid23166210">{{cite journal| author=Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP et al.| title=2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. | journal=Circulation | year= 2012 | volume= 126 | issue= 25 | pages= 3097-137 | pmid=23166210 | doi=10.1161/CIR.0b013e3182776f83 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23166210 }} </ref>=== | ||
= | {|class="wikitable" | ||
|- | |||
| colspan="1" style="text-align:center; background:LightGreen"|[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class I]] | |||
''' | |- | ||
| bgcolor="LightGreen"|<nowiki>"</nowiki>'''1.''' Exercise stress with nuclear MPI or echocardiography is recommended for patients with an intermediate to high pretest probability of IHD who have an uninterpretable ECG and at least moderate physical functioning or no disabling comorbidity ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: B]])''<nowiki>"</nowiki> | |||
|} | |||
{|class="wikitable" | |||
|- | |||
: | | colspan="1" style="text-align:center; background:LemonChiffon"|[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class IIa]] | ||
''' | |- | ||
| bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''1.''' Exercise stress with nuclear MPI or echocardiography is reasonable for patients with an intermediate to high pretest probability of obstructive IHD who have an interpretable ECG and at least moderate physical functioning or no disabling comorbidity.''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: B]])''<nowiki>"</nowiki> | |||
|} | |||
{|class="wikitable" | |||
|- | |||
| colspan="1" style="text-align:center; background:LemonChiffon"|[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class IIb]] | |||
''' | |- | ||
| bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''1.''' For patients with a low pretest probability of obstructive IHD who do require testing, standard exercise stress echocardiography might be reasonable, provided the patient has an interpretable ECG and at least moderate physical functioning or no disabling comorbidity.''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: C]])''<nowiki>"</nowiki> | |||
|} | |||
{|class="wikitable" | |||
|- | |||
| colspan="1" style="text-align:center; background:Lightcoral"|[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class III]] | |||
= | |- | ||
'''1.''' | | bgcolor="Lightcoral"|<nowiki>"</nowiki>'''1.''' Pharmacological stress with nuclear MPI, echocardiography, or CMR is not recommended for patients who have an interpretable ECG and at least moderate physical functioning or no disabling comorbidity.''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: C]])''<nowiki>"</nowiki> | ||
|} | |||
==ACC/AHA/ACP–ASIM Guidelines for the Management of Patients With Chronic Stable Angina (DO NOT EDIT)<ref name="pmid10351980">{{cite journal| author=Gibbons RJ, Chatterjee K, Daley J, Douglas JS, Fihn SD, Gardin JM et al.| title=ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina: executive summary and recommendations. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Chronic Stable Angina). | journal=Circulation | year= 1999 | volume= 99 | issue= 21 | pages= 2829-48 | pmid=10351980 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10351980 }} </ref>== | |||
===Cardiac Stress Imaging as the Initial Test for Diagnosis in Patients With Chronic Stable Angina Who Are Unable to Exercise (DO NOT EDIT)<ref name="pmid10351980">{{cite journal| author=Gibbons RJ, Chatterjee K, Daley J, Douglas JS, Fihn SD, Gardin JM et al.| title=ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina: executive summary and recommendations. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Chronic Stable Angina). | journal=Circulation | year= 1999 | volume= 99 | issue= 21 | pages= 2829-48 | pmid=10351980 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10351980 }} </ref>=== | |||
{|class="wikitable" | |||
|- | |||
| colspan="1" style="text-align:center; background:LightGreen"|[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class I]] | |||
== | |- | ||
| bgcolor="LightGreen"|<nowiki>"</nowiki>'''1.''' Adenosine or dipyridamole myocardial perfusion imaging or dobutamine echocardiography in patients with an intermediate pretest probability of CAD. ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: B]])''<nowiki>"</nowiki> | |||
|- | |||
| bgcolor="LightGreen"|<nowiki>"</nowiki>'''2.''' Adenosine or dipyridamole stress myocardial perfusion imaging or dobutamine echocardiography in patients with prior revascularization (either PTCA or CABG). ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: B]])''<nowiki>"</nowiki> | |||
|} | |||
== | {|class="wikitable" | ||
|- | |||
| colspan="1" style="text-align:center; background:LemonChiffon"|[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class IIb]] | |||
|- | |||
| bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''1.''' Adenosine or dipyridamole stress myocardial perfusion imaging or dobutamine echocardiography in patients with a low or high probability of CAD in the absence of electronically paced ventricular rhythm or left bundle-branch block. ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: B]])''<nowiki>"</nowiki> | |||
|- | |||
| bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''2.''' Adenosine or dipyridamole myocardial perfusion imaging in patients with a low or high probability of CAD and 1 of the following baseline ECG abnormalities: | |||
|- | |||
| bgcolor="LemonChiffon"|'''a.''' Electronically paced ventricular rhythm. ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: C]])'' | |||
|- | |||
| bgcolor="LemonChiffon"|'''b.''' Left bundle-branch block. ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: B]])''<nowiki>"</nowiki> | |||
|} | |||
==ESC Guidelines- Exercise Stress with Imaging Techniques (either Echocardiography or Perfusion) in the Initial Diagnostic Assessment of Angina (DO NOT EDIT)<ref name="pmid16735367">{{cite journal| author=Fox K, Garcia MA, Ardissino D, Buszman P, Camici PG, Crea F et al.| title=Guidelines on the management of stable angina pectoris: executive summary: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. | journal=Eur Heart J | year= 2006 | volume= 27 | issue= 11 | pages= 1341-81 | pmid=16735367 | doi=10.1093/eurheartj/ehl001 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16735367 }} </ref>== | |||
{|class="wikitable" | |||
|- | |||
| colspan="1" style="text-align:center; background:LightGreen"|[[European society of cardiology#Classes of Recommendations|Class I]] | |||
|- | |||
| bgcolor="LightGreen"|<nowiki>"</nowiki>'''1.''' Patients with [[Chronic stable angina electrocardiography|resting ECG]] abnormalities, [[LBBB]], more than 1 mm [[ST depression]], paced rhythm, or [[WPW]] which prevent accurate interpretation of [[Chronic stable angina exercise electrocardiography|ECG]] changes during stress. ''([[European society of cardiology#Level of Evidence|Level of Evidence: B]])''<nowiki>"</nowiki> | |||
|- | |||
| bgcolor="LightGreen"|<nowiki>"</nowiki>'''2.''' Patients with a non-conclusive [[Chronic stable angina exercise electrocardiography|exercise ECG]] but reasonable exercise tolerance, who do not have a [[Chronic stable angina assessing the pretest probability of coronary artery disease|high probability]] of significant [[coronary artery disease]] and in whom the diagnosis is still in doubt. ''([[European society of cardiology#Level of Evidence|Level of Evidence: B]])''<nowiki>"</nowiki> | |||
|} | |||
{|class="wikitable" | |||
|- | |||
| colspan="1" style="text-align:center; background:LemonChiffon"|[[European society of cardiology#Classes of Recommendations|Class IIa]] | |||
|- | |||
| bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''1.''' Patients with prior [[Chronic stable angina revascularization|revascularization]] ([[Chronic stable angina revascularization percutaneous coronary intervention(PCI)|PCI]] or [[Chronic stable angina revascularization coronary artery bypass grafting(CABG)|CABG]]) in whom localization of [[ischaemia]] is important. ''([[European society of cardiology#Level of Evidence|Level of Evidence: B]])''<nowiki>"</nowiki> | |||
|- | |||
| bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''2.''' As an alternative to [[Chronic stable angina exercise electrocardiography|exercise ECG]] in patients where facilities, cost, and personnel resources allow. ''([[European society of cardiology#Level of Evidence|Level of Evidence: B]])''<nowiki>"</nowiki> | |||
|- | |||
| bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''3.''' As an alternative to [[Chronic stable angina exercise electrocardiography|exercise ECG]] in patients with a [[Chronic stable angina assessing the pretest probability of coronary artery disease|low pre-test probability]] of disease such as women with [[chest pain|atypical chest pain]]. ''([[European society of cardiology#Level of Evidence|Level of Evidence: B]])''<nowiki>"</nowiki> | |||
|- | |||
| bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''4.''' To assess functional severity of intermediate lesions on [[Chronic stable angina coronary angiography|coronary arteriography]]. ''([[European society of cardiology#Level of Evidence|Level of Evidence: C]])''<nowiki>"</nowiki> | |||
|- | |||
| bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''5.''' To localize [[ischaemia]] when planning [[revascularization]] options in patients who have already had [[Chronic stable angina coronary angiography|arteriography]]. ''([[European society of cardiology#Level of Evidence|Level of Evidence: B]])''<nowiki>"</nowiki> | |||
|} | |||
==References== | ==References== | ||
{{ | {{reflist|2}} | ||
{{WikiDoc Help Menu}} | {{WikiDoc Help Menu}} | ||
{{WikiDoc Sources}} | {{WikiDoc Sources}} | ||
[[Category:Disease]] | |||
[[Category:Ischemic heart diseases]] | [[Category:Ischemic heart diseases]] | ||
[[Category:Cardiology]] | [[Category:Cardiology]] | ||
[[Category:Emergency medicine]] | [[Category:Emergency medicine]] | ||
[[Category: | [[Category:Intensive care medicine]] | ||
[[Category:Up-To-Date]] | [[Category:Up-To-Date]] | ||
[[Category:Up-To-Date cardiology]] |
Latest revision as of 18:31, 28 October 2016
Chronic stable angina Microchapters | ||
Classification | ||
---|---|---|
| ||
| ||
Differentiating Chronic Stable Angina from Acute Coronary Syndromes | ||
Diagnosis | ||
Alternative Therapies for Refractory Angina | ||
Discharge Care | ||
Guidelines for Asymptomatic Patients | ||
Case Studies | ||
Chronic stable angina exercise echocardiography On the Web | ||
to Hospitals Treating Chronic stable angina exercise echocardiography | ||
Risk calculators and risk factors for Chronic stable angina exercise echocardiography | ||
Editors-In-Chief: C. Michael Gibson, M.S., M.D. [1] Phone:617-632-7753; Associate Editor(s)-In-Chief: Cafer Zorkun, M.D., Ph.D. [2]; Smita Kohli, M.D.; Lakshmi Gopalakrishnan, M.B.B.S.
Overview
Stress echocardiography is echocardiography that is paired with different forms of stressors, such as exercise or pharmacological. Exercise stress echocardiography is the preferred stress echocardiography modality. However, it is not suitable for all patients and may not be feasible in populations that do not meet a minimum level of fitness. In patients who are ineligible for exercise stress echocardiography, pharmacological stress echocardiography can be a useful alternative. Common pharmacological stressors include: adenosine, dipyridamole, and dobutamine. As a testing modality, exercise echocardiography is noted as more sensitive, more specific and has a higher predictive value than exercise ECG. Exercise echocardiography can be helpful in the evaluation of regional wall motion response, location and extent of ischemia during stress in patients with MI. During exercise, the normal myocardium is hyperdynamic while in patients with MI, the ischemic myocardium is either akinetic or hypokinetic.
Exercise Echocardiography
Advantages of Stress Echocardiography
- Aids in detection of coronary artery disease (CAD).
- In patients with known or suspected CAD, stress echocardiography can assess the prognosis of CAD.
- Stress echocardiography is noted as a specific testing modality for the assessment of myocardial viability after acute MI.[1]
- In patients with chronic ischemic LV dysfunction, stress echocardiography can assist in prediction of full functional recovery of the myocardium after revascularisation.[2]
- The capability of stress echocardiography to detect ischemia earlier in the ischemic cascade[3][4] has been greatly improved with the advent of tissue Doppler imaging[5] and strain rate imaging.[6][7]
- Tissue Doppler imaging is useful in the quantification of myocardial wall motion and strain.
- Strain rate imaging is useful to determine regional deformation where strain can be defined as the difference per unit length.
Diagnostic Criteria
- Signs suggestive of severe CAD on exercise echocardiography include:
- Reduction on global systolic function
- LV dilation,
- New or progressively worsening mitral regurgitation (MR)
Sensitivity and Specificity
- Exercise echocardiography has been reported to have a sensitivity between 74% to 100%.
- The specificity has been reported to be between 64% to 93% for detecting CAD.
- In one meta-analysis, the sensitivity of exercise echocardiography was between 80-85%. Specificity was reported between 84-86%.[8]
- A good level of agreement has also been reported between stress echocardiography and stress scintigraphy.
- With the use of high dose of dobutamine (up to 50 gm/kg/min), a method of dobutamine stress echocardiography can be performed with 86% to 96% of sensitivity and 66% to 95% of specificity.
- Lower doses of dobutamine can also be used to detect hibernating myocardium. Areas of hibernating myocardium exhibit poor or absent contraction at rest but normal contraction during dobutamine infusion. By comparison, areas damaged by myocardial infarction or fibrosis exhibit no improvement with dobutamine.
For more information on exercise/pharmacologic stress echocardiography, click here.
For more information on comparison of exercise SPECT imaging and exercise echocardiography, click here.
ACC/AHA/ACP–ASIM Guidelines for the Management of Patients With Chronic Stable Angina (DO NOT EDIT)[9]
Cardiac Stress Imaging as the Initial Test for Diagnosis in Patients With Chronic Stable Angina Who Are Able to Exercise (DO NOT EDIT)[9]
Class I |
"1. Exercise stress with nuclear MPI or echocardiography is recommended for patients with an intermediate to high pretest probability of IHD who have an uninterpretable ECG and at least moderate physical functioning or no disabling comorbidity (Level of Evidence: B)" |
Class IIa |
"1. Exercise stress with nuclear MPI or echocardiography is reasonable for patients with an intermediate to high pretest probability of obstructive IHD who have an interpretable ECG and at least moderate physical functioning or no disabling comorbidity.(Level of Evidence: B)" |
Class IIb |
"1. For patients with a low pretest probability of obstructive IHD who do require testing, standard exercise stress echocardiography might be reasonable, provided the patient has an interpretable ECG and at least moderate physical functioning or no disabling comorbidity.(Level of Evidence: C)" |
Class III |
"1. Pharmacological stress with nuclear MPI, echocardiography, or CMR is not recommended for patients who have an interpretable ECG and at least moderate physical functioning or no disabling comorbidity.(Level of Evidence: C)" |
ACC/AHA/ACP–ASIM Guidelines for the Management of Patients With Chronic Stable Angina (DO NOT EDIT)[10]
Cardiac Stress Imaging as the Initial Test for Diagnosis in Patients With Chronic Stable Angina Who Are Unable to Exercise (DO NOT EDIT)[10]
Class I |
"1. Adenosine or dipyridamole myocardial perfusion imaging or dobutamine echocardiography in patients with an intermediate pretest probability of CAD. (Level of Evidence: B)" |
"2. Adenosine or dipyridamole stress myocardial perfusion imaging or dobutamine echocardiography in patients with prior revascularization (either PTCA or CABG). (Level of Evidence: B)" |
Class IIb |
"1. Adenosine or dipyridamole stress myocardial perfusion imaging or dobutamine echocardiography in patients with a low or high probability of CAD in the absence of electronically paced ventricular rhythm or left bundle-branch block. (Level of Evidence: B)" |
"2. Adenosine or dipyridamole myocardial perfusion imaging in patients with a low or high probability of CAD and 1 of the following baseline ECG abnormalities: |
a. Electronically paced ventricular rhythm. (Level of Evidence: C) |
b. Left bundle-branch block. (Level of Evidence: B)" |
ESC Guidelines- Exercise Stress with Imaging Techniques (either Echocardiography or Perfusion) in the Initial Diagnostic Assessment of Angina (DO NOT EDIT)[11]
Class I |
"1. Patients with resting ECG abnormalities, LBBB, more than 1 mm ST depression, paced rhythm, or WPW which prevent accurate interpretation of ECG changes during stress. (Level of Evidence: B)" |
"2. Patients with a non-conclusive exercise ECG but reasonable exercise tolerance, who do not have a high probability of significant coronary artery disease and in whom the diagnosis is still in doubt. (Level of Evidence: B)" |
Class IIa |
"1. Patients with prior revascularization (PCI or CABG) in whom localization of ischaemia is important. (Level of Evidence: B)" |
"2. As an alternative to exercise ECG in patients where facilities, cost, and personnel resources allow. (Level of Evidence: B)" |
"3. As an alternative to exercise ECG in patients with a low pre-test probability of disease such as women with atypical chest pain. (Level of Evidence: B)" |
"4. To assess functional severity of intermediate lesions on coronary arteriography. (Level of Evidence: C)" |
"5. To localize ischaemia when planning revascularization options in patients who have already had arteriography. (Level of Evidence: B)" |
References
- ↑ Anselmi M, Golia G, Maines M, Marino P, Goj C, Turri M et al. (2000) Comparison between low-dose dobutamine echocardiography and thallium-201 scintigraphy in the detection of myocardial viability in patients with recent myocardial infarction. Int J Cardiol 73 (3):213-23. PMID: 10841962
- ↑ Bax JJ, Visser FC, Poldermans D, Elhendy A, Cornel JH, Boersma E et al. (2001) Time course of functional recovery of stunned and hibernating segments after surgical revascularization. Circulation 104 (12 Suppl 1):I314-8. PMID: 11568075
- ↑ Mädler CF, Payne N, Wilkenshoff U, Cohen A, Derumeaux GA, Piérard LA et al. (2003) Non-invasive diagnosis of coronary artery disease by quantitative stress echocardiography: optimal diagnostic models using off-line tissue Doppler in the MYDISE study. Eur Heart J 24 (17):1584-94. PMID: 12927194
- ↑ Yip G, Khandheria B, Belohlavek M, Pislaru C, Seward J, Bailey K et al. (2004) Strain echocardiography tracks dobutamine-induced decrease in regional myocardial perfusion in nonocclusive coronary stenosis. J Am Coll Cardiol 44 (8):1664-71. DOI:10.1016/j.jacc.2004.02.065 PMID: 15489101
- ↑ Cain P, Baglin T, Case C, Spicer D, Short L, Marwick TH (2001) Application of tissue Doppler to interpretation of dobutamine echocardiography and comparison with quantitative coronary angiography. Am J Cardiol 87 (5):525-31. PMID: 11230833
- ↑ Voigt JU, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U et al. (2003) Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation 107 (16):2120-6. DOI:10.1161/01.CIR.0000065249.69988.AA PMID: 12682001
- ↑ Yip G, Abraham T, Belohlavek M, Khandheria BK (2003) Clinical applications of strain rate imaging. J Am Soc Echocardiogr 16 (12):1334-42. DOI:10.1067/j.echo.2003.09.004 PMID: 14652617
- ↑ Schinkel AF, Bax JJ, Geleijnse ML, Boersma E, Elhendy A, Roelandt JR et al. (2003) Noninvasive evaluation of ischaemic heart disease: myocardial perfusion imaging or stress echocardiography? Eur Heart J 24 (9):789-800. PMID: 12727146
- ↑ 9.0 9.1 Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP; et al. (2012). "2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons". Circulation. 126 (25): 3097–137. doi:10.1161/CIR.0b013e3182776f83. PMID 23166210.
- ↑ 10.0 10.1 Gibbons RJ, Chatterjee K, Daley J, Douglas JS, Fihn SD, Gardin JM; et al. (1999). "ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina: executive summary and recommendations. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Chronic Stable Angina)". Circulation. 99 (21): 2829–48. PMID 10351980.
- ↑ Fox K, Garcia MA, Ardissino D, Buszman P, Camici PG, Crea F; et al. (2006). "Guidelines on the management of stable angina pectoris: executive summary: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology". Eur Heart J. 27 (11): 1341–81. doi:10.1093/eurheartj/ehl001. PMID 16735367.