Percutaneous coronary intervention (PCI): Difference between revisions

Jump to navigation Jump to search
(Vascular access)
 
(235 intermediate revisions by 5 users not shown)
Line 1: Line 1:
'''For patient information click [[Angioplasty (patient information)|here]]'''
#redirect[[Percutaneous coronary intervention: basic principles and guidelines]]
 
{{SI}}
{{CMG}}; {{AOEIC}} {{LG}}
 
==Epidemiology and Demographics==
* Approximately 850,000 PCIs are performed each year in the United States.
 
==Imaging Studies During PCI==
====Intravascular Ultrasound Imaging:====
* ''Class IIa''
IVUS is reasonable for the following: a. Assessment of the adequacy of deployment of coronary stents, including the extent of stent apposition
and determination of the minimum luminal diameter
within the stent. (Level of Evidence: B)
b. Determination of the mechanism of stent restenosis
(inadequate expansion versus neointimal proliferation)
and to enable selection of appropriate therapy
(vascular brachytherapy versus repeat balloon
expansion). (Level of Evidence: B)
c. Evaluation of coronary obstruction at a location
difficult to image by angiography in a patient with
a suspected flow-limiting stenosis. (Level of
Evidence: C)
d. Assessment of a suboptimal angiographic result
after PCI. (Level of Evidence: C)
e. Establishment of the presence and distribution of
coronary calcium in patients for whom adjunctive
rotational atherectomy is contemplated. (Level of
Evidence: C)
f. Determination of plaque location and circumferential
distribution for guidance of directional coronary
atherectomy. (Level of Evidence: B)
* ''Class IIb''
IVUS may be considered for the following:
a. Determination of the extent of atherosclerosis in
patients with characteristic anginal symptoms and
a positive functional study with no focal stenoses or
mild CAD on angiography. (Level of Evidence: C)
b. Preinterventional assessment of lesional characteristics
and vessel dimensions as a means to select an
optimal revascularization device. (Level of Evidence: C)
c. Diagnosis of coronary disease after cardiac transplantation.
(Level of Evidence: C)
* ''Class III''
IVUS is not recommended when the angiographic
diagnosis is clear and no interventional treatment is
planned. (Level of Evidence: C)
 
====Coronary Artery Pressure and Flow: Use of Fractional Flow Reserve and Coronary Vasodilatory Reserve<ref name="pmid19942100">Kushner FG, Hand M, Smith SC, King SB, Anderson JL, Antman EM et al. (2009) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=19942100 2009 focused updates: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction (updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update) a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.] ''J Am Coll Cardiol'' 54 (23):2205-41. [http://dx.doi.org/10.1016/j.jacc.2009.10.015 DOI:10.1016/j.jacc.2009.10.015] PMID: [http://pubmed.gov/19942100 19942100]</ref>:====
 
* ''Class IIa''
Coronary pressure (fractional flow reserve [FFR]) or Doppler
velocimetry can be useful to determine whether PCI of a
specific coronary lesion is warranted. FFR or Doppler
velocimetry can also be useful as an alternative to
performing noninvasive functional testing (e.g., when the
functional study is absent or ambiguous) to determine
whether an intervention is warranted. It is reasonable to
use intracoronary physiological measurements (coronary
pressure (FFR) (Level of Evidence: A) or
Doppler velocimetry (Level of Evidence: C)) in the
assessment of the effects of intermediate coronary
stenoses (30% to 70% luminal narrowing) in patients with
anginal symptoms.
* ''Class IIb''
1. Intracoronary physiologic measurements may be considered
for the evaluation of the success of PCI in
restoring flow reserve and to predict the risk of
restenosis. (Level of Evidence: C)
2. Intracoronary physiologic measurements may be considered
for the evaluation of patients with anginal
symptoms without an apparent angiographic culprit
lesion. (Level of Evidence: C)
* ''Class III''
Routine assessment with intracoronary physiological
measurements such as coronary pressure (FFR) or Doppler
ultrasound to assess the severity of angiographic disease in
concordant vascular distribution in patients with angina and
a positive, unequivocal noninvasive functional study is not
recommended. (Level of Evidence: C)
 
==Treatment==
Any recommendations found on these pages are for education use only.  wiki doc is not a substitute for a licensed healthcare provider. Please see the disclaimers page for important information regarding limitations of the information found here. In recommending therapies, wiki doc suggests that the following classification scheme be used. This is the classification scheme used by the [[ACC AHA guidelines classification scheme|ACC / AHA Guidelines Committee]].
Use the '''[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class]]''' designation to indicate whether the therapy is recommended or not and the certainty surrounding that recommendation. Use the '''[[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence]]''' designation to indicate the strength of the data associated with that recommendation.
 
==Classification of Recommendations==
* Class I: Conditions for which there is evidence and/or general agreement that a given procedure or treatment is beneficial, useful, and effective.
 
* Class II: Conditions for which there is conflicting evidence and/or a divergence of opinion about the usefulness/efficacy of a procedure or treatment.
 
* Class IIa: Weight of evidence/opinion is in favor of usefulness/efficacy.
 
* Class IIb: Usefulness/efficacy is less well established by evidence/opinion.
 
* Class III: Conditions for which there is evidence and/or general agreement that a procedure/treatment is not useful/effective and in some cases may be harmful.
 
==Level of Evidence==
* Level of Evidence A: Data derived from multiple randomized clinical trials or meta-analyses.
* Level of Evidence B: Data derived from a single randomized trial, or nonrandomized studies.
* Level of Evidence C: Only consensus opinion of experts,case studies, or standard-of-care.
 
wiki doc cites here the ACC / AHA Guidelines Based Therapy for ST Elevation MI.  '''DO NOT EDIT THESE GUIDELINES'''.  You can make comments regarding the guidelines in the discussion section.
 
==Institutional and Operator Competency==
===Quality Assurance===
* ''Class I''
1. An institution that performs PCI should establish an
ongoing mechanism for valid peer review of its quality
and outcomes. Review should be conducted both at
the level of the entire program and at the level of the
individual practitioner. Quality-assessment reviews
should take risk adjustment, statistical power, and
national benchmark statistics into consideration.
Quality-assessment reviews should include both tabulation
of adverse event rates for comparison with
benchmark values and case review of complicated
procedures and some uncomplicated procedures.
(Level of Evidence: C)
2. An institution that performs PCI should participate in
a recognized PCI data registry for the purpose of
benchmarking its outcomes against current national
norms. (Level of Evidence: C)
 
===Operator and Institutional Volume===
* ''Class I''
1. Elective PCI should be performed by operators with
acceptable annual volume (at least 75 procedures) at
high-volume centers (more than 400 procedures) with
onsite cardiac surgery (310,312). (Level of Evidence:
B)
2. Elective PCI should be performed by operators and
institutions whose historical and current risk-adjusted
outcomes statistics are comparable to those reported
in contemporary national data registries. (Level of
Evidence: C)
3. Primary PCI for STEMI should be performed by
experienced operators who perform more than 75
elective PCI procedures per year and, ideally, at least
11 PCI procedures for STEMI per year. Ideally, these
procedures should be performed in institutions that
perform more than 400 elective PCIs per year and
more than 36 primary PCI procedures for STEMI per
year. (Level of Evidence B)
* ''Class IIa''
1. It is reasonable that operators with acceptable volume
(at least 75 PCI procedures per year) perform PCI at
low-volume centers (200 to 400 PCI procedures per
year) with onsite cardiac surgery (310,312). (Level of
Evidence: B)
2. It is reasonable that low-volume operators (fewer than
75 PCI procedures per year) perform PCI at high-volume
centers (more than 400 PCI procedures per year)
with onsite cardiac surgery (310,312). Ideally, operators
with an annual procedure volume less than 75
should only work at institutions with an activity level
of more than 600 procedures per year. Operators who
perform fewer than 75 procedures per year should
develop a defined mentoring relationship with a highly
experienced operator who has an annual procedural
volume of at least 150 procedures per year. (Level of
Evidence: B)
* ''Class IIb''
The benefit of primary PCI for STEMI patients eligible
for fibrinolysis when performed by an operator
who performs fewer than 75 procedures per year (or
fewer than 11 PCIs for STEMI per year) is not well
established. (Level of Evidence: C)
* ''Class III''
It is not recommended that elective PCI be performed
by low-volume operators (fewer than 75 procedures
per year) at low-volume centers (200 to 400) with or
without onsite cardiac surgery (310,312). An institution
with a volume of fewer than 200 procedures per
year, unless in a region that is underserved because of
geography, should carefully consider whether it
should continue to offer this service. (Level of
Evidence: B)
 
===Role of Onsite Surgical Backup===
* ''Class I''
1. Elective PCI should be performed by operators with
acceptable annual volume (at least 75 procedures per
year) at high-volume centers (more than 400 procedures
annually) that provide immediately available
onsite emergency cardiac surgical services. (Level of
Evidence: B)
2. Primary PCI for patients with STEMI should be performed
in facilities with onsite cardiac surgery. (Level
of Evidence: B)
* ''Class III''
Elective PCI should not be performed at institutions
that do not provide onsite cardiac surgery. (Level of
Evidence: C)*
 
===Primary PCI for [[STEMI]] Without Onsite Cardiac Surgery===
* ''Class IIb''
Primary PCI for patients with STEMI might be considered
in hospitals without onsite cardiac surgery,
provided that appropriate planning for program
development has been accomplished, including appropriately
experienced physician operators (more than
75 total PCIs and, ideally, at least 11 primary PCIs per
year for STEMI), an experienced catheterization team
on a 24 hours per day, 7 days per week call schedule,
and a well-equipped catheterization laboratory with
digital imaging equipment, a full array of interventional
equipment, and intra-aortic balloon pump
capability, and provided that there is a proven plan
for rapid transport to a cardiac surgery operating
room in a nearby hospital with appropriate hemodynamic
support capability for transfer. The procedure
should be limited to patients with STEMI or MI with
new or presumably new left bundle-branch block on
ECG and should be performed in a timely fashion
(goal of balloon inflation within 90 minutes of presentation)
by persons skilled in the procedure (at least 75
PCIs per year) and at hospitals performing a minimum
of 36 primary PCI procedures per year. (Level of
Evidence: B)
* ''Class III''
Primary PCI should not be performed in hospitals
without onsite cardiac surgery and without a proven
plan for rapid transport to a cardiac surgery operating
room in a nearby hospital or without appropriate
hemodynamic support capability for transfer. (Level
of Evidence: C)
 
===Elective PCI Without Onsite Surgery===
* ''Class III''
Elective PCI should not be performed at institutions
that do not provide onsite cardiac surgery. (Level of
Evidence: C)*
 
==Procedural Considerations: Recommendations [http://content.onlinejacc.org/cgi/reprint/58/24/2550.pdf]==
===Vascular Access===
{{cquote|
 
====[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class IIa]]====
 
'''1.''' The use of [[Radial artery catheterization|radial artery access]] can be useful to decrease access site complications.<ref name="pmid19926042">Brueck M, Bandorski D, Kramer W, Wieczorek M, Höltgen R, Tillmanns H (2009) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=19926042 A randomized comparison of transradial versus transfemoral approach for coronary angiography and angioplasty.] ''JACC Cardiovasc Interv'' 2 (11):1047-54. [http://dx.doi.org/10.1016/j.jcin.2009.07.016 DOI:10.1016/j.jcin.2009.07.016] PMID: [http://pubmed.gov/19926042 19926042]</ref><ref name="pmid17191214">Jaffe R, Hong T, Sharieff W, Chisholm RJ, Kutryk MJ, Charron T et al. (2007) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=17191214 Comparison of radial versus femoral approach for percutaneous coronary interventions in octogenarians.] ''Catheter Cardiovasc Interv'' 69 (6):815-20. [http://dx.doi.org/10.1002/ccd.21021 DOI:10.1002/ccd.21021] PMID: [http://pubmed.gov/17191214 17191214]</ref><ref name="pmid19081409">Jolly SS, Amlani S, Hamon M, Yusuf S, Mehta SR (2009) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=19081409 Radial versus femoral access for coronary angiography or intervention and the impact on major bleeding and ischemic events: a systematic review and meta-analysis of randomized trials.] ''Am Heart J'' 157 (1):132-40. [http://dx.doi.org/10.1016/j.ahj.2008.08.023 DOI:10.1016/j.ahj.2008.08.023] PMID: [http://pubmed.gov/19081409 19081409]</ref><ref name="pmid15518616">Louvard Y, Benamer H, Garot P, Hildick-Smith D, Loubeyre C, Rigattieri S et al. (2004) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=15518616 Comparison of transradial and transfemoral approaches for coronary angiography and angioplasty in octogenarians (the OCTOPLUS study).] ''Am J Cardiol'' 94 (9):1177-80. [http://dx.doi.org/10.1016/j.amjcard.2004.07.089 DOI:10.1016/j.amjcard.2004.07.089] PMID: [http://pubmed.gov/15518616 15518616]</ref><ref name="pmid19036757">Pristipino C, Trani C, Nazzaro MS, Berni A, Patti G, Patrizi R et al. (2009) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=19036757 Major improvement of percutaneous cardiovascular procedure outcomes with radial artery catheterisation: results from the PREVAIL study.] ''Heart'' 95 (6):476-82. [http://dx.doi.org/10.1136/hrt.2008.150714 DOI:10.1136/hrt.2008.150714] PMID: [http://pubmed.gov/19036757 19036757]</ref><ref name="pmid19463333">Rao SV, Ou FS, Wang TY, Roe MT, Brindis R, Rumsfeld JS et al. (2008) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=19463333 Trends in the prevalence and outcomes of radial and femoral approaches to percutaneous coronary intervention: a report from the National Cardiovascular Data Registry.] ''JACC Cardiovasc Interv'' 1 (4):379-86. [http://dx.doi.org/10.1016/j.jcin.2008.05.007 DOI:10.1016/j.jcin.2008.05.007] PMID: [http://pubmed.gov/19463333 19463333]</ref><ref name="pmid20466199">Rao SV, Cohen MG, Kandzari DE, Bertrand OF, Gilchrist IC (2010) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=20466199 The transradial approach to percutaneous coronary intervention: historical perspective, current concepts, and future directions.] ''J Am Coll Cardiol'' 55 (20):2187-95. [http://dx.doi.org/10.1016/j.jacc.2010.01.039 DOI:10.1016/j.jacc.2010.01.039] PMID: [http://pubmed.gov/20466199 20466199]</ref><ref name="pmid19577992">Hamon M, Rasmussen LH, Manoukian SV, Cequier A, Lincoff MA, Rupprecht HJ et al. (2009) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=19577992 Choice of arterial access site and outcomes in patients with acute coronary syndromes managed with an early invasive strategy: the ACUITY trial.] ''EuroIntervention'' 5 (1):115-20. PMID: [http://pubmed.gov/19577992 19577992]</ref><ref name="pmid21470671">Jolly SS, Yusuf S, Cairns J, Niemelä K, Xavier D, Widimsky P et al. (2011) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=21470671 Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial.] ''Lancet'' 377 (9775):1409-20. [http://dx.doi.org/10.1016/S0140-6736(11)60404-2 DOI:10.1016/S0140-6736(11)60404-2] PMID: [http://pubmed.gov/21470671 21470671]</ref> ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: A]])''}}
 
===Patients With Asymptomatic Ischemia or CCS Class I or II Angina===
* ''Class IIa''
1. PCI is reasonable in patients with asymptomatic
ischemia or CCS class I or II angina and with 1 or
more significant lesions in 1 or 2 coronary arteries
suitable for PCI with a high likelihood of success and
a low risk of morbidity and mortality. The vessels to
be dilated must subtend a moderate to large area of
viable myocardium or be associated with a moderate
to severe degree of ischemia on noninvasive testing.
(Level of Evidence: B)
2. PCI is reasonable for patients with asymptomatic
ischemia or CCS class I or II angina, and recurrent
stenosis after PCI with a large area of viable
myocardium or high-risk criteria on noninvasive testing.
(Level of Evidence: C)
3. Use of PCI is reasonable in patients with asymptomatic
ischemia or CCS class I or II angina with significant
left main CAD (greater than 50% diameter
stenosis) who are candidates for revascularization but
are not eligible for CABG. (Level of Evidence: B)
* ''Class IIb''
1. The effectiveness of PCI for patients with asymptomatic
ischemia or CCS class I or II angina who have
2- or 3-vessel disease with significant proximal LAD
CAD who are otherwise eligible for CABG with 1
arterial conduit and who have treated diabetes or
abnormal LV function is not well established. (Level of
Evidence: B)
2. PCI might be considered for patients with asymptomatic
ischemia or CCS class I or II angina with nonproximal
LAD CAD that subtends a moderate area of
viable myocardium and demonstrates ischemia on
noninvasive testing. (Level of Evidence: C)
* ''Class III''
PCI is not recommended in patients with asymptomatic
ischemia or CCS class I or II angina who do not
meet the criteria as listed under the class II recommendations
or who have 1 or more of the following:
a. Only a small area of viable myocardium at risk
(Level of Evidence: C)
b. No objective evidence of ischemia. (Level of
Evidence: C)
c. Lesions that have a low likelihood of successful
dilatation. (Level of Evidence: C)
d. Mild symptoms that are unlikely to be due to
myocardial ischemia. (Level of Evidence: C)
e. Factors associated with increased risk of morbidity
or mortality. (Level of Evidence: C)
f. Left main disease and eligibility for CABG. (Level
of Evidence: C)
g. Insignificant disease (less than 50% coronary
stenosis). (Level of Evidence: C)
 
===Patients With CCS Class III Angina===
* ''Class IIa''
1. It is reasonable that PCI be performed in patients
with CCS class III angina and single-vessel or multivessel
CAD who are undergoing medical therapy and
who have 1 or more significant lesions in 1 or more
coronary arteries suitable for PCI with a high likelihood
of success and low risk of morbidity or mortality.
(Level of Evidence: B)
2. It is reasonable that PCI be performed in patients
with CCS class III angina with single-vessel or multivessel
CAD who are undergoing medical therapy with
focal saphenous vein graft lesions or multiple stenoses
who are poor candidates for reoperative surgery.
(Level of Evidence: C)
3. Use of PCI is reasonable in patients with CCS class III
angina with significant left main CAD (greater than
50% diameter stenosis) who are candidates for revascularization
but are not eligible for CABG. (Level of
Evidence: B)
* ''Class IIb''
1. PCI may be considered in patients with CCS class III
angina with single-vessel or multivessel CAD who are
undergoing medical therapy and who have 1 or more
lesions to be dilated with a reduced likelihood of success.
(Level of Evidence: B)
2. PCI may be considered in patients with CCS class III
angina and no evidence of ischemia on noninvasive
testing or who are undergoing medical therapy and
have 2- or 3-vessel CAD with significant proximal
LAD CAD and treated diabetes or abnormal LV function.
(Level of Evidence: B)
* ''Class III''
PCI is not recommended for patients with CCS class
III angina with single-vessel or multivessel CAD, no
evidence of myocardial injury or ischemia on objective
testing, and no trial of medical therapy, or who
have 1 of the following:
a. Only a small area of myocardium at risk. (Level of
Evidence: C)
b. All lesions or the culprit lesion to be dilated with
morphology that conveys a low likelihood of success.
(Level of Evidence: C)
c. Ahigh risk of procedure-related morbidity or mortality.
(Level of Evidence: C)
d. Insignificant disease (less than 50% coronary
stenosis). (Level of Evidence: C)
e. Significant left main CAD and candidacy for
CABG. (Level of Evidence: C)
 
===PCI in patients with Unstable Angina/Non–ST-Elevation Myocardial Infarction===
{{cquote|
 
====[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class I]]====
 
'''1.''' An early invasive strategy (i.e., diagnostic angiography with intent to perform revascularization) is indicated in [[UA|UA/NSTEMI]] patients who have refractory angina or hemodynamic or electrical instability (without serious comorbidities or contraindications to such procedures).<ref name="pmid17010789">Bavry AA, Kumbhani DJ, Rassi AN, Bhatt DL, Askari AT (2006) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=17010789 Benefit of early invasive therapy in acute coronary syndromes: a meta-analysis of contemporary randomized clinical trials.] ''J Am Coll Cardiol'' 48 (7):1319-25. [http://dx.doi.org/10.1016/j.jacc.2006.06.050 DOI:10.1016/j.jacc.2006.06.050] PMID: [http://pubmed.gov/17010789 17010789]</ref><ref name="pmid11419424">Cannon CP, Weintraub WS, Demopoulos LA, Vicari R, Frey MJ, Lakkis N et al. (2001) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=11419424 Comparison of early invasive and conservative strategies in patients with unstable coronary syndromes treated with the glycoprotein IIb/IIIa inhibitor tirofiban.] ''N Engl J Med'' 344 (25):1879-87. [http://dx.doi.org/10.1056/NEJM200106213442501 DOI:10.1056/NEJM200106213442501] PMID: [http://pubmed.gov/11419424 11419424]</ref><ref name="pmid20359842">Fox KA, Clayton TC, Damman P, Pocock SJ, de Winter RJ, Tijssen JG et al. (2010) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=20359842 Long-term outcome of a routine versus selective invasive strategy in patients with non-ST-segment elevation acute coronary syndrome a meta-analysis of individual patient data.] ''J Am Coll Cardiol'' 55 (22):2435-45. [http://dx.doi.org/10.1016/j.jacc.2010.03.007 DOI:10.1016/j.jacc.2010.03.007] PMID: [http://pubmed.gov/20359842 20359842]</ref> ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: B]])''
 
'''2.''' An early invasive strategy (i.e., diagnostic angiography with intent to perform revascularization) is indicated in initially stabilized [[UA|UA/NSTEMI]] patients (without serious comorbidities or contraindications to such procedures) who have an elevated risk for clinical events.<ref name="pmid11419424">Cannon CP, Weintraub WS, Demopoulos LA, Vicari R, Frey MJ, Lakkis N et al. (2001) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=11419424 Comparison of early invasive and conservative strategies in patients with unstable coronary syndromes treated with the glycoprotein IIb/IIIa inhibitor tirofiban.] ''N Engl J Med'' 344 (25):1879-87. [http://dx.doi.org/10.1056/NEJM200106213442501 DOI:10.1056/NEJM200106213442501] PMID: [http://pubmed.gov/11419424 11419424]</ref><ref name="pmid20359842">Fox KA, Clayton TC, Damman P, Pocock SJ, de Winter RJ, Tijssen JG et al. (2010) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=20359842 Long-term outcome of a routine versus selective invasive strategy in patients with non-ST-segment elevation acute coronary syndrome a meta-analysis of individual patient data.] ''J Am Coll Cardiol'' 55 (22):2435-45. [http://dx.doi.org/10.1016/j.jacc.2010.03.007 DOI:10.1016/j.jacc.2010.03.007] PMID: [http://pubmed.gov/20359842 20359842]</ref><ref name="pmid10475181"> (1999) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=10475181 Invasive compared with non-invasive treatment in unstable coronary-artery disease: FRISC II prospective randomised multicentre study. FRagmin and Fast Revascularisation during InStability in Coronary artery disease Investigators.] ''Lancet'' 354 (9180):708-15. PMID: [http://pubmed.gov/10475181 10475181]</ref><ref name="pmid19458363">Mehta SR, Granger CB, Boden WE, Steg PG, Bassand JP, Faxon DP et al. (2009) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=19458363 Early versus delayed invasive intervention in acute coronary syndromes.] ''N Engl J Med'' 360 (21):2165-75. [http://dx.doi.org/10.1056/NEJMoa0807986 DOI:10.1056/NEJMoa0807986] PMID: [http://pubmed.gov/19458363 19458363]</ref> ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: A]])''
 
'''3.''' The selection of PCI or CABG as the means of revascularization in the patient with [[acute coronary syndrome]] ([[ACS]]) should generally be based on the same considerations as those without ACS.<ref name="pmid8622299">Jones RH, Kesler K, Phillips HR, Mark DB, Smith PK, Nelson CL et al. (1996) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=8622299 Long-term survival benefits of coronary artery bypass grafting and percutaneous transluminal angioplasty in patients with coronary artery disease.] ''J Thorac Cardiovasc Surg'' 111 (5):1013-25. PMID: [http://pubmed.gov/8622299 8622299]</ref><ref name="pmid20359842">Fox KA, Clayton TC, Damman P, Pocock SJ, de Winter RJ, Tijssen JG et al. (2010) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=20359842 Long-term outcome of a routine versus selective invasive strategy in patients with non-ST-segment elevation acute coronary syndrome a meta-analysis of individual patient data.] ''J Am Coll Cardiol'' 55 (22):2435-45. [http://dx.doi.org/10.1016/j.jacc.2010.03.007 DOI:10.1016/j.jacc.2010.03.007] PMID: [http://pubmed.gov/20359842 20359842]</ref><ref name="pmid16098419">Rodriguez AE, Baldi J, Fernández Pereira C, Navia J, Rodriguez Alemparte M, Delacasa A et al. (2005) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=16098419 Five-year follow-up of the Argentine randomized trial of coronary angioplasty with stenting versus coronary bypass surgery in patients with multiple vessel disease (ERACI II).] ''J Am Coll Cardiol'' 46 (4):582-8. [http://dx.doi.org/10.1016/j.jacc.2004.12.081 DOI:10.1016/j.jacc.2004.12.081] PMID: [http://pubmed.gov/16098419 16098419]</ref><ref name="pmid17258088">Valgimigli M, Dawkins K, Macaya C, de Bruyne B, Teiger E, Fajadet J et al. (2007) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=17258088 Impact of stable versus unstable coronary artery disease on 1-year outcome in elective patients undergoing multivessel revascularization with sirolimus-eluting stents: a subanalysis of the ARTS II trial.] ''J Am Coll Cardiol'' 49 (4):431-41. [http://dx.doi.org/10.1016/j.jacc.2006.06.081 DOI:10.1016/j.jacc.2006.06.081] PMID: [http://pubmed.gov/17258088 17258088]</ref> ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: B]])''
 
====[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class III]]====
 
'''1.''' An early invasive strategy (i.e., diagnostic angiography with intent to perform revascularization) is not recommended in patients with extensive co-morbidities (e.g., [[liver failure|liver]] or [[pulmonary failure]], cancer) in whom:
 
:'''a.''' The risks of revascularization and comorbid conditions are likely to outweigh the benefits of revascularization, ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: C]])''
 
:'''b.''' There is a low likelihood of ACS despite acute chest pain, or ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: C]])''
 
:'''c.''' Consent to revascularization will not be granted regardless of the findings. ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: C]])''}}
 
===Patients With STEMI: General and Specific Considerations===
* ''Class I''
===General considerations===
1. If immediately available, primary PCI should be performed
in patients with STEMI (including true posterior
MI) or MI with new or presumably new left bundle-
branch block who can undergo PCI of the infarct
artery within 12 hours of symptom onset, if performed
in a timely fashion (balloon inflation goal
within 90 minutes of presentation) by persons skilled
in the procedure (individuals who perform more than
75 PCI procedures per year, ideally at least 11 PCIs
per year for STEMI). The procedure should be supported
by experienced personnel in an appropriate
laboratory environment (one that performs more than
200 PCI procedures per year, of which at least 36 are
primary PCI for STEMI, and that has cardiac surgery
capability). (Level of Evidence: A) Primary PCI
should be performed as quickly as possible, with a
goal of a medical contact-to-balloon or door-to-balloon
time within 90 minutes. (Level of Evidence: B)
 
===Specific Considerations===
2. Primary PCI should be performed for patients less
than 75 years old with ST elevation or presumably
new left bundle-branch block who develop shock
within 36 hours of MI and are suitable for revascularization
that can be performed within 18 hours of shock, unless further support is futile because of the patient’s wishes or contraindications/unsuitability for further invasive care. (Level of Evidence: A)
3. Primary PCI should be performed in patients with severe congestive heart failure and/or pulmonary edema (Killip class 3) and onset of symptoms within 12 hours. The medical contact-to-balloon or door-to balloon time should be as short as possible (i.e., goal within 90 minutes). (Level of Evidence: B)
* ''Class IIa''
1. Primary PCI is reasonable for selected patients 75
years or older with ST elevation or left bundle-branch
block or who develop shock within 36 hours of MI and
are suitable for revascularization that can be performed
within 18 hours of shock. Patients with good
prior functional status who are suitable for revascularization
and agree to invasive care may be selected
for such an invasive strategy. (Level of Evidence: B)
2. It is reasonable to perform primary PCI for patients
with onset of symptoms within the prior 12 to 24
hours and 1 or more of the following:
a. Severe congestive heart failure (Level of Evidence: C)
b. Hemodynamic or electrical instability (Level of Evidence: C)
c. Evidence of persistent ischemia (Level of Evidence: C)
* ''Class IIb''
The benefit of primary PCI for STEMI patients eligible
for fibrinolysis when performed by an operator
who performs fewer than 75 PCI procedures per year
(or fewer than 11 PCIs for STEMI per year) is not well
established. (Level of Evidence: C)
* ''Class III''
1. Elective PCI should not be performed in a noninfarct-
related artery at the time of primary PCI of
the infarct related artery in patients without hemodynamic
compromise. (Level of Evidence: C)
2. Primary PCI should not be performed in asymptomatic
patients more than 12 hours after onset of STEMI who are hemodynamically and electrically
stable. (Level of Evidence: C)
 
===PCI in Fibrinolytic-Ineligible Patients===
* ''Class I''
Primary PCI should be performed in fibrinolytic-ineligible
patients who present with STEMI within 12
hours of symptom onset. (Level of Evidence: C)
* ''Class IIa''
It is reasonable to perform primary PCI for fibrinolytic-
ineligible patients with onset of symptoms
within the prior 12 to 24 hours and 1 or more of the
following:
a. Severe congestive heart failure. (Level of Evidence: C)
b. Hemodynamic or electrical instability. (Level of Evidence: C)
c. Evidence of persistent ischemia. (Level of Evidence: C)
 
===Facilitated PCI===
* ''Class IIb''
Facilitated PCI might be performed as a reperfusion
strategy in higher-risk patients when PCI is not immediately
available and bleeding risk is low. (Level of Evidence: B)
 
===PCI After Failed Fibrinolysis (Rescue PCI)===
* ''Class I''
1. Rescue PCI should be performed in patients less than
75 years old with ST elevation or left bundle-branch
block who develop shock within 36 hours of MI and
are suitable for revascularization that can be performed
within 18 hours of shock, unless further support
is futile because of the patient’s wishes or contraindications/
unsuitability for further invasive care.
(Level of Evidence: B)
2. Rescue PCI should be performed in patients with
severe congestive heart failure and/or pulmonary
edema (Killip class 3) and onset of symptoms within
12 hours. (Level of Evidence: B)
* ''Class IIa''
1. Rescue PCI is reasonable for selected patients 75
years or older with ST elevation or left bundle-branch
block or who develop shock within 36 hours of MI and
are suitable for revascularization that can be performed
within 18 hours of shock. Patients with good
prior functional status who are suitable for revascularization
and agree to invasive care may be selected
for such an invasive strategy. (Level of Evidence: B)
2. It is reasonable to perform rescue PCI for patients
with 1 or more of the following:
a. Hemodynamic or electrical instability. (Level of Evidence: C)
b. Evidence of persistent ischemia. (Level of Evidence: C)
* ''Class III''
Rescue PCI in the absence of 1 or more of the above
class I or IIa indications is not recommended. (Level of
Evidence: C)
 
===PCI After Successful Fibrinolysis or for Patients Not Undergoing Primary Reperfusion===
* ''Class I''
1. In patients whose anatomy is suitable, PCI should be
performed when there is objective evidence of recurrent
MI. (Level of Evidence: C)
2. In patients whose anatomy is suitable, PCI should be
performed for moderate or severe spontaneous or
provocable myocardial ischemia during recovery
from STEMI. (Level of Evidence: B)
3. In patients whose anatomy is suitable, PCI should be
performed for cardiogenic shock or hemodynamic
instability. (Level of Evidence: B)
* ''Class IIa''
1. It is reasonable to perform routine PCI in patients
with LV ejection fraction less than or equal to 0.40,
HF, or serious ventricular arrhythmias. (Level of Evidence: C)
2. It is reasonable to perform PCI when there is documented
clinical heart failure during the acute episode,
even though subsequent evaluation shows preserved
LV function (LV ejection fraction greater than 0.40). (Level of Evidence: C)
* ''Class IIb''
PCI might be considered as part of an invasive strategy
after fibrinolytic therapy. (Level of Evidence: C)
 
===PCI in patients with Cardiogenic Shock===
{{cquote|
 
====[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class I]]====
 
'''1.''' PCI is recommended for patients with [[MI|acute myocardial infarction]] who develop [[cardiogenic shock]] and are suitable candidates.<ref name="pmid10460813">Hochman JS, Sleeper LA, Webb JG, Sanborn TA, White HD, Talley JD et al. (1999) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=10460813 Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock.] ''N Engl J Med'' 341 (9):625-34. [http://dx.doi.org/10.1056/NEJM199908263410901 DOI:10.1056/NEJM199908263410901] PMID: [http://pubmed.gov/10460813 10460813]</ref><ref name="pmid11176812">Hochman JS, Sleeper LA, White HD, Dzavik V, Wong SC, Menon V et al. (2001) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=11176812 One-year survival following early revascularization for cardiogenic shock.] ''JAMA'' 285 (2):190-2. PMID: [http://pubmed.gov/11176812 11176812]</ref><ref name="pmid16757723">Hochman JS, Sleeper LA, Webb JG, Dzavik V, Buller CE, Aylward P et al. (2006) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=16757723 Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction.] ''JAMA'' 295 (21):2511-5. [http://dx.doi.org/10.1001/jama.295.21.2511 DOI:10.1001/jama.295.21.2511] PMID: [http://pubmed.gov/16757723 16757723]</ref><ref name="pmid10383377">Urban P, Stauffer JC, Bleed D, Khatchatrian N, Amann W, Bertel O et al. (1999) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=10383377 A randomized evaluation of early revascularization to treat shock complicating acute myocardial infarction. The (Swiss) Multicenter Trial of Angioplasty for Shock-(S)MASH.] ''Eur Heart J'' 20 (14):1030-8. [http://dx.doi.org/10.1053/euhj.1998.1353 DOI:10.1053/euhj.1998.1353] PMID: [http://pubmed.gov/10383377 10383377]</ref> ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: B]])''
 
'''2.''' A hemodynamic support device is recommended for patients with [[cardiogenic shock]] after [[STEMI]] who do not quickly stabilize with pharmacological therapy.<ref name="pmid10460813">Hochman JS, Sleeper LA, Webb JG, Sanborn TA, White HD, Talley JD et al. (1999) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=10460813 Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock.] ''N Engl J Med'' 341 (9):625-34. [http://dx.doi.org/10.1056/NEJM199908263410901 DOI:10.1056/NEJM199908263410901] PMID: [http://pubmed.gov/10460813 10460813]</ref><ref name="pmid10985715">Sanborn TA, Sleeper LA, Bates ER, Jacobs AK, Boland J, French JK et al. (2000) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=10985715 Impact of thrombolysis, intra-aortic balloon pump counterpulsation, and their combination in cardiogenic shock complicating acute myocardial infarction: a report from the SHOCK Trial Registry. SHould we emergently revascularize Occluded Coronaries for cardiogenic shocK?] ''J Am Coll Cardiol'' 36 (3 Suppl A):1123-9. PMID: [http://pubmed.gov/10985715 10985715]</ref><ref name="pmid12912817">Chen EW, Canto JG, Parsons LS, Peterson ED, Littrell KA, Every NR et al. (2003) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=12912817 Relation between hospital intra-aortic balloon counterpulsation volume and mortality in acute myocardial infarction complicated by cardiogenic shock.] ''Circulation'' 108 (8):951-7. [http://dx.doi.org/10.1161/01.CIR.0000085068.59734.E4 DOI:10.1161/01.CIR.0000085068.59734.E4] PMID: [http://pubmed.gov/12912817 12912817]</ref><ref name="pmid11376306">Barron HV, Every NR, Parsons LS, Angeja B, Goldberg RJ, Gore JM et al. (2001) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=11376306 The use of intra-aortic balloon counterpulsation in patients with cardiogenic shock complicating acute myocardial infarction: data from the National Registry of Myocardial Infarction 2.] ''Am Heart J'' 141 (6):933-9. [http://dx.doi.org/10.1067/mhj.2001.115295 DOI:10.1067/mhj.2001.115295] PMID: [http://pubmed.gov/11376306 11376306]</ref><ref name="pmid18250279">Reynolds HR, Hochman JS (2008) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=18250279 Cardiogenic shock: current concepts and improving outcomes.] ''Circulation'' 117 (5):686-97. [http://dx.doi.org/10.1161/CIRCULATIONAHA.106.613596 DOI:10.1161/CIRCULATIONAHA.106.613596] PMID: [http://pubmed.gov/18250279 18250279]</ref> ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: B]])''}}
 
===Percutaneous Intervention in Patients With Prior Coronary Bypass Surgery===
* ''Class I''
1. When technically feasible, PCI should be performed
in patients with early ischemia (usually within 30
days) after CABG. (Level of Evidence: B)
2. It is recommended that distal embolic protection
devices be used when technically feasible in patients
undergoing PCI to saphenous vein grafts. (Level of Evidence: B)
* ''Class IIa''
1. PCI is reasonable in patients with ischemia that
occurs 1 to 3 years after CABG and who have preserved
LV function with discrete lesions in graft conduits. (Level of Evidence: B)
2. PCI is reasonable in patients with disabling angina
secondary to new disease in a native coronary circulation
after CABG. (If angina is not typical, objective evidence of ischemia should be obtained.) (Level of Evidence: B)
3. PCI is reasonable in patients with diseased vein grafts
more than 3 years after CABG. (Level of Evidence: B)
4. PCI is reasonable when technically feasible in patients
with a patent left internal mammary artery graft who
have clinically significant obstructions in other vessels.
(Level of Evidence: C)
* ''Class III''
1. PCI is not recommended in patients with prior CABG
for chronic total vein graft occlusions. (Level of
Evidence: B)
2. PCI is not recommended in patients who have multiple
target lesions with prior CABGand who have multivessel
disease, failure of multiple SVGs, and
impaired LV function unless repeat CABG poses
excessive risk due to severe comorbid conditions. (Level of Evidence: B)
 
==Antiplatelet and Antithrombotic Adjunctive Therapies for PCI==
 
==Oral Antiplatelet Therapy==
 
===Guidelines (DO NOT EDIT)===
* ''Class I''
1. Patients already taking daily chronic aspirin therapy
should take 75 to 325 mg of aspirin before the PCI
procedure is performed. (Level of Evidence: A)
2. Patients not already taking daily chronic aspirin therapy
should be given 300 to 325 mg of aspirin at least 2
hours and preferably 24 hours before the PCI procedure
is performed. (Level of Evidence: C)
3. After the PCI procedure, in patients with neither
aspirin resistance, allergy, nor increased risk of bleeding,
aspirin 325 mg daily should be given for at least 1
month after bare-metal stent implantation, 3 months
after sirolimus-eluting stent implantation, and 6
months after paclitaxel-eluting stent implantation,
after which daily chronic aspirin use should be continued
indefinitely at a dose of 75 to 162 mg. (Level of
Evidence: B)
4. A loading dose of clopidogrel should be administered
before PCI is performed. (Level of Evidence: A) An
oral loading dose of 300 mg, administered at least 6
hours before the procedure, has the best established
evidence of efficacy. (Level of Evidence: B)
5. In patients who have undergone PCI, clopidogrel 75
mg daily should be given for at least 1 month after
bare-metal stent implantation (unless the patient is at
increased risk of bleeding; then it should be given for
a minimum of 2 weeks), 3 months after sirolimus stent
implantation, and 6 months after paclitaxel stent
implantation, and ideally up to 12 months in patients
who are not at high risk of bleeding. (Level of
Evidence: B)
 
* ''Class IIa''
1. If clopidogrel is given at the time of procedure, supplementation
with GP IIb/IIIa receptor antagonists
can be beneficial to facilitate earlier platelet inhibition
than with clopidogrel alone. (Level of Evidence: B)
2. For patients with an absolute contraindication to
aspirin, it is reasonable to give a 300-mg loading dose
of clopidogrel, administered at least 6 hours before
PCI, and/or GP IIb/IIIa antagonists, administered at
the time of PCI. (Level of Evidence: C)
3. When a loading dose of clopidogrel is administered, a
regimen of greater than 300 mg is reasonable to
achieve higher levels of antiplatelet activity more rapidly,
but the efficacy and safety compared with a 300-
mg loading dose are less established. (Level of Evidence: C)
4. It is reasonable that patients undergoing brachytherapy
be given daily clopidogrel 75 mg indefinitely and
daily aspirin 75 to 325 mg indefinitely unless there is
significant risk for bleeding. (Level of Evidence: C)
 
* ''Class IIb''
In patients in whom subacute thrombosis may be catastrophic
or lethal (unprotected left main, bifurcating
left main, or last patent coronary vessel), platelet
aggregation studies may be considered and the dose of
clopidogrel increased to 150 mg per day if less than
50% inhibition of platelet aggregation is demonstrated.
(Level of Evidence: C)
 
==Glycoprotein IIb/IIIa Inhibitors==
 
===Guidelines (DO NOT EDIT)===
* ''Class I''
In patients with UA/NSTEMI undergoing PCI without
clopidogrel administration, a GP IIb/IIIa inhibitor
(abciximab, eptifibatide, or tirofiban) should be
administered. (Level of Evidence: A)*
* ''Class IIa''
1. In patients with UA/NSTEMI undergoing PCI with
clopidogrel administration, it is reasonable to administer
a GP IIb/IIIa inhibitor (abciximab, eptifibatide,
or tirofiban). (Level of Evidence: B)*
2. In patients with STEMI undergoing PCI, it is reasonable
to administer abciximab as early as possible.
(Level of Evidence: B)
3. In patients undergoing elective PCI with stent placement,
it is reasonable to administer a GP IIb/IIIa
inhibitor (abciximab, eptifibatide, or tirofiban). (Level
of Evidence: B)
 
* ''Class IIb''
In patients with STEMI undergoing PCI, treatment
with eptifibatide or tirofiban may be considered.
(Level of Evidence: C)
* *It is acceptable to administer the GP IIb/IIIa inhibitor before performance
of the diagnostic angiogram (“upstream treatment”) or just before
PCI (“in-lab treatment”).
 
==Antithrombotic Therapy: Unfractionated Heparin, LowMolecular Weight Heparin, and Bivalirudin==
 
===Guidelines (DO NOT EDIT)===
* ''Class I''
1. Unfractionated heparin should be administered to
patients undergoing PCI. (Level of Evidence: C)
2. For patients with heparin-induced thrombocytopenia,
it is recommended that bivalirudin or argatroban be
used to replace heparin. (Level of Evidence: B)
* ''Class IIa''
1. It is reasonable to use bivalirudin as an alternative to
unfractionated heparin and glycoprotein IIb/IIIa
antagonists in low-risk patients undergoing elective
PCI. (Level of Evidence: B)
2. Low-molecular-weight heparin is a reasonable alternative
to unfractionated heparin in patients with
UA/NSTEMI undergoing PCI. (Level of Evidence: B)
* ''Class IIb''
Low-molecular-weight heparin may be considered as
an alternative to unfractionated heparin in patients
with STEMI undergoing PCI. (Level of Evidence: B)
 
 
== Surgery and Device Based Therapy ==
'''Acute Results'''
* ''Class I''
It is recommended that distal embolic protection
devices be used when technically feasible in patients
undergoing PCI to saphenous vein grafts. (Level of
Evidence: B)
 
'''Drug-Eluting Stents'''<ref name="pmid19942100">Kushner FG, Hand M, Smith SC, King SB, Anderson JL, Antman EM et al. (2009) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=19942100 2009 focused updates: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction (updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update) a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.] ''J Am Coll Cardiol'' 54 (23):2205-41. [http://dx.doi.org/10.1016/j.jacc.2009.10.015 DOI:10.1016/j.jacc.2009.10.015] PMID: [http://pubmed.gov/19942100 19942100]</ref>
* ''Class I''
A drug-eluting stent (DES) should be considered as an
alternative to the bare-metal stent in subsets of
patients in whom trial data suggest efficacy. (Level of
Evidence: A)
* ''Class IIa''
It is reasonable to use a DES as an alternative to a
BMS for primary PCI in STEMI. (Level of
Evidence: B)
* ''Class IIb''
A DES may be considered for clinical and anatomic
settings in which the efficacy/safety profile appears
favorable. (Level of Evidence: B)
 
==Thrombus Aspiration During PCI==
 
*''Class IIa''
Aspiration thrombectomy is reasonable for patients undergoing primary PCI .''(Level of Evidence: B)''
 
==Guideline Resources==
*[http://content.onlinejacc.org/cgi/reprint/54/23/2205.pdf 2009 Focused Updates: ACC/AHA Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction (Updating the 2004 Guideline and 2007 Focused Update) and ACC/AHA/SCAI Guidelines on Percutaneous Coronary Intervention (Updating the 2005 Guideline and 2007 Focused Update)]<ref name="pmid19942100">Kushner FG, Hand M, Smith SC, King SB, Anderson JL, Antman EM et al. (2009) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=19942100 2009 focused updates: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction (updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update) a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.] ''J Am Coll Cardiol'' 54 (23):2205-41. [http://dx.doi.org/10.1016/j.jacc.2009.10.015 DOI:10.1016/j.jacc.2009.10.015] PMID: [http://pubmed.gov/19942100 19942100]</ref>
 
*[http://content.onlinejacc.org/cgi/reprint/58/24/2550.pdf 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: Executive Summary: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions]
 
==References==
{{reflist|2}}
 
{{Circulatory system pathology}}
{{SIB}}
 
[[Category:Disease]]
[[Category:Cardiology]]
 
{{WikiDoc Help Menu}}
{{WikiDoc Sources}}

Latest revision as of 01:33, 20 August 2013