Near infrared spectroscopy: Difference between revisions
m Robot: Automated text replacement (-{{SIB}} +, -{{EH}} +, -{{EJ}} +, -{{Editor Help}} +, -{{Editor Join}} +) |
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}) |
||
Line 67: | Line 67: | ||
==References== | ==References== | ||
{{reflist|2}} | |||
==See also== | ==See also== |
Latest revision as of 20:04, 4 September 2012
Overview
Near infrared spectroscopy (NIRS) is a spectroscopic method utilising the near infrared region of the electromagnetic spectrum (from about 800 nm to 2500 nm). Typical applications include pharmaceutical, medical diagnostics (including blood sugar and oximetry), food and agrochemical quality control, as well as combustion research.
Theory
Near infrared spectroscopy is based on molecular overtone and combination vibrations. Such transitions are forbidden by the selection rules of quantum mechanics. As a result, the molar absorptivity in the near IR region is typically quite small. One advantage is that NIR can typically penetrate much farther into a sample than mid infrared radiation. Near infrared spectroscopy is therefore not a particularly sensitive technique, but it can be very useful in probing bulk material with little or no sample preparation.
The molecular overtone and combination bands seen in the near IR are typically very broad, leading to complex spectra; it can be difficult to assign specific features to specific chemical components. Multivariate (multiple wavelength) calibration techniques (e.g., principal components analysis or partial least squares) are often employed to extract the desired chemical information. Careful development of a set of calibration samples and application of multivariate calibration techniques is essential for near infrared analytical methods.
History
The discovery of near-infrared energy is ascribed to Herschel in the 19th century, but the first industrial application began in the 1950s. In the first applications, NIRS was used only as an add-on unit to other optical devices that used other wavelengths such as ultraviolet (UV), visible (Vis), or mid-infrared (MIR) spectrometers. In the 1980s, a single unit, stand-alone NIRS system was made available, but the application of NIRS was focused more on chemical analysis. With the introduction of light-fiber optics in the mid 80s and the monochromator-detector developments in early nineties, NIRS became a more powerful tool for scientific research.
This optical method can be used in a number of fields of science including physics, physiology, or medicine. It was only in the last few decades that NIRS began to be used as a medical tool for monitoring patients.
Medical Uses
For medical research, NIRS can be accompanied by other modalities such as magnetic resonance imaging (MRI) or computerized tomography (CT). For example, NIRS can be used for non-invasive assessment of the brain function through an intact skull in human subjects by detecting changes in blood hemoglobin concentrations associated with neural activity. This application is sometimes called optical topography (OT) in which NIRS is used for functional mapping of the human cortex. The term optical tomography is used when NIR is applied to obtain slices of Sectional images of tissue or structure. The terms NIRS and OT are often used interchangeably, but they have some distinctions. The most important difference between NIRS and OT is that OT is mainly used to detect spectroscopic reflection and scattering simultaneously from multiple measurement points and display the results in the form of map, whereas NIRS provides similar data using fewer measurement points.[citation needed]
In the case of optical topography or tomography, the accessibility of the blood sample from the brain prohibits the absolute initial calibration procedures used in non-mapping NIRS assays mentioned above. However, optical topography or optical tomography systems do have the ability to monitor oxygen content change by comparing two channels from two different light sources with different wavelengths.
NIRS is starting to be used in pediatric critical care, to help deal with cardiac surgery post-op. Indeed, the NIRS trend has been shown to correlate with the SVO2. This SVO2 is the venous oxygen saturation, which is determined by the cardiac output, as well as other parameters (FiO2, hemoglobin, oxygen uptake). Therefore, following the NIRS gives critical care physicians a notion of the cardiac output.
Industrial Uses
As opposed to NIRS used in optical topography, general NIRS used in chemical assays does not provide imaging by mapping. For example, a clinical CO2 analyzer requires reference techniques and calibration routines to be able to get accurate CO2 content change. In this case, calibration is performed by adjusting the zero control of the sample being tested after purposefully supplying 0% CO2 or another known amount of CO2 in the sample. Normal compressed gas from distributors contains about 95% O2 and 5% CO2 which can also be used to adjust %CO2 meter reading to be exactly 5% at initial calibration.[citation needed]
Instrumentation
Instrumentation for near-IR spectroscopy is similar to instruments for the visible and mid-IR ranges. There is a source, a detector, and a dispersive element (such as a prism, or more commonly a diffraction grating) to allow the intensity at different wavelengths to be recorded. Fourier transform instruments using an interferometer are also common, especially for wavelengths above ~1000 nm. Depending on the sample, the spectrum can be measured in transmission or in reflection.
Common incandescent or quartz halogen light bulbs are most often used as broadband sources of near infrared radiation for analytical applications. Light-emitting diodes (LEDs) are also used; they offer greater lifetime and spectral stability and reduced power requirements.[1].
The type of detector used depends primarily on the range of wavelengths to be measured. Silicon-based CCDs are suitable for the shorter end of the NIR range, but are not sufficiently sensitive over most of the range. InGaAs and PbS devices are more suitable.
Many commercial instruments for UV/vis spectroscopy are capable of recording spectra in the NIR range (to perhaps ~900 nm). In the same way, the range of some mid-IR instruments may extend into the NIR. In these instruments the detector used for the NIR wavelengths is often the same detector used for the instrument's "main" range of interest.
Applications
The primary application of NIRS to the human body uses the fact that the transmission and absorption of NIR light in human body tissues contains information about hemoglobin concentration changes. When a specific area of the brain is activated, the localized blood volume in that area changes quickly. Optical imaging can measure the location and activity of specific regions of the brain by continuously monitoring blood hemoglobin levels through the determination of optical absorption coefficients.
Typical applications of NIR spectroscopy include the analysis of foodstuffs, pharmaceuticals, combustion products and a major branch of astronomical spectroscopy.
Astronomical spectroscopy
Near-infrared spectroscopy is used in astronomy for studying the atmospheres of cool stars where molecules can form. The vibrational and rotational signatures of molecules such as titanium oxide, cyanide and carbon monoxide can be seen in this wavelength range and can give a clue towards the star's spectral type. It is additionally used for studying molecules in other astronomical contexts, such as in molecular clouds where new stars are formed. The astronomical phenomenon known as reddening means that near-infrared wavelengths are less affected by dust in the interstellar medium, such that regions inaccessible by optical spectroscopy can be studied in the near-infrared. Since dust and gas are strongly associated, these dusty regions are exactly those where infrared spectroscopy is most useful. The near-infrared spectra of very young stars provide important information about their ages and masses, which is important for understanding star formation in general.
Remote monitoring
Techniques have been developed for NIR spectroscopic imaging. These have been used for a wide range of uses, including the remote investigation of plants and soils. Data can be collected from instruments on airplanes or satellites to assess ground cover and soil chemistry.
Medical uses
It is commonly used for medical diagnostics, in particular for oximetry (the measurement of oxygen levels in the blood) and for blood sugar determination. NIR spectroscopy is not typically the most sensitive technique; however, it is non-invasive, as measurements can be obtained directly through the skin.
NIRS can be accompanied by other modalities such as magnetic resonance imaging (MRI) or computerized tomography (CT). For example, NIRS can be used for non-invasive assessment of the brain function through an intact skull in human subjects, by detecting changes in blood hemoglobin concentrations associated with neural activity. This is sometimes known as fNIR (functional near-infrared imaging) or NIRSI (near-infrared spectroscopic imaging). ("NIRSI" techniques are not unique to medical applications.)
Nirs is also currently being used in branches of Cognitive psychology as a partial replacement for fMRI techniques. NIRS can be used on infants, where fMRI cannot, and NIRS is much more portable than fMRI machines. However, NIRS cannot fully replace fMRI because it can only be used to scan cortical tissue, where fMRI can be used to measure activation throughout the brain.!
Particle measurement
NIR is often used in particle sizing in a range of different fields, including studying pharmaceutical and agricultural powders.
References
- ↑ Alper Bozkurt et al., Biomedical Engineering Online 2005, 4:29 (doi:10.1186/1475-925X-4-29)
See also
- fNIR
- Fourier transform spectroscopy
- Infrared spectroscopy
- Vibrational spectroscopy
- Rotational spectroscopy
- Spectroscopy
- Chemical Imaging
de:Nahinfrarotspektroskopie id:Spektroskopi Inframerah-Dekat hu:Közeli infravörös spektroszkópia fi:Lähi-infrapunaspektroskopia Template:WH Template:WS