Dilated cardiomyopathy surgery: Difference between revisions

Jump to navigation Jump to search
Michael Maddaleni (talk | contribs)
Created page with "{{Dilated cardiomyopathy}} {{CMG}} ==Overview== ==Surgery and Device Based Therapy== ===Implantable cardiac defibrillators in dilated cardiomyopathy=== Implantable cardiac..."
 
No edit summary
 
(19 intermediate revisions by 4 users not shown)
Line 1: Line 1:
__NOTOC__
{{Dilated cardiomyopathy}}
{{Dilated cardiomyopathy}}


{{CMG}}
{{CMG}}; '''Associate Editor-in-Chief:''' Sachin Shah, M.D.'''; {{AIA}}


==Overview==
==Overview==
There are several surgical options for patients with [[dilated cardiomyopathy]], depending on the severity of [[Congestive heart failure|heart failure]]. [[Implantable cardiac defibrillator]]s have been studied in these patient, and may help in preventing [[arrhythmia]]s. [[Cardiac transplantation]] may be an option for patients with severe [[heart failure]], and a [[left ventricular assist device]], or LVAD, may help to bridge a patient while awaiting transplantation. This device may also be used as a [[palliative]] measure, called a "destination LVAD" for patients with end-stage heart failure who are not suitable transplant candidates.


==Surgery and Device Based Therapy==
==Surgery==


===Implantable cardiac defibrillators in dilated cardiomyopathy===
===Implantable Cardiac Defibrillators in Dilated Cardiomyopathy===
Implantable cardiac defibrillators (ICDs) have also been extensively studied in systolic heart failure.  A survival benefit has also been shown in select patient populations.  ICDs are implanted in patients with systolic heart failure for primary prevention of sudden cardiac death.  The AHA/ACC (American Heart Association/American College of Cardiology) class I indications for ICDs for primary prevention are:  1. EF < 35% due to prior MI, 40 days post MI, NYHA class II or III.  2. EF < 35% NYHA class II or III non ischemic dilated cardiomyopathy.  3. EF < 30%, prior MI, 40 days post MI, NYHA I. 4. EF < 40%, prior MI, NSVT and inducible VT/VF at EP study.


There are four major studies that have helped shape these indication for an ICD. The MADIT I evaluated NYHA class I to III heart failure patients with an EF < or = to 35%, with NSVT and inducible VT or VF on EP study and randomized 196 patients to ICD versus conventional medical therapy. The patients who received ICDs had improved survival at 5 years60% of patients received shocks by 2 years.<ref>N Engl J Med. 1996. Dec 355(26)</ref> The findings from this study are encompassed in the remaining three studies.  
* Implantable cardiac [[defibrillators]] (ICDs) have also been extensively studied in systolic heart failure.
* A [[Survival rate|survival]] benefit has also been shown in select patient populations.
* ICDs are implanted in patients with systolic heart failure for primary prevention of [[sudden cardiac death]].  
* The [[American Heart Association|AHA]]/ACC ([[American Heart Association]]/[[American College of Cardiology]]) class I indications for ICDs for primary prevention are: 
**1. EF < 35% due to prior MI, 40 days post MI, [[New york heart association functional classification|NYHA]] class II or III
**2. EF < 35% NYHA class II or III non ischemic [[dilated cardiomyopathy]].   
**3. EF < 30%, prior MI, 40 days post MI, NYHA I.  
**4. EF < 40%, prior MI, NSVT and inducible VT/VF at EP study.


Madit II randomized 1232 patients who had a prior MI > 1 month prior to enrollment, an EF < or = to 30% to ICD or medical therapy and after a follow up of an average of 20 months there was a survival advantage in the ICD groupThe number needed to treat was 18 patients. <ref>N Engl J Med. 2002. Mar 346(12)</ref>
There are four major studies that have helped shape these indication for an ICD.   


MUSTT randomized 704 patients with an EF < or = to 40%, NSVT and inducible VT/VF at EP study to arrhythmia therapy (medications and ICDs) or no antiarrhythmiaAt 5 years there was a 27 risk reduction in mortality in the antiarrhythmia group.  The relative risk of mortality when comparing ICD vs. no ICD was 0.24.  There was no difference in mortality in the antiarrhythmic medication vs. no antiarrthymic medication subgroups.<ref>N Engl J Med. 1999 Dec 341:1882-1890.</ref>
* The MADIT I evaluated NYHA class I to III [[Congestive heart failure|heart failure]] patients with an EF < or = to 35%, with NSVT and inducible VT or VF on EP study and randomized 196 patients to ICD versus conventional medical therapy. The patients who received ICDs had improved survival at 5 years60% of patients received shocks by 2 years.<ref>N Engl J Med. 1996. Dec 355(26)</ref> The findings from this study are encompassed in the remaining three studies.
* Madit II randomized 1232 patients who had a prior MI > 1 month prior to enrollment, an EF < or = to 30% to ICD or medical therapy and after a follow up of an average of 20 months there was a survival advantage in the ICD group.  The number needed to treat was 18 patients. <ref>N Engl J Med. 2002. Mar 346(12)</ref>


SCD-HeFT randomized 2521 patients with class II or III CHF and EF < or = to 35% (ischemic or non ischemic) to three arms: 1. conventional therapy, 2. conventional therapy plus amiodarone, and 3. conventional therapy plus an ICDAfter a median follow up of 46 months there was a relative risk of death of 0.77 in the ICD armFindings were similar in the ischemic and non-ischemic subgroups.<ref>N Engl J Med. 2005. Jan 352(3).</ref>
* MUSTT randomized 704 patients with an EF < or = to 40%, NSVT and inducible VT/VF at EP study to [[arrhythmia]] therapy (medications and ICDs) or no antiarrhythmiaAt 5 years there was a 27 risk reduction in mortality in the antiarrhythmia group.  The relative risk of mortality when comparing ICD vs. no ICD was 0.24There was no difference in mortality in the [[Antiarrhythmic agent|antiarrhythmic]] medication vs. no antiarrthymic medication subgroups.<ref>N Engl J Med. 1999 Dec 341:1882-1890.</ref>


NYHA class IV heart failure is a contraindication to ICD placement.
* SCD-HeFT randomized 2521 patients with class II or III CHF and EF < or = to 35% (ischemic or non ischemic) to three arms: 1. conventional therapy, 2. conventional therapy plus [[amiodarone]], and 3. conventional therapy plus an ICD.  After a median follow up of 46 months there was a relative risk of death of 0.77 in the ICD arm. Findings were similar in the ischemic and non-ischemic subgroups.<ref>N Engl J Med. 2005. Jan 352(3).</ref>
 
However, we should note that NYHA class IV heart failure is a [[contraindication]] to [[Implantable cardioverter defibrillator|ICD]] placement.


====Indications for Surgery====
====Indications for Surgery====


In patients who have severe heart failure and are refractory to medical therapy cardiac transplantation may be an option (based upon patient characteristics such as age and comorbidities as well as disease characterisitics such as the etiology of dilated cardiomyopathy). As a bridge to cardiac transplantation multiple mechanical devices have been used.  The most durable device is the LVAD (left ventricular assist device), certain patient populations not suitable for cardiac transplantation may also undergo LVAD placement by a cardiac surgeon as a "destination LVAD."  This may be considered a palliative measure for end-stage heart failure patients. Other devices which may be more limited in the duration of use include the aortic balloon pump, Impella, and the PVAD (peripheral ventricular assist device) one of which is the Tandem Heart.
* In patients who have severe [[heart failure]] and are refractory to medical therapy, [[Heart transplantation|cardiac transplantation]] may be an option (based upon patient characteristics such as age and comorbidities, as well as disease characteristics, such as the etiology of [[dilated cardiomyopathy]]).
* As a bridge to [[cardiac transplantation]], multiple mechanical devices have been used.   
* The most durable device is the LVAD ([[left ventricular assist device]]), certain patient populations not suitable for cardiac transplantation may also undergo LVAD placement by a cardiac surgeon as a "destination LVAD."   
* This may be considered a [[Palliative care|palliative]] measure for end-stage heart failure patients. Other devices which may be more limited in the duration of use include the aortic balloon pump, Impella, and the PVAD (peripheral [[ventricular assist device]]) one of which is the Tandem Heart.
 
== ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death - Dilated Cardiomyopathy (Nonischemic) (DO NOT EDIT) <ref name="pmid16935995">{{cite journal| author=Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer M et al.| title=ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (writing committee to develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. | journal=Circulation | year= 2006 | volume= 114 | issue= 10 | pages= e385-484 | pmid=16935995 | doi=10.1161/CIRCULATIONAHA.106.178233 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16935995}}</ref>==
 
{|class="wikitable"
|-
| colspan="1" style="text-align:center; background:LightGreen"|[[ACC AHA Guidelines Classification Scheme#Classification of Recommendations|Class I]]
|-
| bgcolor="LightGreen"|<nowiki>"</nowiki>'''1.''' EP testing is useful to diagnose [[Bundle branch reentrant ventricular tachycardia|bundle-branch reentrant tachycardia]] and to guide [[ablation]] in patients with nonischemic DCM. ''([[ACC AHA Guidelines Classification Scheme#Level of Evidence|Level of Evidence: C]])''<nowiki>"</nowiki>
|-
| bgcolor="LightGreen"|<nowiki>"</nowiki>'''2.''' EP testing is useful for diagnostic evaluation in patients with nonischemic DCM with sustained palpitations, wide-QRS-complex tachycardia, [[presyncope]], or [[syncope]]. ''([[ACC AHA Guidelines Classification Scheme#Level of Evidence|Level of Evidence: C]])''<nowiki>"</nowiki>
|-
| bgcolor="LightGreen"|<nowiki>"</nowiki>'''3.''' An [[ICD]] should be implanted in patients with nonischemic DCM and significant [[LV dysfunction]] who have sustained VT or VF, are receiving chronic optimal medical therapy, and who have reasonable expectation of survival with a good functional status for more than 1 y. ''([[ACC AHA Guidelines Classification Scheme#Level of Evidence|Level of Evidence: A]])''<nowiki>"</nowiki>
|-
| bgcolor="LightGreen"|<nowiki>"</nowiki>'''4.''' [[ICD]] therapy is recommended for primary prevention to reduce total mortality by a reduction in SCD in patients with nonischemic DCM who have an LVEF less than or equal to 30% to 35%, are NYHA functional class II or III, who are receiving chronic optimal medical therapy, and who have reasonable expectation of survival with a good functional status for more than 1 y. ''([[ACC AHA Guidelines Classification Scheme#Level of Evidence|Level of Evidence: B]])'' (See Section 1.2.)<nowiki>"</nowiki>
|}
 
{|class="wikitable"
|-
| colspan="1" style="text-align:center; background:LemonChiffon"|[[ACC AHA Guidelines Classification Scheme#Classification of Recommendations|Class IIa]]
|-
|bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''1.''' [[ICD implantation]] can be beneficial for patients with unexplained [[syncope]], significant [[LV dysfunction]], and nonischemic DCM who are receiving chronic optimal medical therapy and who have reasonable expectation of survival with a good functional status for more than 1 y. ''([[ACC AHA Guidelines Classification Scheme#Level of Evidence|Level of Evidence: C]])''<nowiki>"</nowiki>
|-
|bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''2.''' [[ICD implantation]] can be effective for termination of sustained VT in patients with normal or near normal ventricular function and nonischemic DCM who are receiving chronic optimal medical therapy and who have reasonable expectation of survival with a good functional status for more than 1 y. ''([[ACC AHA Guidelines Classification Scheme#Level of Evidence|Level of Evidence: C]])''<nowiki>"</nowiki>
|}
 
{|class="wikitable"
|-
| colspan="1" style="text-align:center; background:LemonChiffon"|[[ACC AHA Guidelines Classification Scheme#Classification of Recommendations|Class IIb]]
|-
|bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''1.''' [[Amiodarone]] may be considered for sustained VT or VF in patients with nonischemic DCM. ''([[ACC AHA Guidelines Classification Scheme#Level of Evidence|Level of Evidence: C]])''<nowiki>"</nowiki>
|-
|bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''2.''' Placement of an ICD might be considered in patients who have nonischemic DCM, LVEF of less than or equal to 30% to 35%, who are NYHA functional class I receiving chronic optimal medical therapy, and who have reasonable expectation of survival with a good functional status for more than 1 y. ''([[ACC AHA Guidelines Classification Scheme#Level of Evidence|Level of Evidence: C]])'' <nowiki>"</nowiki>
|}
 
==References==
{{Reflist|2}}
 
[[Category:Best pages]]
[[Category:Disease]]
[[Category:Cardiomyopathy]]
[[Category:Cardiology]]
[[Category:Up-To-Date cardiology]]
[[Category:Up-To-Date]]
{{WH}}
{{WS}}

Latest revision as of 17:46, 30 December 2019

Dilated cardiomyopathy Microchapters

Home

Patient Information

Overview

Historical Perspective

Pathophysiology

Classification

Causes

Differentiating Dilated cardiomyopathy from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Dilated cardiomyopathy surgery On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Dilated cardiomyopathy surgery

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Dilated cardiomyopathy surgery

CDC on Dilated cardiomyopathy surgery

Dilated cardiomyopathy surgery in the news

Blogs on Dilated cardiomyopathy surgery

Directions to Hospitals Treating Dilated cardiomyopathy

Risk calculators and risk factors for Dilated cardiomyopathy surgery

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor-in-Chief: Sachin Shah, M.D.; Abdelrahman Ibrahim Abushouk, MD[2]

Overview

There are several surgical options for patients with dilated cardiomyopathy, depending on the severity of heart failure. Implantable cardiac defibrillators have been studied in these patient, and may help in preventing arrhythmias. Cardiac transplantation may be an option for patients with severe heart failure, and a left ventricular assist device, or LVAD, may help to bridge a patient while awaiting transplantation. This device may also be used as a palliative measure, called a "destination LVAD" for patients with end-stage heart failure who are not suitable transplant candidates.

Surgery

Implantable Cardiac Defibrillators in Dilated Cardiomyopathy

  • Implantable cardiac defibrillators (ICDs) have also been extensively studied in systolic heart failure.
  • A survival benefit has also been shown in select patient populations.
  • ICDs are implanted in patients with systolic heart failure for primary prevention of sudden cardiac death.
  • The AHA/ACC (American Heart Association/American College of Cardiology) class I indications for ICDs for primary prevention are:
    • 1. EF < 35% due to prior MI, 40 days post MI, NYHA class II or III.
    • 2. EF < 35% NYHA class II or III non ischemic dilated cardiomyopathy.
    • 3. EF < 30%, prior MI, 40 days post MI, NYHA I.
    • 4. EF < 40%, prior MI, NSVT and inducible VT/VF at EP study.

There are four major studies that have helped shape these indication for an ICD.

  • The MADIT I evaluated NYHA class I to III heart failure patients with an EF < or = to 35%, with NSVT and inducible VT or VF on EP study and randomized 196 patients to ICD versus conventional medical therapy. The patients who received ICDs had improved survival at 5 years. 60% of patients received shocks by 2 years.[1] The findings from this study are encompassed in the remaining three studies.
  • Madit II randomized 1232 patients who had a prior MI > 1 month prior to enrollment, an EF < or = to 30% to ICD or medical therapy and after a follow up of an average of 20 months there was a survival advantage in the ICD group. The number needed to treat was 18 patients. [2]
  • MUSTT randomized 704 patients with an EF < or = to 40%, NSVT and inducible VT/VF at EP study to arrhythmia therapy (medications and ICDs) or no antiarrhythmia. At 5 years there was a 27 risk reduction in mortality in the antiarrhythmia group. The relative risk of mortality when comparing ICD vs. no ICD was 0.24. There was no difference in mortality in the antiarrhythmic medication vs. no antiarrthymic medication subgroups.[3]
  • SCD-HeFT randomized 2521 patients with class II or III CHF and EF < or = to 35% (ischemic or non ischemic) to three arms: 1. conventional therapy, 2. conventional therapy plus amiodarone, and 3. conventional therapy plus an ICD. After a median follow up of 46 months there was a relative risk of death of 0.77 in the ICD arm. Findings were similar in the ischemic and non-ischemic subgroups.[4]

However, we should note that NYHA class IV heart failure is a contraindication to ICD placement.

Indications for Surgery

  • In patients who have severe heart failure and are refractory to medical therapy, cardiac transplantation may be an option (based upon patient characteristics such as age and comorbidities, as well as disease characteristics, such as the etiology of dilated cardiomyopathy).
  • As a bridge to cardiac transplantation, multiple mechanical devices have been used.
  • The most durable device is the LVAD (left ventricular assist device), certain patient populations not suitable for cardiac transplantation may also undergo LVAD placement by a cardiac surgeon as a "destination LVAD."
  • This may be considered a palliative measure for end-stage heart failure patients. Other devices which may be more limited in the duration of use include the aortic balloon pump, Impella, and the PVAD (peripheral ventricular assist device) one of which is the Tandem Heart.

ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death - Dilated Cardiomyopathy (Nonischemic) (DO NOT EDIT) [5]

Class I
"1. EP testing is useful to diagnose bundle-branch reentrant tachycardia and to guide ablation in patients with nonischemic DCM. (Level of Evidence: C)"
"2. EP testing is useful for diagnostic evaluation in patients with nonischemic DCM with sustained palpitations, wide-QRS-complex tachycardia, presyncope, or syncope. (Level of Evidence: C)"
"3. An ICD should be implanted in patients with nonischemic DCM and significant LV dysfunction who have sustained VT or VF, are receiving chronic optimal medical therapy, and who have reasonable expectation of survival with a good functional status for more than 1 y. (Level of Evidence: A)"
"4. ICD therapy is recommended for primary prevention to reduce total mortality by a reduction in SCD in patients with nonischemic DCM who have an LVEF less than or equal to 30% to 35%, are NYHA functional class II or III, who are receiving chronic optimal medical therapy, and who have reasonable expectation of survival with a good functional status for more than 1 y. (Level of Evidence: B) (See Section 1.2.)"
Class IIa
"1. ICD implantation can be beneficial for patients with unexplained syncope, significant LV dysfunction, and nonischemic DCM who are receiving chronic optimal medical therapy and who have reasonable expectation of survival with a good functional status for more than 1 y. (Level of Evidence: C)"
"2. ICD implantation can be effective for termination of sustained VT in patients with normal or near normal ventricular function and nonischemic DCM who are receiving chronic optimal medical therapy and who have reasonable expectation of survival with a good functional status for more than 1 y. (Level of Evidence: C)"
Class IIb
"1. Amiodarone may be considered for sustained VT or VF in patients with nonischemic DCM. (Level of Evidence: C)"
"2. Placement of an ICD might be considered in patients who have nonischemic DCM, LVEF of less than or equal to 30% to 35%, who are NYHA functional class I receiving chronic optimal medical therapy, and who have reasonable expectation of survival with a good functional status for more than 1 y. (Level of Evidence: C) "

References

  1. N Engl J Med. 1996. Dec 355(26)
  2. N Engl J Med. 2002. Mar 346(12)
  3. N Engl J Med. 1999 Dec 341:1882-1890.
  4. N Engl J Med. 2005. Jan 352(3).
  5. Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer M; et al. (2006). "ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (writing committee to develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society". Circulation. 114 (10): e385–484. doi:10.1161/CIRCULATIONAHA.106.178233. PMID 16935995.

Template:WH Template:WS