MYST1: Difference between revisions
Jump to navigation
Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})) |
m (Bot: HTTP→HTTPS) |
||
Line 1: | Line 1: | ||
< | {{Infobox_gene}} | ||
{{ | '''Probable histone acetyltransferase MYST1''' is an [[enzyme]] that in humans is encoded by the ''MYST1'' [[gene]].<ref name="pmid10786633">{{cite journal | vauthors = Neal KC, Pannuti A, Smith ER, Lucchesi JC | title = A new human member of the MYST family of histone acetyl transferases with high sequence similarity to Drosophila MOF | journal = Biochimica et Biophysica Acta | volume = 1490 | issue = 1-2 | pages = 170–4 | date = Jan 2000 | pmid = 10786633 | pmc = | doi = 10.1016/s0167-4781(99)00211-0 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: MYST1 MYST histone acetyltransferase 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=84148| accessdate = }}</ref> | ||
| | |||
| | |||
| | |||
}} | |||
== Function == | |||
The MYST family of histone acetyltransferases, which includes MYST1, is named for the founding members MOZ (MYST3; MIM 601408), yeast YBF2 and SAS2, and TIP60 (HTATIP; MIM 601409). All members of this family contain a MYST region of about 240 amino acids with a canonical acetyl-CoA-binding site and a C2HC-type zinc finger motif. Most MYST proteins also have a chromodomain involved in protein-protein interactions and targeting transcriptional regulators to chromatin.<ref name="entrez" /> | |||
==References== | == Interactions == | ||
{{reflist | |||
==Further reading== | MYST1 has been shown to [[Protein-protein interaction|interact]] with [[MORF4L1]].<ref name=pmid12397079>{{cite journal | vauthors = Pardo PS, Leung JK, Lucchesi JC, Pereira-Smith OM | title = MRG15, a novel chromodomain protein, is present in two distinct multiprotein complexes involved in transcriptional activation | journal = The Journal of Biological Chemistry | volume = 277 | issue = 52 | pages = 50860–6 | date = Dec 2002 | pmid = 12397079 | doi = 10.1074/jbc.M203839200 }}</ref> | ||
== References == | |||
{{reflist}} | |||
== Further reading == | |||
{{refbegin | 2}} | {{refbegin | 2}} | ||
* {{cite journal | vauthors = Rea S, Xouri G, Akhtar A | title = Males absent on the first (MOF): from flies to humans | journal = Oncogene | volume = 26 | issue = 37 | pages = 5385–94 | date = Aug 2007 | pmid = 17694080 | doi = 10.1038/sj.onc.1210607 }} | |||
* {{cite journal | vauthors = Maruyama K, Sugano S | title = Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides | journal = Gene | volume = 138 | issue = 1-2 | pages = 171–4 | date = Jan 1994 | pmid = 8125298 | doi = 10.1016/0378-1119(94)90802-8 }} | |||
*{{cite journal | * {{cite journal | vauthors = Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S | title = Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library | journal = Gene | volume = 200 | issue = 1-2 | pages = 149–56 | date = Oct 1997 | pmid = 9373149 | doi = 10.1016/S0378-1119(97)00411-3 }} | ||
*{{cite journal | * {{cite journal | vauthors = Kitabayashi I, Aikawa Y, Nguyen LA, Yokoyama A, Ohki M | title = Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ-CBP fusion protein | journal = The EMBO Journal | volume = 20 | issue = 24 | pages = 7184–96 | date = Dec 2001 | pmid = 11742995 | pmc = 125775 | doi = 10.1093/emboj/20.24.7184 }} | ||
*{{cite journal | * {{cite journal | vauthors = Pelletier N, Champagne N, Stifani S, Yang XJ | title = MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2 | journal = Oncogene | volume = 21 | issue = 17 | pages = 2729–40 | date = Apr 2002 | pmid = 11965546 | doi = 10.1038/sj.onc.1205367 }} | ||
* {{cite journal | vauthors = Pardo PS, Leung JK, Lucchesi JC, Pereira-Smith OM | title = MRG15, a novel chromodomain protein, is present in two distinct multiprotein complexes involved in transcriptional activation | journal = The Journal of Biological Chemistry | volume = 277 | issue = 52 | pages = 50860–6 | date = Dec 2002 | pmid = 12397079 | doi = 10.1074/jbc.M203839200 }} | |||
*{{cite journal | * {{cite journal | vauthors = Wan D, Gong Y, Qin W, Zhang P, Li J, Wei L, Zhou X, Li H, Qiu X, Zhong F, He L, Yu J, Yao G, Jiang H, Qian L, Yu Y, Shu H, Chen X, Xu H, Guo M, Pan Z, Chen Y, Ge C, Yang S, Gu J | title = Large-scale cDNA transfection screening for genes related to cancer development and progression | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 101 | issue = 44 | pages = 15724–9 | date = Nov 2004 | pmid = 15498874 | pmc = 524842 | doi = 10.1073/pnas.0404089101 }} | ||
*{{cite journal | * {{cite journal | vauthors = Gupta A, Sharma GG, Young CS, Agarwal M, Smith ER, Paull TT, Lucchesi JC, Khanna KK, Ludwig T, Pandita TK | title = Involvement of human MOF in ATM function | journal = Molecular and Cellular Biology | volume = 25 | issue = 12 | pages = 5292–305 | date = Jun 2005 | pmid = 15923642 | pmc = 1140595 | doi = 10.1128/MCB.25.12.5292-5305.2005 }} | ||
*{{cite journal | * {{cite journal | vauthors = Dou Y, Milne TA, Tackett AJ, Smith ER, Fukuda A, Wysocka J, Allis CD, Chait BT, Hess JL, Roeder RG | title = Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF | journal = Cell | volume = 121 | issue = 6 | pages = 873–85 | date = Jun 2005 | pmid = 15960975 | doi = 10.1016/j.cell.2005.04.031 }} | ||
*{{cite journal | * {{cite journal | vauthors = Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A, Akhtar A | title = hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells | journal = Molecular and Cellular Biology | volume = 25 | issue = 15 | pages = 6798–810 | date = Aug 2005 | pmid = 16024812 | pmc = 1190338 | doi = 10.1128/MCB.25.15.6798-6810.2005 }} | ||
* {{cite journal | vauthors = Cereseto A, Manganaro L, Gutierrez MI, Terreni M, Fittipaldi A, Lusic M, Marcello A, Giacca M | title = Acetylation of HIV-1 integrase by p300 regulates viral integration | journal = The EMBO Journal | volume = 24 | issue = 17 | pages = 3070–81 | date = Sep 2005 | pmid = 16096645 | pmc = 1201351 | doi = 10.1038/sj.emboj.7600770 }} | |||
* {{cite journal | vauthors = Smith ER, Cayrou C, Huang R, Lane WS, Côté J, Lucchesi JC | title = A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16 | journal = Molecular and Cellular Biology | volume = 25 | issue = 21 | pages = 9175–88 | date = Nov 2005 | pmid = 16227571 | pmc = 1265810 | doi = 10.1128/MCB.25.21.9175-9188.2005 }} | |||
* {{cite journal | vauthors = Topper M, Luo Y, Zhadina M, Mohammed K, Smith L, Muesing MA | title = Posttranslational acetylation of the human immunodeficiency virus type 1 integrase carboxyl-terminal domain is dispensable for viral replication | journal = Journal of Virology | volume = 81 | issue = 6 | pages = 3012–7 | date = Mar 2007 | pmid = 17182677 | pmc = 1865993 | doi = 10.1128/JVI.02257-06 }} | |||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
}} | |||
{{refend}} | {{refend}} | ||
{{PDB Gallery|geneid=84148}} | |||
{{ | {{gene-16-stub}} | ||
Latest revision as of 07:16, 4 September 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Probable histone acetyltransferase MYST1 is an enzyme that in humans is encoded by the MYST1 gene.[1][2]
Function
The MYST family of histone acetyltransferases, which includes MYST1, is named for the founding members MOZ (MYST3; MIM 601408), yeast YBF2 and SAS2, and TIP60 (HTATIP; MIM 601409). All members of this family contain a MYST region of about 240 amino acids with a canonical acetyl-CoA-binding site and a C2HC-type zinc finger motif. Most MYST proteins also have a chromodomain involved in protein-protein interactions and targeting transcriptional regulators to chromatin.[2]
Interactions
MYST1 has been shown to interact with MORF4L1.[3]
References
- ↑ Neal KC, Pannuti A, Smith ER, Lucchesi JC (Jan 2000). "A new human member of the MYST family of histone acetyl transferases with high sequence similarity to Drosophila MOF". Biochimica et Biophysica Acta. 1490 (1–2): 170–4. doi:10.1016/s0167-4781(99)00211-0. PMID 10786633.
- ↑ 2.0 2.1 "Entrez Gene: MYST1 MYST histone acetyltransferase 1".
- ↑ Pardo PS, Leung JK, Lucchesi JC, Pereira-Smith OM (Dec 2002). "MRG15, a novel chromodomain protein, is present in two distinct multiprotein complexes involved in transcriptional activation". The Journal of Biological Chemistry. 277 (52): 50860–6. doi:10.1074/jbc.M203839200. PMID 12397079.
Further reading
- Rea S, Xouri G, Akhtar A (Aug 2007). "Males absent on the first (MOF): from flies to humans". Oncogene. 26 (37): 5385–94. doi:10.1038/sj.onc.1210607. PMID 17694080.
- Maruyama K, Sugano S (Jan 1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (Oct 1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
- Kitabayashi I, Aikawa Y, Nguyen LA, Yokoyama A, Ohki M (Dec 2001). "Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ-CBP fusion protein". The EMBO Journal. 20 (24): 7184–96. doi:10.1093/emboj/20.24.7184. PMC 125775. PMID 11742995.
- Pelletier N, Champagne N, Stifani S, Yang XJ (Apr 2002). "MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2". Oncogene. 21 (17): 2729–40. doi:10.1038/sj.onc.1205367. PMID 11965546.
- Pardo PS, Leung JK, Lucchesi JC, Pereira-Smith OM (Dec 2002). "MRG15, a novel chromodomain protein, is present in two distinct multiprotein complexes involved in transcriptional activation". The Journal of Biological Chemistry. 277 (52): 50860–6. doi:10.1074/jbc.M203839200. PMID 12397079.
- Wan D, Gong Y, Qin W, Zhang P, Li J, Wei L, Zhou X, Li H, Qiu X, Zhong F, He L, Yu J, Yao G, Jiang H, Qian L, Yu Y, Shu H, Chen X, Xu H, Guo M, Pan Z, Chen Y, Ge C, Yang S, Gu J (Nov 2004). "Large-scale cDNA transfection screening for genes related to cancer development and progression". Proceedings of the National Academy of Sciences of the United States of America. 101 (44): 15724–9. doi:10.1073/pnas.0404089101. PMC 524842. PMID 15498874.
- Gupta A, Sharma GG, Young CS, Agarwal M, Smith ER, Paull TT, Lucchesi JC, Khanna KK, Ludwig T, Pandita TK (Jun 2005). "Involvement of human MOF in ATM function". Molecular and Cellular Biology. 25 (12): 5292–305. doi:10.1128/MCB.25.12.5292-5305.2005. PMC 1140595. PMID 15923642.
- Dou Y, Milne TA, Tackett AJ, Smith ER, Fukuda A, Wysocka J, Allis CD, Chait BT, Hess JL, Roeder RG (Jun 2005). "Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF". Cell. 121 (6): 873–85. doi:10.1016/j.cell.2005.04.031. PMID 15960975.
- Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A, Akhtar A (Aug 2005). "hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells". Molecular and Cellular Biology. 25 (15): 6798–810. doi:10.1128/MCB.25.15.6798-6810.2005. PMC 1190338. PMID 16024812.
- Cereseto A, Manganaro L, Gutierrez MI, Terreni M, Fittipaldi A, Lusic M, Marcello A, Giacca M (Sep 2005). "Acetylation of HIV-1 integrase by p300 regulates viral integration". The EMBO Journal. 24 (17): 3070–81. doi:10.1038/sj.emboj.7600770. PMC 1201351. PMID 16096645.
- Smith ER, Cayrou C, Huang R, Lane WS, Côté J, Lucchesi JC (Nov 2005). "A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16". Molecular and Cellular Biology. 25 (21): 9175–88. doi:10.1128/MCB.25.21.9175-9188.2005. PMC 1265810. PMID 16227571.
- Topper M, Luo Y, Zhadina M, Mohammed K, Smith L, Muesing MA (Mar 2007). "Posttranslational acetylation of the human immunodeficiency virus type 1 integrase carboxyl-terminal domain is dispensable for viral replication". Journal of Virology. 81 (6): 3012–7. doi:10.1128/JVI.02257-06. PMC 1865993. PMID 17182677.
This article on a gene on human chromosome 16 is a stub. You can help Wikipedia by expanding it. |