NDUFS2: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})
 
imported>Boghog
consistent citation formatting
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial (NDUFS2)''' also known as '''NADH-ubiquinone oxidoreductase 49 kDa subunit''' is an [[enzyme]] that in humans is encoded by the ''NDUFS2'' [[gene]].<ref name="pmid1832859">{{cite journal | vauthors = Fearnley IM, Finel M, Skehel JM, Walker JE | title = NADH:ubiquinone oxidoreductase from bovine heart mitochondria. cDNA sequences of the import precursors of the nuclear-encoded 39 kDa and 42 kDa subunits | journal = The Biochemical Journal | volume = 278 ( Pt 3) | issue = 3 | pages = 821–9 | date = September 1991 | pmid = 1832859 | pmc = 1151420 | doi = 10.1042/bj2780821 | series = 278 }}</ref><ref name="pmid9585441">{{cite journal | vauthors = Procaccio V, de Sury R, Martinez P, Depetris D, Rabilloud T, Soularue P, Lunardi J, Issartel J | title = Mapping to 1q23 of the human gene (NDUFS2) encoding the 49-kDa subunit of the mitochondrial respiratory Complex I and immunodetection of the mature protein in mitochondria | journal = Mammalian Genome | volume = 9 | issue = 6 | pages = 482–4 | date = June 1998 | pmid = 9585441 | pmc =  | doi = 10.1007/s003359900803 }}</ref> The [[protein]] encoded by this gene is a core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase ([[Respiratory complex I|complex I]]). Mutations in this gene are associated with mitochondrial complex I deficiency.<ref name="entrez">{{cite web | title = Entrez Gene: NDUFS2 NADH dehydrogenase (ubiquinone) Fe-S protein 2, 49kDa (NADH-coenzyme Q reductase)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=4720| access-date = }}{{PD-notice}}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
== Structure ==
{{GNF_Protein_box
''NDUFS2'' is located on the [[Locus (genetics)|q arm]] of [[chromosome 1]] in position 23.3 and has 15 [[Exon|exons]].<ref name="entrez" /> The <i>NDUFS2</i> gene produces a 52.5 kDa protein composed of 463 [[Amino acid|amino acids]].<ref>{{Cite web|url=https://amino.heartproteome.org/web/protein/O75306|title=Cardiac Organellar Protein Atlas Knowledgebase (COPaKB) —— Protein Information|last=Yao|first=Daniel|website=amino.heartproteome.org|access-date=2018-08-27}}</ref><ref>{{cite journal | vauthors = Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P | title = Integration of cardiac proteome biology and medicine by a specialized knowledgebase | journal = Circulation Research | volume = 113 | issue = 9 | pages = 1043–53 | date = October 2013 | pmid = 23965338 | pmc = 4076475 | doi = 10.1161/CIRCRESAHA.113.301151 }}</ref> NDUFS2, the protein encoded by this gene, is a member of the complex I 49 kDa subunit family. It is a [[peripheral membrane protein]] on the [[Mitochondrial matrix|matrix]] side of the [[inner mitochondrial membrane]]. It contains a [[Cofactor (biochemistry)|cofactor]] binding site for a [<nowiki/>[[4Fe-4S]]] cluster, a [[Signal peptide|transit peptide]], 5 turns, 11 [[Beta sheet|beta strands]], and 18 [[Alpha helix|alpha helixes]].<ref name=":1">{{Cite web|url=https://www.uniprot.org/uniprot/O75306|title=NDUFS2 - NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial precursor - Homo sapiens (Human) - NDUFS2 gene & protein|website=www.uniprot.org|language=en|access-date=2018-08-27}}{{CC-notice|cc=by4}}</ref><ref name=":0">{{cite journal | vauthors =  | title = UniProt: the universal protein knowledgebase | journal = Nucleic Acids Research | volume = 45 | issue = D1 | pages = D158-D169 | date = January 2017 | pmid = 27899622 | pmc = 5210571 | doi = 10.1093/nar/gkw1099 }}</ref> Alternatively spliced transcript variants encoding different isoforms have been found for this gene.<ref name="entrez" />
| image =
| image_source =
| PDB =  
| Name = NADH dehydrogenase (ubiquinone) Fe-S protein 2, 49kDa (NADH-coenzyme Q reductase)
| HGNCid = 7708
| Symbol = NDUFS2
| AltSymbols =;
| OMIM = 602985
| ECnumber = 
| Homologene = 56659
| MGIid = 2385112
| GeneAtlas_image1 = PBB_GE_NDUFS2_201966_at_tn.png
| Function = {{GNF_GO|id=GO:0003954 |text = NADH dehydrogenase activity}} {{GNF_GO|id=GO:0005506 |text = iron ion binding}} {{GNF_GO|id=GO:0008137 |text = NADH dehydrogenase (ubiquinone) activity}} {{GNF_GO|id=GO:0046872 |text = metal ion binding}} {{GNF_GO|id=GO:0051287 |text = NAD binding}} {{GNF_GO|id=GO:0051539 |text = 4 iron, 4 sulfur cluster binding}}
| Component = {{GNF_GO|id=GO:0005624 |text = membrane fraction}} {{GNF_GO|id=GO:0005739 |text = mitochondrion}}  
| Process = {{GNF_GO|id=GO:0006120 |text = mitochondrial electron transport, NADH to ubiquinone}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 4720
    | Hs_Ensembl = ENSG00000158864
    | Hs_RefseqProtein = NP_004541
    | Hs_RefseqmRNA = NM_004550
    | Hs_GenLoc_db =   
    | Hs_GenLoc_chr = 1
    | Hs_GenLoc_start = 159435729
    | Hs_GenLoc_end = 159450809
    | Hs_Uniprot = O75306
    | Mm_EntrezGene = 226646
    | Mm_Ensembl = ENSMUSG00000013593
    | Mm_RefseqmRNA = NM_153064
    | Mm_RefseqProtein = NP_694704
    | Mm_GenLoc_db =
    | Mm_GenLoc_chr = 1
    | Mm_GenLoc_start = 173071535
    | Mm_GenLoc_end = 173083787
    | Mm_Uniprot = Q3U5Y9
  }}
}}
'''NADH dehydrogenase (ubiquinone) Fe-S protein 2, 49kDa (NADH-coenzyme Q reductase)''', also known as '''NDUFS2''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: NDUFS2 NADH dehydrogenase (ubiquinone) Fe-S protein 2, 49kDa (NADH-coenzyme Q reductase)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=4720| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Function ==
{{PBB_Summary
| section_title =  
| summary_text = Mitochondrial complex I (NADH-ubiquinone reductase; EC 1.6.5.3) is the first multimeric complex of the respiratory chain that catalyzes the NADH oxidation with concomitant ubiquinone reduction and proton ejection out of the mitochondria. Mammalian mitochondrial complex I is an assembly of at least 43 different subunits. Seven of the subunits are encoded by the mitochondrial genome; the remainder are the products of nuclear genes. The iron-sulfur protein (IP) fraction of complex I is made up of 7 subunits, including NDUFS2. See NDUFS1 (MIM 157655).[supplied by OMIM]<ref name="entrez">{{cite web | title = Entrez Gene: NDUFS2 NADH dehydrogenase (ubiquinone) Fe-S protein 2, 49kDa (NADH-coenzyme Q reductase)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=4720| accessdate = }}</ref>
}}


==References==
[[Mitochondrion|Mitochondrial]] [[NADH dehydrogenase|complex I]] is the first multimeric complex of the [[electron transport chain|respiratory chain]] that catalyzes the NADH oxidation with concomitant ubiquinone reduction and proton ejection out of the mitochondria. Mammalian mitochondrial complex I is an assembly of at least 43 different subunits. Seven of the subunits are encoded by the [[mitochondrial DNA|mitochondrial genome]]; the remainder are the products of nuclear genes. The [[iron-sulfur protein]] (IP) fraction of complex I is made up of 7 subunits, including NDUFS2.<ref name="entrez"/> [[Demethylation|Dimethylation]] at Arg-118 by [[NDUFAF7]] takes place after NDUFS2 assembles into the complex I, leading to the stabilization of the early intermediate complex.<ref>{{cite journal | vauthors = Rhein VF, Carroll J, Ding S, Fearnley IM, Walker JE | title = NDUFAF7 methylates arginine 85 in the NDUFS2 subunit of human complex I | journal = The Journal of Biological Chemistry | volume = 288 | issue = 46 | pages = 33016–26 | date = November 2013 | pmid = 24089531 | pmc = 3829151 | doi = 10.1074/jbc.M113.518803 }}</ref><ref>{{cite journal | vauthors = Zurita Rendón O, Silva Neiva L, Sasarman F, Shoubridge EA | title = The arginine methyltransferase NDUFAF7 is essential for complex I assembly and early vertebrate embryogenesis | journal = Human Molecular Genetics | volume = 23 | issue = 19 | pages = 5159–70 | date = October 2014 | pmid = 24838397 | pmc = 4159157 | doi = 10.1093/hmg/ddu239 }}</ref><ref name=":1" /><ref name=":0" />
{{reflist|2}}
 
==Further reading==
== Clinical significance ==
 
Mutations in the ''NDUFS2'' gene are associated with Mitochondrial Complex I Deficiency, which is [[Dominance (genetics)|autosomal recessive]]. This deficiency is the most common enzymatic defect of the [[oxidative phosphorylation]] disorders.<ref>{{cite journal | vauthors = Kirby DM, Salemi R, Sugiana C, Ohtake A, Parry L, Bell KM, Kirk EP, Boneh A, Taylor RW, Dahl HH, Ryan MT, Thorburn DR | title = NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency | journal = The Journal of Clinical Investigation | volume = 114 | issue = 6 | pages = 837–45 | date = September 2004 | pmid = 15372108 | pmc = 516258 | doi = 10.1172/JCI20683 }}</ref><ref>{{cite journal | vauthors = McFarland R, Kirby DM, Fowler KJ, Ohtake A, Ryan MT, Amor DJ, Fletcher JM, Dixon JW, Collins FA, Turnbull DM, Taylor RW, Thorburn DR | title = De novo mutations in the mitochondrial ND3 gene as a cause of infantile mitochondrial encephalopathy and complex I deficiency | journal = Annals of Neurology | volume = 55 | issue = 1 | pages = 58–64 | date = January 2004 | pmid = 14705112 | doi = 10.1002/ana.10787 }}</ref> Mitochondrial complex I deficiency shows extreme [[genetic heterogeneity]] and can be caused by mutation in nuclear-encoded genes or in mitochondrial-encoded genes. There are no obvious [[Genotype–phenotype distinction|genotype-phenotype]] correlations, and inference of the underlying basis from the clinical or biochemical presentation is difficult, if not impossible.<ref>{{cite journal | vauthors = Haack TB, Haberberger B, Frisch EM, Wieland T, Iuso A, Gorza M, Strecker V, Graf E, Mayr JA, Herberg U, Hennermann JB, Klopstock T, Kuhn KA, Ahting U, Sperl W, Wilichowski E, Hoffmann GF, Tesarova M, Hansikova H, Zeman J, Plecko B, Zeviani M, Wittig I, Strom TM, Schuelke M, Freisinger P, Meitinger T, Prokisch H | title = Molecular diagnosis in mitochondrial complex I deficiency using exome sequencing | journal = Journal of Medical Genetics | volume = 49 | issue = 4 | pages = 277–83 | date = April 2012 | pmid = 22499348 | doi = 10.1136/jmedgenet-2012-100846 }}</ref> However, the majority of cases are caused by mutations in nuclear-encoded genes.<ref>{{cite journal | vauthors = Loeffen JL, Smeitink JA, Trijbels JM, Janssen AJ, Triepels RH, Sengers RC, van den Heuvel LP | title = Isolated complex I deficiency in children: clinical, biochemical and genetic aspects | journal = Human Mutation | volume = 15 | issue = 2 | pages = 123–34 | date = 2000 | pmid = 10649489 | doi = 10.1002/(SICI)1098-1004(200002)15:2<123::AID-HUMU1>3.0.CO;2-P }}</ref><ref>{{cite journal | vauthors = Triepels RH, Van Den Heuvel LP, Trijbels JM, Smeitink JA | title = Respiratory chain complex I deficiency | journal = American Journal of Medical Genetics | volume = 106 | issue = 1 | pages = 37–45 | date = 2001 | pmid = 11579423 | doi = 10.1002/ajmg.1397 }}</ref> It causes a wide range of clinical disorders, ranging from lethal neonatal disease to adult-onset neurodegenerative disorders. [[Phenotype|Phenotypes]] include [[macrocephaly]] with progressive [[leukodystrophy]], nonspecific [[encephalopathy]], [[hypertrophic cardiomyopathy]], [[myopathy]], [[liver disease]], [[Leigh syndrome]], [[Leber's hereditary optic neuropathy|Leber hereditary optic neuropathy]], and some forms of [[Parkinson's disease|Parkinson disease]].<ref>{{cite journal | vauthors = Robinson BH | title = Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect | journal = Biochimica et Biophysica Acta | volume = 1364 | issue = 2 | pages = 271–86 | date = May 1998 | pmid = 9593934 | doi = 10.1016/s0005-2728(98)00033-4 }}</ref>
 
== Interactions ==
NDUFS2 has been shown to have 121 binary [[Protein–protein interaction|protein-protein interactions]] including 112 co-complex interactions. NDUFS2 appears to interact with [[NDUFS3]], [[MKLN1]], [[EGR2]], [[HMOX2]], CENPU, and [[TNFRSF14]].<ref>{{cite web | url = https://www.ebi.ac.uk/intact/interactions?conversationContext=3&query=NDUFS2 | title = 121 binary interactions found for search term NDUFS2 | work = IntAct Molecular Interaction Database | publisher = EMBL-EBI | access-date = 2018-08-27 }}</ref>
 
== See also ==
* [[NDUFS1]]
 
== References ==
{{reflist}}
 
== Further reading ==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading
* {{cite journal | vauthors = Bar-Meir M, Elpeleg ON, Saada A | title = Effect of various agents on adenosine triphosphate synthesis in mitochondrial complex I deficiency | journal = The Journal of Pediatrics | volume = 139 | issue = 6 | pages = 868–70 | date = December 2001 | pmid = 11743516 | doi = 10.1067/mpd.2001.118885 }}
| citations =
* {{cite journal | vauthors = Maruyama K, Sugano S | title = Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides | journal = Gene | volume = 138 | issue = 1-2 | pages = 171–4 | date = January 1994 | pmid = 8125298 | doi = 10.1016/0378-1119(94)90802-8 }}
*{{cite journal | author=Fearnley IM, Finel M, Skehel JM, Walker JE |title=NADH:ubiquinone oxidoreductase from bovine heart mitochondria. cDNA sequences of the import precursors of the nuclear-encoded 39 kDa and 42 kDa subunits. |journal=Biochem. J. |volume=278 ( Pt 3) |issue= |pages= 821-9 |year= 1991 |pmid= 1832859 |doi= }}
* {{cite journal | vauthors = Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S | title = Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library | journal = Gene | volume = 200 | issue = 1-2 | pages = 149–56 | date = October 1997 | pmid = 9373149 | doi = 10.1016/S0378-1119(97)00411-3 }}
*{{cite journal | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi= }}
* {{cite journal | vauthors = Loeffen J, van den Heuvel L, Smeets R, Triepels R, Sengers R, Trijbels F, Smeitink J | title = cDNA sequence and chromosomal localization of the remaining three human nuclear encoded iron sulphur protein (IP) subunits of complex I: the human IP fraction is completed | journal = Biochemical and Biophysical Research Communications | volume = 247 | issue = 3 | pages = 751–8 | date = June 1998 | pmid = 9647766 | doi = 10.1006/bbrc.1998.8882 }}
*{{cite journal | author=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, ''et al.'' |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149-56 |year= 1997 |pmid= 9373149 |doi= }}
* {{cite journal | vauthors = Loeffen JL, Triepels RH, van den Heuvel LP, Schuelke M, Buskens CA, Smeets RJ, Trijbels JM, Smeitink JA | title = cDNA of eight nuclear encoded subunits of NADH:ubiquinone oxidoreductase: human complex I cDNA characterization completed | journal = Biochemical and Biophysical Research Communications | volume = 253 | issue = 2 | pages = 415–22 | date = December 1998 | pmid = 9878551 | doi = 10.1006/bbrc.1998.9786 }}
*{{cite journal  | author=Procaccio V, de Sury R, Martinez P, ''et al.'' |title=Mapping to 1q23 of the human gene (NDUFS2) encoding the 49-kDa subunit of the mitochondrial respiratory Complex I and immunodetection of the mature protein in mitochondria. |journal=Mamm. Genome |volume=9 |issue= 6 |pages= 482-4 |year= 1998 |pmid= 9585441 |doi=  }}
* {{cite journal | vauthors = Triepels RH, Hanson BJ, van den Heuvel LP, Sundell L, Marusich MF, Smeitink JA, Capaldi RA | title = Human complex I defects can be resolved by monoclonal antibody analysis into distinct subunit assembly patterns | journal = The Journal of Biological Chemistry | volume = 276 | issue = 12 | pages = 8892–7 | date = March 2001 | pmid = 11112787 | doi = 10.1074/jbc.M009903200 }}
*{{cite journal | author=Loeffen J, van den Heuvel L, Smeets R, ''et al.'' |title=cDNA sequence and chromosomal localization of the remaining three human nuclear encoded iron sulphur protein (IP) subunits of complex I: the human IP fraction is completed. |journal=Biochem. Biophys. Res. Commun. |volume=247 |issue= 3 |pages= 751-8 |year= 1998 |pmid= 9647766 |doi= 10.1006/bbrc.1998.8882 }}
* {{cite journal | vauthors = Loeffen J, Elpeleg O, Smeitink J, Smeets R, Stöckler-Ipsiroglu S, Mandel H, Sengers R, Trijbels F, van den Heuvel L | title = Mutations in the complex I NDUFS2 gene of patients with cardiomyopathy and encephalomyopathy | journal = Annals of Neurology | volume = 49 | issue = 2 | pages = 195–201 | date = February 2001 | pmid = 11220739 | doi = 10.1002/1531-8249(20010201)49:2<195::AID-ANA39>3.0.CO;2-M }}
*{{cite journal | author=Loeffen JL, Triepels RH, van den Heuvel LP, ''et al.'' |title=cDNA of eight nuclear encoded subunits of NADH:ubiquinone oxidoreductase: human complex I cDNA characterization completed. |journal=Biochem. Biophys. Res. Commun. |volume=253 |issue= 2 |pages= 415-22 |year= 1999 |pmid= 9878551 |doi= 10.1006/bbrc.1998.9786 }}
* {{cite journal | vauthors = Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA | title = Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry | journal = The Journal of Biological Chemistry | volume = 278 | issue = 39 | pages = 37223–30 | date = September 2003 | pmid = 12857734 | doi = 10.1074/jbc.M305694200 }}
*{{cite journal | author=Triepels RH, Hanson BJ, van den Heuvel LP, ''et al.'' |title=Human complex I defects can be resolved by monoclonal antibody analysis into distinct subunit assembly patterns. |journal=J. Biol. Chem. |volume=276 |issue= 12 |pages= 8892-7 |year= 2001 |pmid= 11112787 |doi= 10.1074/jbc.M009903200 }}
* {{cite journal | vauthors = Ugalde C, Janssen RJ, van den Heuvel LP, Smeitink JA, Nijtmans LG | title = Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency | journal = Human Molecular Genetics | volume = 13 | issue = 6 | pages = 659–67 | date = March 2004 | pmid = 14749350 | doi = 10.1093/hmg/ddh071 }}
*{{cite journal | author=Loeffen J, Elpeleg O, Smeitink J, ''et al.'' |title=Mutations in the complex I NDUFS2 gene of patients with cardiomyopathy and encephalomyopathy. |journal=Ann. Neurol. |volume=49 |issue= 2 |pages= 195-201 |year= 2001 |pmid= 11220739 |doi= }}
* {{cite journal | vauthors = Bourges I, Ramus C, Mousson de Camaret B, Beugnot R, Remacle C, Cardol P, Hofhaus G, Issartel JP | title = Structural organization of mitochondrial human complex I: role of the ND4 and ND5 mitochondria-encoded subunits and interaction with prohibitin | journal = The Biochemical Journal | volume = 383 | issue = Pt. 3 | pages = 491–9 | date = November 2004 | pmid = 15250827 | pmc = 1133742 | doi = 10.1042/BJ20040256 }}
*{{cite journal  | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
* {{cite journal | vauthors = Ma J, Dempsey AA, Stamatiou D, Marshall KW, Liew CC | title = Identifying leukocyte gene expression patterns associated with plasma lipid levels in human subjects | journal = Atherosclerosis | volume = 191 | issue = 1 | pages = 63–72 | date = March 2007 | pmid = 16806233 | doi = 10.1016/j.atherosclerosis.2006.05.032 }}
*{{cite journal | author=Murray J, Taylor SW, Zhang B, ''et al.'' |title=Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. |journal=J. Biol. Chem. |volume=278 |issue= 39 |pages= 37223-30 |year= 2003 |pmid= 12857734 |doi= 10.1074/jbc.M305694200 }}
* {{cite journal | vauthors = Vogel RO, Dieteren CE, van den Heuvel LP, Willems PH, Smeitink JA, Koopman WJ, Nijtmans LG | title = Identification of mitochondrial complex I assembly intermediates by tracing tagged NDUFS3 demonstrates the entry point of mitochondrial subunits | journal = The Journal of Biological Chemistry | volume = 282 | issue = 10 | pages = 7582–90 | date = March 2007 | pmid = 17209039 | doi = 10.1074/jbc.M609410200 }}
*{{cite journal | author=Ugalde C, Janssen RJ, van den Heuvel LP, ''et al.'' |title=Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency. |journal=Hum. Mol. Genet. |volume=13 |issue= 6 |pages= 659-67 |year= 2004 |pmid= 14749350 |doi= 10.1093/hmg/ddh071 }}
*{{cite journal | author=Bourges I, Ramus C, Mousson de Camaret B, ''et al.'' |title=Structural organization of mitochondrial human complex I: role of the ND4 and ND5 mitochondria-encoded subunits and interaction with prohibitin. |journal=Biochem. J. |volume=383 |issue= Pt. 3 |pages= 491-9 |year= 2005 |pmid= 15250827 |doi= 10.1042/BJ20040256 }}
*{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal  | author=Ma J, Dempsey AA, Stamatiou D, ''et al.'' |title=Identifying leukocyte gene expression patterns associated with plasma lipid levels in human subjects. |journal=Atherosclerosis |volume=191 |issue= 1 |pages= 63-72 |year= 2007 |pmid= 16806233 |doi= 10.1016/j.atherosclerosis.2006.05.032 }}
*{{cite journal | author=Vogel RO, Dieteren CE, van den Heuvel LP, ''et al.'' |title=Identification of mitochondrial complex I assembly intermediates by tracing tagged NDUFS3 demonstrates the entry point of mitochondrial subunits. |journal=J. Biol. Chem. |volume=282 |issue= 10 |pages= 7582-90 |year= 2007 |pmid= 17209039 |doi= 10.1074/jbc.M609410200 }}
}}
{{refend}}
{{refend}}


{{protein-stub}}
{{NLM content}}
{{WikiDoc Sources}}
 
{{NADH or NADPH oxidoreductases}}
{{Enzymes}}
{{Portal bar|Molecular and Cellular Biology|border=no}}
{{Portal bar|Mitochondria|Gene Wiki|border=no}}
 
[[Category:Human proteins]]
[[Category:EC 1.6.5]]
[[Category:EC 1.6.99]]

Latest revision as of 02:48, 28 August 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial (NDUFS2) also known as NADH-ubiquinone oxidoreductase 49 kDa subunit is an enzyme that in humans is encoded by the NDUFS2 gene.[1][2] The protein encoded by this gene is a core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I). Mutations in this gene are associated with mitochondrial complex I deficiency.[3]

Structure

NDUFS2 is located on the q arm of chromosome 1 in position 23.3 and has 15 exons.[3] The NDUFS2 gene produces a 52.5 kDa protein composed of 463 amino acids.[4][5] NDUFS2, the protein encoded by this gene, is a member of the complex I 49 kDa subunit family. It is a peripheral membrane protein on the matrix side of the inner mitochondrial membrane. It contains a cofactor binding site for a [4Fe-4S] cluster, a transit peptide, 5 turns, 11 beta strands, and 18 alpha helixes.[6][7] Alternatively spliced transcript variants encoding different isoforms have been found for this gene.[3]

Function

Mitochondrial complex I is the first multimeric complex of the respiratory chain that catalyzes the NADH oxidation with concomitant ubiquinone reduction and proton ejection out of the mitochondria. Mammalian mitochondrial complex I is an assembly of at least 43 different subunits. Seven of the subunits are encoded by the mitochondrial genome; the remainder are the products of nuclear genes. The iron-sulfur protein (IP) fraction of complex I is made up of 7 subunits, including NDUFS2.[3] Dimethylation at Arg-118 by NDUFAF7 takes place after NDUFS2 assembles into the complex I, leading to the stabilization of the early intermediate complex.[8][9][6][7]

Clinical significance

Mutations in the NDUFS2 gene are associated with Mitochondrial Complex I Deficiency, which is autosomal recessive. This deficiency is the most common enzymatic defect of the oxidative phosphorylation disorders.[10][11] Mitochondrial complex I deficiency shows extreme genetic heterogeneity and can be caused by mutation in nuclear-encoded genes or in mitochondrial-encoded genes. There are no obvious genotype-phenotype correlations, and inference of the underlying basis from the clinical or biochemical presentation is difficult, if not impossible.[12] However, the majority of cases are caused by mutations in nuclear-encoded genes.[13][14] It causes a wide range of clinical disorders, ranging from lethal neonatal disease to adult-onset neurodegenerative disorders. Phenotypes include macrocephaly with progressive leukodystrophy, nonspecific encephalopathy, hypertrophic cardiomyopathy, myopathy, liver disease, Leigh syndrome, Leber hereditary optic neuropathy, and some forms of Parkinson disease.[15]

Interactions

NDUFS2 has been shown to have 121 binary protein-protein interactions including 112 co-complex interactions. NDUFS2 appears to interact with NDUFS3, MKLN1, EGR2, HMOX2, CENPU, and TNFRSF14.[16]

See also

References

  1. Fearnley IM, Finel M, Skehel JM, Walker JE (September 1991). "NADH:ubiquinone oxidoreductase from bovine heart mitochondria. cDNA sequences of the import precursors of the nuclear-encoded 39 kDa and 42 kDa subunits". The Biochemical Journal. 278. 278 ( Pt 3) (3): 821–9. doi:10.1042/bj2780821. PMC 1151420. PMID 1832859.
  2. Procaccio V, de Sury R, Martinez P, Depetris D, Rabilloud T, Soularue P, Lunardi J, Issartel J (June 1998). "Mapping to 1q23 of the human gene (NDUFS2) encoding the 49-kDa subunit of the mitochondrial respiratory Complex I and immunodetection of the mature protein in mitochondria". Mammalian Genome. 9 (6): 482–4. doi:10.1007/s003359900803. PMID 9585441.
  3. 3.0 3.1 3.2 3.3 "Entrez Gene: NDUFS2 NADH dehydrogenase (ubiquinone) Fe-S protein 2, 49kDa (NADH-coenzyme Q reductase)". This article incorporates text from this source, which is in the public domain.
  4. Yao, Daniel. "Cardiac Organellar Protein Atlas Knowledgebase (COPaKB) —— Protein Information". amino.heartproteome.org. Retrieved 2018-08-27.
  5. Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (October 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC 4076475. PMID 23965338.
  6. 6.0 6.1 "NDUFS2 - NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial precursor - Homo sapiens (Human) - NDUFS2 gene & protein". www.uniprot.org. Retrieved 2018-08-27.File:CC-BY-icon-80x15.png This article incorporates text available under the CC BY 4.0 license.
  7. 7.0 7.1 "UniProt: the universal protein knowledgebase". Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC 5210571. PMID 27899622.
  8. Rhein VF, Carroll J, Ding S, Fearnley IM, Walker JE (November 2013). "NDUFAF7 methylates arginine 85 in the NDUFS2 subunit of human complex I". The Journal of Biological Chemistry. 288 (46): 33016–26. doi:10.1074/jbc.M113.518803. PMC 3829151. PMID 24089531.
  9. Zurita Rendón O, Silva Neiva L, Sasarman F, Shoubridge EA (October 2014). "The arginine methyltransferase NDUFAF7 is essential for complex I assembly and early vertebrate embryogenesis". Human Molecular Genetics. 23 (19): 5159–70. doi:10.1093/hmg/ddu239. PMC 4159157. PMID 24838397.
  10. Kirby DM, Salemi R, Sugiana C, Ohtake A, Parry L, Bell KM, Kirk EP, Boneh A, Taylor RW, Dahl HH, Ryan MT, Thorburn DR (September 2004). "NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency". The Journal of Clinical Investigation. 114 (6): 837–45. doi:10.1172/JCI20683. PMC 516258. PMID 15372108.
  11. McFarland R, Kirby DM, Fowler KJ, Ohtake A, Ryan MT, Amor DJ, Fletcher JM, Dixon JW, Collins FA, Turnbull DM, Taylor RW, Thorburn DR (January 2004). "De novo mutations in the mitochondrial ND3 gene as a cause of infantile mitochondrial encephalopathy and complex I deficiency". Annals of Neurology. 55 (1): 58–64. doi:10.1002/ana.10787. PMID 14705112.
  12. Haack TB, Haberberger B, Frisch EM, Wieland T, Iuso A, Gorza M, Strecker V, Graf E, Mayr JA, Herberg U, Hennermann JB, Klopstock T, Kuhn KA, Ahting U, Sperl W, Wilichowski E, Hoffmann GF, Tesarova M, Hansikova H, Zeman J, Plecko B, Zeviani M, Wittig I, Strom TM, Schuelke M, Freisinger P, Meitinger T, Prokisch H (April 2012). "Molecular diagnosis in mitochondrial complex I deficiency using exome sequencing". Journal of Medical Genetics. 49 (4): 277–83. doi:10.1136/jmedgenet-2012-100846. PMID 22499348.
  13. Loeffen JL, Smeitink JA, Trijbels JM, Janssen AJ, Triepels RH, Sengers RC, van den Heuvel LP (2000). "Isolated complex I deficiency in children: clinical, biochemical and genetic aspects". Human Mutation. 15 (2): 123–34. doi:10.1002/(SICI)1098-1004(200002)15:2<123::AID-HUMU1>3.0.CO;2-P. PMID 10649489.
  14. Triepels RH, Van Den Heuvel LP, Trijbels JM, Smeitink JA (2001). "Respiratory chain complex I deficiency". American Journal of Medical Genetics. 106 (1): 37–45. doi:10.1002/ajmg.1397. PMID 11579423.
  15. Robinson BH (May 1998). "Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect". Biochimica et Biophysica Acta. 1364 (2): 271–86. doi:10.1016/s0005-2728(98)00033-4. PMID 9593934.
  16. "121 binary interactions found for search term NDUFS2". IntAct Molecular Interaction Database. EMBL-EBI. Retrieved 2018-08-27.

Further reading

  • Bar-Meir M, Elpeleg ON, Saada A (December 2001). "Effect of various agents on adenosine triphosphate synthesis in mitochondrial complex I deficiency". The Journal of Pediatrics. 139 (6): 868–70. doi:10.1067/mpd.2001.118885. PMID 11743516.
  • Maruyama K, Sugano S (January 1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
  • Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (October 1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
  • Loeffen J, van den Heuvel L, Smeets R, Triepels R, Sengers R, Trijbels F, Smeitink J (June 1998). "cDNA sequence and chromosomal localization of the remaining three human nuclear encoded iron sulphur protein (IP) subunits of complex I: the human IP fraction is completed". Biochemical and Biophysical Research Communications. 247 (3): 751–8. doi:10.1006/bbrc.1998.8882. PMID 9647766.
  • Loeffen JL, Triepels RH, van den Heuvel LP, Schuelke M, Buskens CA, Smeets RJ, Trijbels JM, Smeitink JA (December 1998). "cDNA of eight nuclear encoded subunits of NADH:ubiquinone oxidoreductase: human complex I cDNA characterization completed". Biochemical and Biophysical Research Communications. 253 (2): 415–22. doi:10.1006/bbrc.1998.9786. PMID 9878551.
  • Triepels RH, Hanson BJ, van den Heuvel LP, Sundell L, Marusich MF, Smeitink JA, Capaldi RA (March 2001). "Human complex I defects can be resolved by monoclonal antibody analysis into distinct subunit assembly patterns". The Journal of Biological Chemistry. 276 (12): 8892–7. doi:10.1074/jbc.M009903200. PMID 11112787.
  • Loeffen J, Elpeleg O, Smeitink J, Smeets R, Stöckler-Ipsiroglu S, Mandel H, Sengers R, Trijbels F, van den Heuvel L (February 2001). "Mutations in the complex I NDUFS2 gene of patients with cardiomyopathy and encephalomyopathy". Annals of Neurology. 49 (2): 195–201. doi:10.1002/1531-8249(20010201)49:2<195::AID-ANA39>3.0.CO;2-M. PMID 11220739.
  • Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA (September 2003). "Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry". The Journal of Biological Chemistry. 278 (39): 37223–30. doi:10.1074/jbc.M305694200. PMID 12857734.
  • Ugalde C, Janssen RJ, van den Heuvel LP, Smeitink JA, Nijtmans LG (March 2004). "Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency". Human Molecular Genetics. 13 (6): 659–67. doi:10.1093/hmg/ddh071. PMID 14749350.
  • Bourges I, Ramus C, Mousson de Camaret B, Beugnot R, Remacle C, Cardol P, Hofhaus G, Issartel JP (November 2004). "Structural organization of mitochondrial human complex I: role of the ND4 and ND5 mitochondria-encoded subunits and interaction with prohibitin". The Biochemical Journal. 383 (Pt. 3): 491–9. doi:10.1042/BJ20040256. PMC 1133742. PMID 15250827.
  • Ma J, Dempsey AA, Stamatiou D, Marshall KW, Liew CC (March 2007). "Identifying leukocyte gene expression patterns associated with plasma lipid levels in human subjects". Atherosclerosis. 191 (1): 63–72. doi:10.1016/j.atherosclerosis.2006.05.032. PMID 16806233.
  • Vogel RO, Dieteren CE, van den Heuvel LP, Willems PH, Smeitink JA, Koopman WJ, Nijtmans LG (March 2007). "Identification of mitochondrial complex I assembly intermediates by tracing tagged NDUFS3 demonstrates the entry point of mitochondrial subunits". The Journal of Biological Chemistry. 282 (10): 7582–90. doi:10.1074/jbc.M609410200. PMID 17209039.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.