SELS (gene): Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +))
 
m (Bot: HTTP→HTTPS)
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Selenoprotein S''', also known as '''SELS''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: SELS selenoprotein S| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=55829| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
 
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_SELS_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 2q2f.
| PDB = {{PDB2|2q2f}}
| Name = Selenoprotein S
| HGNCid = 
| Symbol = SELS
| AltSymbols =; AD-015; ADO15; MGC104346; MGC2553; SBBI8; SEPS1; VIMP
| OMIM = 607918
| ECnumber = 
| Homologene = 10200
| MGIid = 95994
| Function = {{GNF_GO|id=GO:0004872 |text = receptor activity}} {{GNF_GO|id=GO:0008430 |text = selenium binding}} {{GNF_GO|id=GO:0016209 |text = antioxidant activity}} {{GNF_GO|id=GO:0019899 |text = enzyme binding}}
| Component = {{GNF_GO|id=GO:0005783 |text = endoplasmic reticulum}} {{GNF_GO|id=GO:0016020 |text = membrane}} {{GNF_GO|id=GO:0016021 |text = integral to membrane}} {{GNF_GO|id=GO:0030176 |text = integral to endoplasmic reticulum membrane}}
| Process = {{GNF_GO|id=GO:0006980 |text = redox signal response}} {{GNF_GO|id=GO:0009749 |text = response to glucose stimulus}} {{GNF_GO|id=GO:0030433 |text = ER-associated protein catabolic process}} {{GNF_GO|id=GO:0030503 |text = regulation of cell redox homeostasis}} {{GNF_GO|id=GO:0030968 |text = unfolded protein response}} {{GNF_GO|id=GO:0030970 |text = retrograde protein transport, ER to cytosol}} {{GNF_GO|id=GO:0045184 |text = establishment of protein localization}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 55829
    | Hs_Ensembl = 
    | Hs_RefseqProtein = NP_060915
    | Hs_RefseqmRNA = NM_018445
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 
    | Hs_GenLoc_start = 
    | Hs_GenLoc_end = 
    | Hs_Uniprot = 
    | Mm_EntrezGene = 109815
    | Mm_Ensembl = ENSMUSG00000075701
    | Mm_RefseqmRNA = NM_024439
    | Mm_RefseqProtein = NP_077759
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 7
    | Mm_GenLoc_start = 65958664
    | Mm_GenLoc_end = 65967802
    | Mm_Uniprot = Q9BCZ4
  }}
}}
'''Selenoprotein S''', also known as '''SELS''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: SELS selenoprotein S| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=55829| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
{{PBB_Summary
| section_title =  
| section_title =  
| summary_text = This gene encodes a selenoprotein, which contains a selenocysteine (Sec) residue at its active site. The selenocysteine is encoded by the UGA codon that normally signals translation termination. The 3' UTR of selenoprotein genes have a common stem-loop structure, the sec insertion sequence (SECIS), that is necessary for the recognition of UGA as a Sec codon rather than as a stop signal. Studies suggest that this protein may regulate cytokine production, and thus play a key role in the control of the inflammatory response. Two alternatively spliced transcript variants encoding the same protein have been found for this gene.<ref name="entrez">{{cite web | title = Entrez Gene: SELS selenoprotein S| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=55829| accessdate = }}</ref>
| summary_text = This gene encodes a selenoprotein, which contains a selenocysteine (Sec) residue at its active site. The selenocysteine is encoded by the UGA codon that normally signals translation termination. The 3' UTR of selenoprotein genes have a common stem-loop structure, the sec insertion sequence (SECIS), that is necessary for the recognition of UGA as a Sec codon rather than as a stop signal. Studies suggest that this protein may regulate cytokine production, and thus play a key role in the control of the inflammatory response. Two alternatively spliced transcript variants encoding the same protein have been found for this gene.<ref name="entrez" />
}}
}}
==Interactions==
SELS (gene) has been shown to [[Protein-protein interaction|interact]] with [[Valosin-containing protein]].<ref name=pmid15215856>{{cite journal |last=Ye |first=Yihong |authorlink= |author2=Shibata Yoko |author3=Yun Chi |author4=Ron David |author5=Rapoport Tom A  |date=Jun 2004 |title=A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol |journal=[[Nature (journal)|Nature]] |volume=429 |issue=6994 |pages=841–7 |publisher= |location = England| pmid = 15215856 |doi = 10.1038/nature02656  }}</ref><ref name=pmid18199748>{{cite journal |last=Wang |first=Qiuyan |authorlink= |author2=Li Lianyun |author3=Ye Yihong  |date=Mar 2008 |title=Inhibition of p97-dependent Protein Degradation by Eeyarestatin I |journal=J. Biol. Chem. |volume=283 |issue=12 |pages=7445–54 |publisher= |location = United States| issn = 0021-9258| pmid = 18199748 |doi = 10.1074/jbc.M708347200 |pmc=2276333 }}</ref>


==References==
==References==
{{reflist|2}}
{{reflist}}
 
==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading  
{{PBB_Further_reading  
| citations =  
| citations =  
*{{cite journal | author=Robertson NG, Khetarpal U, Gutiérrez-Espeleta GA, ''et al.'' |title=Isolation of novel and known genes from a human fetal cochlear cDNA library using subtractive hybridization and differential screening. |journal=Genomics |volume=23 |issue= 1 |pages= 42-50 |year= 1995 |pmid= 7829101 |doi= 10.1006/geno.1994.1457 }}
*{{cite journal   |vauthors=Robertson NG, Khetarpal U, Gutiérrez-Espeleta GA, etal |title=Isolation of novel and known genes from a human fetal cochlear cDNA library using subtractive hybridization and differential screening |journal=Genomics |volume=23 |issue= 1 |pages= 42–50 |year= 1995 |pmid= 7829101 |doi= 10.1006/geno.1994.1457 }}
*{{cite journal  | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi=  }}
*{{cite journal  |author1=Maruyama K |author2=Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides |journal=Gene |volume=138 |issue= 1–2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8 }}
*{{cite journal  | author=Bonaldo MF, Lennon G, Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery. |journal=Genome Res. |volume=6 |issue= 9 |pages= 791-806 |year= 1997 |pmid= 8889548 |doi=  }}
*{{cite journal  |author1=Bonaldo MF |author2=Lennon G |author3=Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery |journal=Genome Res. |volume=6 |issue= 9 |pages= 791–806 |year= 1997 |pmid= 8889548 |doi=10.1101/gr.6.9.791 }}
*{{cite journal | author=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, ''et al.'' |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149-56 |year= 1997 |pmid= 9373149 |doi=  }}
*{{cite journal   |vauthors=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, etal |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library |journal=Gene |volume=200 |issue= 1–2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 }}
*{{cite journal | author=Hu RM, Han ZG, Song HD, ''et al.'' |title=Gene expression profiling in the human hypothalamus-pituitary-adrenal axis and full-length cDNA cloning. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue= 17 |pages= 9543-8 |year= 2000 |pmid= 10931946 |doi= 10.1073/pnas.160270997 }}
*{{cite journal   |vauthors=Hu RM, Han ZG, Song HD, etal |title=Gene expression profiling in the human hypothalamus-pituitary-adrenal axis and full-length cDNA cloning |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue= 17 |pages= 9543–8 |year= 2000 |pmid= 10931946 |doi= 10.1073/pnas.160270997 | pmc=16901 }}
*{{cite journal | author=Walder K, Kantham L, McMillan JS, ''et al.'' |title=Tanis: a link between type 2 diabetes and inflammation? |journal=Diabetes |volume=51 |issue= 6 |pages= 1859-66 |year= 2002 |pmid= 12031974 |doi=  }}
*{{cite journal   |vauthors=Walder K, Kantham L, McMillan JS, etal |title=Tanis: a link between type 2 diabetes and inflammation? |journal=Diabetes |volume=51 |issue= 6 |pages= 1859–66 |year= 2002 |pmid= 12031974 |doi=10.2337/diabetes.51.6.1859 }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal   |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }}
*{{cite journal | author=Gao Y, Walder K, Sunderland T, ''et al.'' |title=Elevation in Tanis expression alters glucose metabolism and insulin sensitivity in H4IIE cells. |journal=Diabetes |volume=52 |issue= 4 |pages= 929-34 |year= 2003 |pmid= 12663463 |doi=  }}
*{{cite journal   |vauthors=Gao Y, Walder K, Sunderland T, etal |title=Elevation in Tanis expression alters glucose metabolism and insulin sensitivity in H4IIE cells |journal=Diabetes |volume=52 |issue= 4 |pages= 929–34 |year= 2003 |pmid= 12663463 |doi=10.2337/diabetes.52.4.929 }}
*{{cite journal | author=Kryukov GV, Castellano S, Novoselov SV, ''et al.'' |title=Characterization of mammalian selenoproteomes. |journal=Science |volume=300 |issue= 5624 |pages= 1439-43 |year= 2003 |pmid= 12775843 |doi= 10.1126/science.1083516 }}
*{{cite journal   |vauthors=Kryukov GV, Castellano S, Novoselov SV, etal |title=Characterization of mammalian selenoproteomes |journal=Science |volume=300 |issue= 5624 |pages= 1439–43 |year= 2003 |pmid= 12775843 |doi= 10.1126/science.1083516 }}
*{{cite journal | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
*{{cite journal   |vauthors=Ota T, Suzuki Y, Nishikawa T, etal |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
*{{cite journal | author=Gao Y, Feng HC, Walder K, ''et al.'' |title=Regulation of the selenoprotein SelS by glucose deprivation and endoplasmic reticulum stress - SelS is a novel glucose-regulated protein. |journal=FEBS Lett. |volume=563 |issue= 1-3 |pages= 185-90 |year= 2004 |pmid= 15063746 |doi= 10.1016/S0014-5793(04)00296-0 }}
*{{cite journal   |vauthors=Gao Y, Feng HC, Walder K, etal |title=Regulation of the selenoprotein SelS by glucose deprivation and endoplasmic reticulum stress - SelS is a novel glucose-regulated protein |journal=FEBS Lett. |volume=563 |issue= 1–3 |pages= 185–90 |year= 2004 |pmid= 15063746 |doi= 10.1016/S0014-5793(04)00296-0 }}
*{{cite journal | author=Karlsson HK, Tsuchida H, Lake S, ''et al.'' |title=Relationship between serum amyloid A level and Tanis/SelS mRNA expression in skeletal muscle and adipose tissue from healthy and type 2 diabetic subjects. |journal=Diabetes |volume=53 |issue= 6 |pages= 1424-8 |year= 2004 |pmid= 15161744 |doi=  }}
*{{cite journal   |vauthors=Karlsson HK, Tsuchida H, Lake S, etal |title=Relationship between serum amyloid A level and Tanis/SelS mRNA expression in skeletal muscle and adipose tissue from healthy and type 2 diabetic subjects |journal=Diabetes |volume=53 |issue= 6 |pages= 1424–8 |year= 2004 |pmid= 15161744 |doi=10.2337/diabetes.53.6.1424 }}
*{{cite journal | author=Ye Y, Shibata Y, Yun C, ''et al.'' |title=A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. |journal=Nature |volume=429 |issue= 6994 |pages= 841-7 |year= 2004 |pmid= 15215856 |doi= 10.1038/nature02656 }}
*{{cite journal   |vauthors=Ye Y, Shibata Y, Yun C, etal |title=A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol |journal=Nature |volume=429 |issue= 6994 |pages= 841–7 |year= 2004 |pmid= 15215856 |doi= 10.1038/nature02656 }}
*{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal   |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 }}
*{{cite journal  | author=Lilley BN, Ploegh HL |title=Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=102 |issue= 40 |pages= 14296-301 |year= 2006 |pmid= 16186509 |doi= 10.1073/pnas.0505014102 }}
*{{cite journal  |author1=Lilley BN |author2=Ploegh HL |title=Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=102 |issue= 40 |pages= 14296–301 |year= 2006 |pmid= 16186509 |doi= 10.1073/pnas.0505014102 | pmc=1242303 }}
*{{cite journal | author=Ye Y, Shibata Y, Kikkert M, ''et al.'' |title=Inaugural Article: Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=102 |issue= 40 |pages= 14132-8 |year= 2006 |pmid= 16186510 |doi= 10.1073/pnas.0505006102 }}
*{{cite journal   |vauthors=Ye Y, Shibata Y, Kikkert M, etal |title=Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=102 |issue= 40 |pages= 14132–8 |year= 2006 |pmid= 16186510 |doi= 10.1073/pnas.0505006102 | pmc=1242302 }}
*{{cite journal | author=Curran JE, Jowett JB, Elliott KS, ''et al.'' |title=Genetic variation in selenoprotein S influences inflammatory response. |journal=Nat. Genet. |volume=37 |issue= 11 |pages= 1234-41 |year= 2006 |pmid= 16227999 |doi= 10.1038/ng1655 }}
*{{cite journal   |vauthors=Curran JE, Jowett JB, Elliott KS, etal |title=Genetic variation in selenoprotein S influences inflammatory response |journal=Nat. Genet. |volume=37 |issue= 11 |pages= 1234–41 |year= 2006 |pmid= 16227999 |doi= 10.1038/ng1655 }}
*{{cite journal | author=Gao Y, Hannan NR, Wanyonyi S, ''et al.'' |title=Activation of the selenoprotein SEPS1 gene expression by pro-inflammatory cytokines in HepG2 cells. |journal=Cytokine |volume=33 |issue= 5 |pages= 246-51 |year= 2006 |pmid= 16574427 |doi= 10.1016/j.cyto.2006.02.005 }}
*{{cite journal   |vauthors=Gao Y, Hannan NR, Wanyonyi S, etal |title=Activation of the selenoprotein SEPS1 gene expression by pro-inflammatory cytokines in HepG2 cells |journal=Cytokine |volume=33 |issue= 5 |pages= 246–51 |year= 2006 |pmid= 16574427 |doi= 10.1016/j.cyto.2006.02.005 }}
*{{cite journal | author=Gao Y, Pagnon J, Feng HC, ''et al.'' |title=Secretion of the glucose-regulated selenoprotein SEPS1 from hepatoma cells. |journal=Biochem. Biophys. Res. Commun. |volume=356 |issue= 3 |pages= 636-41 |year= 2007 |pmid= 17374524 |doi= 10.1016/j.bbrc.2007.03.018 }}
*{{cite journal   |vauthors=Gao Y, Pagnon J, Feng HC, etal |title=Secretion of the glucose-regulated selenoprotein SEPS1 from hepatoma cells |journal=Biochem. Biophys. Res. Commun. |volume=356 |issue= 3 |pages= 636–41 |year= 2007 |pmid= 17374524 |doi= 10.1016/j.bbrc.2007.03.018 }}
*{{cite journal | author=Seiderer J, Dambacher J, Kühnlein B, ''et al.'' |title=The role of the selenoprotein S (SELS) gene -105G>A promoter polymorphism in inflammatory bowel disease and regulation of SELS gene expression in intestinal inflammation. |journal=Tissue Antigens |volume=70 |issue= 3 |pages= 238-46 |year= 2007 |pmid= 17661913 |doi= 10.1111/j.1399-0039.2007.00888.x }}
*{{cite journal   |vauthors=Seiderer J, Dambacher J, Kühnlein B, etal |title=The role of the selenoprotein S (SELS) gene -105G>A promoter polymorphism in inflammatory bowel disease and regulation of SELS gene expression in intestinal inflammation |journal=Tissue Antigens |volume=70 |issue= 3 |pages= 238–46 |year= 2007 |pmid= 17661913 |doi= 10.1111/j.1399-0039.2007.00888.x }}
}}
}}
{{refend}}
{{refend}}
{{PDB Gallery|geneid=55829}}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
[[Category:Selenoproteins]]


{{protein-stub}}
{{protein-stub}}
{{WikiDoc Sources}}

Latest revision as of 06:05, 11 September 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Selenoprotein S, also known as SELS, is a human gene.[1]

This gene encodes a selenoprotein, which contains a selenocysteine (Sec) residue at its active site. The selenocysteine is encoded by the UGA codon that normally signals translation termination. The 3' UTR of selenoprotein genes have a common stem-loop structure, the sec insertion sequence (SECIS), that is necessary for the recognition of UGA as a Sec codon rather than as a stop signal. Studies suggest that this protein may regulate cytokine production, and thus play a key role in the control of the inflammatory response. Two alternatively spliced transcript variants encoding the same protein have been found for this gene.[1]

Interactions

SELS (gene) has been shown to interact with Valosin-containing protein.[2][3]

References

  1. 1.0 1.1 "Entrez Gene: SELS selenoprotein S".
  2. Ye, Yihong; Shibata Yoko; Yun Chi; Ron David; Rapoport Tom A (Jun 2004). "A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol". Nature. England. 429 (6994): 841–7. doi:10.1038/nature02656. PMID 15215856.
  3. Wang, Qiuyan; Li Lianyun; Ye Yihong (Mar 2008). "Inhibition of p97-dependent Protein Degradation by Eeyarestatin I". J. Biol. Chem. United States. 283 (12): 7445–54. doi:10.1074/jbc.M708347200. ISSN 0021-9258. PMC 2276333. PMID 18199748.

Further reading