SETD2: Difference between revisions
m Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +) |
m Bot: HTTP→HTTPS |
||
Line 1: | Line 1: | ||
< | {{Infobox_gene}} | ||
{{ | '''SET domain containing 2''' is an [[enzyme]] that in humans is encoded by the ''SETD2'' [[gene]].<ref name="pmid16118227">{{cite journal | vauthors = Sun XJ, Wei J, Wu XY, Hu M, Wang L, Wang HH, Zhang QH, Chen SJ, Huang QH, Chen Z | title = Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase | journal = J Biol Chem | volume = 280 | issue = 42 | pages = 35261–71 |date=Oct 2005 | pmid = 16118227 | pmc = | doi = 10.1074/jbc.M504012200 }}</ref><ref name="pmid11461154">{{cite journal | vauthors = Rega S, Stiewe T, Chang DI, Pollmeier B, Esche H, Bardenheuer W, Marquitan G, Putzer BM | title = Identification of the full-length huntingtin- interacting protein p231HBP/HYPB as a DNA-binding factor | journal = Mol Cell Neurosci | volume = 18 | issue = 1 | pages = 68–79 |date=Jul 2001 | pmid = 11461154 | pmc = | doi = 10.1006/mcne.2001.1004 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: SETD2 SET domain containing 2| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=29072| accessdate = }}</ref> | ||
| | |||
| | |||
| | |||
}} | |||
== Function == | |||
SETD2 protein is a [[histone methyltransferase]] that is specific for lysine-36 of histone H3, and methylation of this residue is associated with active [[chromatin]]. This protein also contains a novel transcriptional activation domain and has been found associated with hyperphosphorylated [[RNA polymerase II]].<ref name="entrez" /> | |||
== Clinical significance == | |||
The SETD2 gene is located on the short arm of chromosome 3 and has been shown to play a tumour suppressor role in human cancer.<ref name="pmid19698110">{{cite journal | vauthors = Al Sarakbi W, Sasi W, Jiang WG, Roberts T, Newbold RF, Mokbel K | author6-link = kefah Mokbel | title = The mRNA expression of SETD2 in human breast cancer: correlation with clinico-pathological parameters | journal = BMC Cancer | volume = 9 | issue = | pages = 290 | year = 2009 | pmid = 19698110 | pmc = 3087337 | doi = 10.1186/1471-2407-9-290 }}</ref> | |||
==References== | == Interactions == | ||
{{reflist | |||
==Further reading== | SETD2 has been shown to [[Protein-protein interaction|interact]] with [[Huntingtin]].<ref name="pmid9700202">{{cite journal | vauthors = Faber PW, Barnes GT, Srinidhi J, Chen J, Gusella JF, MacDonald ME | title = Huntingtin interacts with a family of WW domain proteins | journal = Hum. Mol. Genet. | volume = 7 | issue = 9 | pages = 1463–74 |date=September 1998 | pmid = 9700202 | doi = 10.1093/hmg/7.9.1463 }}</ref> [[Huntington's disease]] (HD), a neurodegenerative disorder characterized by loss of [[striatum|striatal]] neurons, is caused by an expansion of a [[polyglutamine tract]] in the HD protein huntingtin. SETD2 belongs to a class of huntingtin interacting proteins characterized by [[WW domain|WW motifs]].<ref name="entrez" /> | ||
== References == | |||
{{reflist}} | |||
== Further reading == | |||
{{refbegin | 2}} | {{refbegin | 2}} | ||
*{{cite journal |vauthors=Faber PW, Barnes GT, Srinidhi J, etal |title=Huntingtin interacts with a family of WW domain proteins |journal=Hum. Mol. Genet. |volume=7 |issue= 9 |pages= 1463–74 |year= 1998 |pmid= 9700202 |doi=10.1093/hmg/7.9.1463 }} | |||
*{{cite journal |vauthors=Passani LA, Bedford MT, Faber PW, etal |title=Huntingtin's WW domain partners in Huntington's disease post-mortem brain fulfill genetic criteria for direct involvement in Huntington's disease pathogenesis |journal=Hum. Mol. Genet. |volume=9 |issue= 14 |pages= 2175–82 |year= 2000 |pmid= 10958656 |doi=10.1093/hmg/9.14.2175 }} | |||
*{{cite journal | *{{cite journal |vauthors=Zhang QH, Ye M, Wu XY, etal |title=Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells |journal=Genome Res. |volume=10 |issue= 10 |pages= 1546–60 |year= 2001 |pmid= 11042152 |doi=10.1101/gr.140200 | pmc=310934 }} | ||
*{{cite journal | *{{cite journal |vauthors=Nagase T, Kikuno R, Hattori A, etal |title=Prediction of the coding sequences of unidentified human genes. XIX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro |journal=DNA Res. |volume=7 |issue= 6 |pages= 347–55 |year= 2001 |pmid= 11214970 |doi=10.1093/dnares/7.6.347 }} | ||
*{{cite journal | *{{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }} | ||
*{{cite journal | *{{cite journal |vauthors=Ota T, Suzuki Y, Nishikawa T, etal |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }} | ||
*{{cite journal |vauthors=Beausoleil SA, Jedrychowski M, Schwartz D, etal |title=Large-scale characterization of HeLa cell nuclear phosphoproteins |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=101 |issue= 33 |pages= 12130–5 |year= 2004 |pmid= 15302935 |doi= 10.1073/pnas.0404720101 | pmc=514446 }} | |||
*{{cite journal | *{{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 }} | ||
*{{cite journal | *{{cite journal |vauthors=Li M, Phatnani HP, Guan Z, etal |title=Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1 |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=102 |issue= 49 |pages= 17636–41 |year= 2006 |pmid= 16314571 |doi= 10.1073/pnas.0506350102 | pmc=1308900 }} | ||
*{{cite journal | *{{cite journal |vauthors=Lim J, Hao T, Shaw C, etal |title=A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration |journal=Cell |volume=125 |issue= 4 |pages= 801–14 |year= 2006 |pmid= 16713569 |doi= 10.1016/j.cell.2006.03.032 }} | ||
*{{cite journal | *{{cite journal |vauthors=Olsen JV, Blagoev B, Gnad F, etal |title=Global, in vivo, and site-specific phosphorylation dynamics in signaling networks |journal=Cell |volume=127 |issue= 3 |pages= 635–48 |year= 2006 |pmid= 17081983 |doi= 10.1016/j.cell.2006.09.026 }} | ||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
}} | |||
{{refend}} | {{refend}} | ||
{{PDB Gallery|geneid=29072}} | |||
{{ | {{gene-3-stub}} | ||
Latest revision as of 06:10, 11 September 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
SET domain containing 2 is an enzyme that in humans is encoded by the SETD2 gene.[1][2][3]
Function
SETD2 protein is a histone methyltransferase that is specific for lysine-36 of histone H3, and methylation of this residue is associated with active chromatin. This protein also contains a novel transcriptional activation domain and has been found associated with hyperphosphorylated RNA polymerase II.[3]
Clinical significance
The SETD2 gene is located on the short arm of chromosome 3 and has been shown to play a tumour suppressor role in human cancer.[4]
Interactions
SETD2 has been shown to interact with Huntingtin.[5] Huntington's disease (HD), a neurodegenerative disorder characterized by loss of striatal neurons, is caused by an expansion of a polyglutamine tract in the HD protein huntingtin. SETD2 belongs to a class of huntingtin interacting proteins characterized by WW motifs.[3]
References
- ↑ Sun XJ, Wei J, Wu XY, Hu M, Wang L, Wang HH, Zhang QH, Chen SJ, Huang QH, Chen Z (Oct 2005). "Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase". J Biol Chem. 280 (42): 35261–71. doi:10.1074/jbc.M504012200. PMID 16118227.
- ↑ Rega S, Stiewe T, Chang DI, Pollmeier B, Esche H, Bardenheuer W, Marquitan G, Putzer BM (Jul 2001). "Identification of the full-length huntingtin- interacting protein p231HBP/HYPB as a DNA-binding factor". Mol Cell Neurosci. 18 (1): 68–79. doi:10.1006/mcne.2001.1004. PMID 11461154.
- ↑ 3.0 3.1 3.2 "Entrez Gene: SETD2 SET domain containing 2".
- ↑ Al Sarakbi W, Sasi W, Jiang WG, Roberts T, Newbold RF, Mokbel K (2009). "The mRNA expression of SETD2 in human breast cancer: correlation with clinico-pathological parameters". BMC Cancer. 9: 290. doi:10.1186/1471-2407-9-290. PMC 3087337. PMID 19698110.
- ↑ Faber PW, Barnes GT, Srinidhi J, Chen J, Gusella JF, MacDonald ME (September 1998). "Huntingtin interacts with a family of WW domain proteins". Hum. Mol. Genet. 7 (9): 1463–74. doi:10.1093/hmg/7.9.1463. PMID 9700202.
Further reading
- Faber PW, Barnes GT, Srinidhi J, et al. (1998). "Huntingtin interacts with a family of WW domain proteins". Hum. Mol. Genet. 7 (9): 1463–74. doi:10.1093/hmg/7.9.1463. PMID 9700202.
- Passani LA, Bedford MT, Faber PW, et al. (2000). "Huntingtin's WW domain partners in Huntington's disease post-mortem brain fulfill genetic criteria for direct involvement in Huntington's disease pathogenesis". Hum. Mol. Genet. 9 (14): 2175–82. doi:10.1093/hmg/9.14.2175. PMID 10958656.
- Zhang QH, Ye M, Wu XY, et al. (2001). "Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells". Genome Res. 10 (10): 1546–60. doi:10.1101/gr.140200. PMC 310934. PMID 11042152.
- Nagase T, Kikuno R, Hattori A, et al. (2001). "Prediction of the coding sequences of unidentified human genes. XIX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro". DNA Res. 7 (6): 347–55. doi:10.1093/dnares/7.6.347. PMID 11214970.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Beausoleil SA, Jedrychowski M, Schwartz D, et al. (2004). "Large-scale characterization of HeLa cell nuclear phosphoproteins". Proc. Natl. Acad. Sci. U.S.A. 101 (33): 12130–5. doi:10.1073/pnas.0404720101. PMC 514446. PMID 15302935.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Li M, Phatnani HP, Guan Z, et al. (2006). "Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1". Proc. Natl. Acad. Sci. U.S.A. 102 (49): 17636–41. doi:10.1073/pnas.0506350102. PMC 1308900. PMID 16314571.
- Lim J, Hao T, Shaw C, et al. (2006). "A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration". Cell. 125 (4): 801–14. doi:10.1016/j.cell.2006.03.032. PMID 16713569.
- Olsen JV, Blagoev B, Gnad F, et al. (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks". Cell. 127 (3): 635–48. doi:10.1016/j.cell.2006.09.026. PMID 17081983.
This article on a gene on human chromosome 3 is a stub. You can help Wikipedia by expanding it. |