Congenital heart disease epidemiology and demographics: Difference between revisions
m Robot: Automated text replacement (-msbeih@perfuse.org +msbeih@wikidoc.org, -psingh@perfuse.org +psingh13579@gmail.com, -agovi@perfuse.org +agovi@wikidoc.org, -rgudetti@perfuse.org +ravitheja.g@gmail.com, -lbiller@perfuse.org +lbiller@wikidoc.org,... |
No edit summary |
||
(7 intermediate revisions by 2 users not shown) | |||
Line 7: | Line 7: | ||
==Epidemiology and Demographics== | ==Epidemiology and Demographics== | ||
* Affects approximately one in every 125 babies born.<ref name="urlCongenital heart defects | Baby | Birth defects | March of Dimes">{{cite web |url=http://www.marchofdimes.com/pnhec/4439_1212.asp |title=Congenital heart defects | Baby | Birth defects | March of Dimes |format= |work= |accessdate=2013-01-04}}</ref> | |||
* Affects approximately one in every 125 babies born. | |||
* The eight most common congenital heart defects account for 80% of all congenital heart diseases, while the remaining 20% consist of many independently infrequent conditions or combinations of several defects. | * The eight most common congenital heart defects account for 80% of all congenital heart diseases, while the remaining 20% consist of many independently infrequent conditions or combinations of several defects. | ||
* In the US, 40,000 people each year are born with congenital heart disease. | * In the US, 40,000 people each year are born with congenital heart disease.<ref name="urlFact Sheets | The Children’s Heart Foundation">{{cite web |url=http://www.childrensheartfoundation.org/about-chf/fact-sheets |title=Fact Sheets | The Children’s Heart Foundation |format= |work= |accessdate=2013-01-04}}</ref> | ||
* In the US, 4,000 out of the 40,000 do not survive past infancy and into the second year of life. | * In the US, 4,000 out of the 40,000 do not survive past infancy and into the second year of life.<ref name="urlFact Sheets | The Children’s Heart Foundation">{{cite web |url=http://www.childrensheartfoundation.org/about-chf/fact-sheets |title=Fact Sheets | The Children’s Heart Foundation |format= |work= |accessdate=2013-01-04}}</ref> | ||
* In the US, twice as many children die each year from congenital heart disease than from all forms of pediatric cancers combined. | * In the US, twice as many children die each year from congenital heart disease than from all forms of pediatric cancers combined.<ref name="urlFact Sheets | The Children’s Heart Foundation">{{cite web |url=http://www.childrensheartfoundation.org/about-chf/fact-sheets |title=Fact Sheets | The Children’s Heart Foundation |format= |work= |accessdate=2013-01-04}}</ref> | ||
*[[Ventricular septal defect]] (VSD) accounts for one-third of all congenital heart disease, making it the most common congenital heart defect. | *[[Ventricular septal defect]] (VSD) accounts for one-third of all congenital heart disease, making it the most common congenital heart defect. | ||
*Incidence of VSD is: | *Incidence of VSD is: | ||
** 4-5% higher when a parent or sibling has a heart defect. | ** 4-5% higher when a parent or sibling has a heart defect. | ||
** 3-4% higher in [[ | ** 3-4% higher in [[stillborns]] | ||
** 10-25% higher in abortuses | ** 10-25% higher in abortuses | ||
** 2% higher in [[premature infants]] | ** 2% higher in [[premature infants]] | ||
Line 23: | Line 21: | ||
* Growth of population with congenital heart defect is 5% | * Growth of population with congenital heart defect is 5% | ||
The number of adults with problems connected to a congenital heart defect is rising, passing the number of children with congenital heart defects in most Western countries. This group is referred to as [[GUCH|grown-up congenital heart disease (GUCH)]] patients. | The number of adults with problems connected to a congenital heart defect is rising, passing the number of children with congenital heart defects in most Western countries. This group is referred to as [[GUCH|grown-up congenital heart disease (GUCH)]] patients. | ||
===Gender=== | |||
According to "Teratological rule of sexual dimorphism" (V. Geodakian, 1970), inborn anomalies that have atavistic nature appear more frequently among females, and futuristic anomalies appear among males. This rule was applied to explain differences in sex ratio observed for congenital heart defects.<ref> Geodakyan V. A., Sherman A. L. (1970). “Eksperimental’naja hirurgija i anesteziologija (Experimental surgery and anesthesiology) ” '''32''' N 2, 18–23. </ref><ref>{{cite journal |author=Geodakian VA, Sherman AL |title=[Relation of congenital anomalies to sex] |language=Russian |journal=Zh. Obshch. Biol. |volume=32 |issue=4 |pages=417-24 |year=1971 |pmid=5146394 |doi=}}</ref> | |||
In the 32,000 diagnoses of "female" malformations, those relating to the heart of the embryo and to the phylogenetic human predecessors predominated (Table). The most well-defined female's defects are patent ductus arteriosus (1♂ : 2.72♀), Lutembacher disease (1♂ : 2.1♀), and ostium secundum (1♂ : 1.84♀). | |||
:{| class="wikitable" | |||
|+ '''Sex ratio of patients with congenital heart defects''' | |||
! Congenital heart defect !! Sex ratio, males:females | |||
|- | |||
| Patent ductus arteriosus || 1 ''':''' 2.72 | |||
|- | |||
| Lutembaher disease || 1 ''':''' 2.14 | |||
|- | |||
| Ostium secundum || 1 ''':''' 1.84 | |||
|- | |||
| Ventricular septal defect and patent ductus arteriosus || 1 ''':''' 1.51 | |||
|- | |||
| Fallot's triad || 1 ''':''' 1.45 | |||
|- | |||
| Eisenmenger's complex || 1 ''':''' 1.40 | |||
|- | |||
| Partial atrioventricular canal || 1 ''':''' 1.36 | |||
|- | |||
| Ostium primum || 1 ''':''' 1.20 | |||
|- | |||
| Partial anomalous pulmonary venous connection || 1 ''':''' 1.19 | |||
|- | |||
| Ventricular septal defect || 1 ''':''' 1.02 | |||
|- | |||
| Potts and Waterston-Cooley shunts || 1 ''':''' 1.01 | |||
|- | |||
| Atrioventricular canal || 1 ''':''' 1.01 | |||
|- | |||
| Ebstein's anomaly || 1.02 ''':''' 1 | |||
|- | |||
| Stenosis of lung artery || 1.04 ''':''' 1 | |||
|- | |||
| Tricuspid atresia || 1.16 ''':''' 1 | |||
|- | |||
| Truncus arteriosus || 1.21 ''':''' 1 | |||
|- | |||
| Tetralogy of Fallot || 1.35 ''':''' 1 | |||
|- | |||
| Coarctation of aorta and an open arterial channel || 1.37 ''':''' 1 | |||
|- | |||
| Total anomalous pulmonary venous connection || 1.39 ''':''' 1 | |||
|- | |||
| Transposition of the great arteries || 1.90 ''':''' 1 | |||
|- | |||
| Coarctation of the aorta || 2.14 ''':''' 1 | |||
|- | |||
| Aortic stenosis || 2.66 ''':''' 1 | |||
|} | |||
Most well-defined "male" congenital heart defects are: aortic stenosis (2.66♂ : 1♀), coarctation of the aorta (2.14♂ : 1♀), transpositions of the great arteries (1.90♂ : 1♀), a total anomalous pulmonary venous connection (1.39♂ : 1♀), and coarctation of aorta with an open arterial channel (1.37♂ : 1♀). None of the male's components of congenital heart defects have a corresponding similar formation at normal embryo or at phylogenetic predecessors of the humans. They can be considered as unsuccessful tests of the evolution process. | |||
Other congenital heart defects are of a neutral type. The frequency of occurrence is about the same for both sexes. Among them it is also possible to allocate simple (Potts/Waterston-Cooley shunt and ostium primum) and complex (partial and full atrioventricular canal, Ebstain's anomaly and tricuspid atresia) defects. Simple defects of this group, as well as female defects, can be considered atavistic. The difference between them is that these defects, contrary to female ones, represent a return to the far past in the onthogenetic and phylogenetic sense. They can be considered as a consequence of a block in heart development at early stages of embriogenesis (the first 2-3 months of the embryo's life during which the anatomic formation of the heart occurs), and at earlier (in comparison to female defects) stages of phylogenesis. For complex defects of the neutral group, the sex ratio depends on which of their components prevail—female or male. | |||
Rokitansky (1875) explained congenital heart defects as breaks in heart development at various ontogenesis stages.<ref> Rokitarisky K. E. (1875) Die defecte der Scheidewande des Herzens. Wien.</ref> Spitzer (1923) treats them as returns to one of the phylogenesis stages.<ref> Spitzer A. (1923) Arch. Pathol. Anat. '''243''', 81–272. </ref> Krimsky (1963), synthesizing two previous points of view, considered congenital heart diseases as a stop of development at a certain stage of ontogenesis, corresponding to this or that stage of the phylogenesis.<ref> Krimski L. D. (1963) Pathological anatomy of congenital heart defects and complications after their surgical treatment. M., Medicine. </ref> Hence these theories can explain atavistic heart diseases only (feminine and neutral, according to our classification), and no explanation has been found for masculine defects. | |||
The concept allows considering sex of the patient as a diagnostic symptom. This symptom is stable and cheap and does not harm the patient compared to some invasive diagnostic procedures. | |||
==References== | ==References== | ||
{{Reflist|2}} | {{Reflist|2}} | ||
{{WikiDoc Help Menu}} | {{WikiDoc Help Menu}} | ||
{{WikiDoc Sources}} | {{WikiDoc Sources}} | ||
Line 34: | Line 93: | ||
[[Category:Cardiology]] | [[Category:Cardiology]] | ||
[[Category:Congenital heart disease]] | [[Category:Congenital heart disease]] | ||
[[Category:Genetic | [[Category:Genetic disorders]] | ||
[[Category:Disease]] | [[Category:Disease]] | ||
[[Category:Pediatrics]] | [[Category:Pediatrics]] | ||
Latest revision as of 21:00, 4 March 2013
Congenital heart disease Microchapters |
Differentiating Congenital heart disease from other Disorders |
---|
Diagnosis |
Treatment |
Case Studies |
Congenital heart disease epidemiology and demographics On the Web |
American Roentgen Ray Society Images of Congenital heart disease epidemiology and demographics |
FDA on Congenital heart disease epidemiology and demographics |
CDC on Congenital heart disease epidemiology and demographics |
Congenital heart disease epidemiology and demographics in the news |
Blogs on Congenital heart disease epidemiology and demographics |
Risk calculators and risk factors for Congenital heart disease epidemiology and demographics |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Keri Shafer, M.D. [2],Atif Mohammad, M.D., Priyamvada Singh, M.B.B.S. [3]; Assistant Editor(s)-In-Chief: Kristin Feeney, B.S. [4]
Overview
Congenital heart disease is the most common birth defect, affecting one in every 125 live births. More children die each year from congenital heart disease than from all forms of pediatric cancers combined.
Epidemiology and Demographics
- Affects approximately one in every 125 babies born.[1]
- The eight most common congenital heart defects account for 80% of all congenital heart diseases, while the remaining 20% consist of many independently infrequent conditions or combinations of several defects.
- In the US, 40,000 people each year are born with congenital heart disease.[2]
- In the US, 4,000 out of the 40,000 do not survive past infancy and into the second year of life.[2]
- In the US, twice as many children die each year from congenital heart disease than from all forms of pediatric cancers combined.[2]
- Ventricular septal defect (VSD) accounts for one-third of all congenital heart disease, making it the most common congenital heart defect.
- Incidence of VSD is:
- 4-5% higher when a parent or sibling has a heart defect.
- 3-4% higher in stillborns
- 10-25% higher in abortuses
- 2% higher in premature infants
- Approximately 1 million adults in united states are estemated to have Congenital heart defect.
- Growth of population with congenital heart defect is 5%
The number of adults with problems connected to a congenital heart defect is rising, passing the number of children with congenital heart defects in most Western countries. This group is referred to as grown-up congenital heart disease (GUCH) patients.
Gender
According to "Teratological rule of sexual dimorphism" (V. Geodakian, 1970), inborn anomalies that have atavistic nature appear more frequently among females, and futuristic anomalies appear among males. This rule was applied to explain differences in sex ratio observed for congenital heart defects.[3][4]
In the 32,000 diagnoses of "female" malformations, those relating to the heart of the embryo and to the phylogenetic human predecessors predominated (Table). The most well-defined female's defects are patent ductus arteriosus (1♂ : 2.72♀), Lutembacher disease (1♂ : 2.1♀), and ostium secundum (1♂ : 1.84♀).
Sex ratio of patients with congenital heart defects Congenital heart defect Sex ratio, males:females Patent ductus arteriosus 1 : 2.72 Lutembaher disease 1 : 2.14 Ostium secundum 1 : 1.84 Ventricular septal defect and patent ductus arteriosus 1 : 1.51 Fallot's triad 1 : 1.45 Eisenmenger's complex 1 : 1.40 Partial atrioventricular canal 1 : 1.36 Ostium primum 1 : 1.20 Partial anomalous pulmonary venous connection 1 : 1.19 Ventricular septal defect 1 : 1.02 Potts and Waterston-Cooley shunts 1 : 1.01 Atrioventricular canal 1 : 1.01 Ebstein's anomaly 1.02 : 1 Stenosis of lung artery 1.04 : 1 Tricuspid atresia 1.16 : 1 Truncus arteriosus 1.21 : 1 Tetralogy of Fallot 1.35 : 1 Coarctation of aorta and an open arterial channel 1.37 : 1 Total anomalous pulmonary venous connection 1.39 : 1 Transposition of the great arteries 1.90 : 1 Coarctation of the aorta 2.14 : 1 Aortic stenosis 2.66 : 1
Most well-defined "male" congenital heart defects are: aortic stenosis (2.66♂ : 1♀), coarctation of the aorta (2.14♂ : 1♀), transpositions of the great arteries (1.90♂ : 1♀), a total anomalous pulmonary venous connection (1.39♂ : 1♀), and coarctation of aorta with an open arterial channel (1.37♂ : 1♀). None of the male's components of congenital heart defects have a corresponding similar formation at normal embryo or at phylogenetic predecessors of the humans. They can be considered as unsuccessful tests of the evolution process.
Other congenital heart defects are of a neutral type. The frequency of occurrence is about the same for both sexes. Among them it is also possible to allocate simple (Potts/Waterston-Cooley shunt and ostium primum) and complex (partial and full atrioventricular canal, Ebstain's anomaly and tricuspid atresia) defects. Simple defects of this group, as well as female defects, can be considered atavistic. The difference between them is that these defects, contrary to female ones, represent a return to the far past in the onthogenetic and phylogenetic sense. They can be considered as a consequence of a block in heart development at early stages of embriogenesis (the first 2-3 months of the embryo's life during which the anatomic formation of the heart occurs), and at earlier (in comparison to female defects) stages of phylogenesis. For complex defects of the neutral group, the sex ratio depends on which of their components prevail—female or male.
Rokitansky (1875) explained congenital heart defects as breaks in heart development at various ontogenesis stages.[5] Spitzer (1923) treats them as returns to one of the phylogenesis stages.[6] Krimsky (1963), synthesizing two previous points of view, considered congenital heart diseases as a stop of development at a certain stage of ontogenesis, corresponding to this or that stage of the phylogenesis.[7] Hence these theories can explain atavistic heart diseases only (feminine and neutral, according to our classification), and no explanation has been found for masculine defects.
The concept allows considering sex of the patient as a diagnostic symptom. This symptom is stable and cheap and does not harm the patient compared to some invasive diagnostic procedures.
References
- ↑ "Congenital heart defects | Baby | Birth defects | March of Dimes". Retrieved 2013-01-04.
- ↑ 2.0 2.1 2.2 "Fact Sheets | The Children's Heart Foundation". Retrieved 2013-01-04.
- ↑ Geodakyan V. A., Sherman A. L. (1970). “Eksperimental’naja hirurgija i anesteziologija (Experimental surgery and anesthesiology) ” 32 N 2, 18–23.
- ↑ Geodakian VA, Sherman AL (1971). "[Relation of congenital anomalies to sex]". Zh. Obshch. Biol. (in Russian). 32 (4): 417–24. PMID 5146394.
- ↑ Rokitarisky K. E. (1875) Die defecte der Scheidewande des Herzens. Wien.
- ↑ Spitzer A. (1923) Arch. Pathol. Anat. 243, 81–272.
- ↑ Krimski L. D. (1963) Pathological anatomy of congenital heart defects and complications after their surgical treatment. M., Medicine.