Long QT Syndrome historical perspective: Difference between revisions
Farima Kahe (talk | contribs) No edit summary |
|||
(23 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
{{CMG}}; '''Assistant Editor(s)-In-Chief:''' [[User:William Patrick|William Patrick, B.S.]] | |||
{{Long QT Syndrome}} | {{Long QT Syndrome}} | ||
==Overview== | |||
[[Long QT syndrome|Long QT syndrome]] ([[LQTS]]) was first documented in the mid 1800’s. Since then, LQTS has been the focus of further characterization. By the 1990’s the majority of investigative focus on LQTS has been on elucidating its genetic underpinnings. The first complete description of LQTS came in 1957 when Anton Jarvell and Fred Lange-Nielson described a specific form of LQTS that would become known as “[[Jervell and Lange-Nielsen syndrome|Jervell and Lange-Nielsen Syndrome]]”. | |||
==Historical Perspective== | ==Historical Perspective== | ||
In 1856, the German physician Friedrich Ludwig Meissner witnessed a deaf girl collapse and die after being sternly admonished at school. This is the earliest record of what is thought to have been a stress-induced, fatal, cardiac arrhythmia | *In 1856, the German physician Friedrich Ludwig Meissner witnessed a deaf girl collapse and die after being sternly admonished at school.<ref name="urlQTsyndrome.ch - History Of a Heart Disease">{{cite web |url=http://www.qtsyndrome.ch/history.html |title=QTsyndrome.ch - History Of a Heart Disease |format= |work= |accessdate=}}</ref> This is the earliest record of what is thought to have been a stress-induced, fatal, cardiac arrhythmia. Current understanding of the [[pathophysiology]] of [[long QT syndrome]] ([[Long QT Syndrome|LQTS]]) indicates stress as a known trigger for an [[QT prolongation|elongated QT interval]] and subsequent fatal [[arrhythmia]]. Furthermore, [[mutations]] in [[LQT1]], an LQTS loci, have been identified as the most common form of LQTS. | ||
In the years following, there were several accounts of familial-associated [[syncope]] and deafness that occasionally resulted in death. By the 1950’s [[electrocardiography]] was a well established and defined method for observation and diagnoses. The advent of a robust [[electrocardiogram]] ([[ECG]]) allowed for the precise measurement of intervals between different lines on ECG that by then had been been established as reliable markers of cardiac electrical events. | *In the years following, there were several accounts of familial-associated [[syncope]] and [[deafness]] that occasionally resulted in death. By the 1950’s [[electrocardiography]] was a well established and defined method for observation and diagnoses. The advent of a robust [[electrocardiogram]] ([[ECG]]) allowed for the precise measurement of intervals between different lines on [[ECG]] that by then had been been established as reliable markers of cardiac electrical events. | ||
In 1953, a physician examining the ECG of a deaf boy suffering from frequent syncopes was the first to document what would become the prominent diagnostic feature and namesake of LQTS - the prolonged QT interval. The first complete description of LQTS came in 1957 when Anton Jarvell and Fred Lange-Nielson described a specific form of LQTS that would become known as “[[Jervell and Lange-Nielsen syndrome|Jervell and Lange-Nielsen Syndrome]]”. | *In 1953, a physician examining the [[ECG]] of a deaf boy suffering from frequent syncopes was the first to document what would become the prominent diagnostic feature and namesake of LQTS - the prolonged QT interval. The first complete description of LQTS came in 1957 when Anton Jarvell and Fred Lange-Nielson described a specific form of LQTS that would become known as “[[Jervell and Lange-Nielsen syndrome|Jervell and Lange-Nielsen Syndrome]]”. | ||
By the early 1990’s, it was becoming clear that LQTS was more than a strict “electrical” disease, but one which also conferred mechanical abnormalities to heart. Furthermore, for the first time, LQTS was discovered to be linked to a particular [[Locus (genetics)|locus]] on [[chromosome]] 11 called the Harvey ras-1 gene locus. This sparked a rapid and significant endeavor to elucidate the genetic | *By the early 1990’s, it was becoming clear that LQTS was more than a strict “electrical” disease, but one which also conferred mechanical abnormalities to heart. Furthermore, for the first time, LQTS was discovered to be linked to a particular [[Locus (genetics)|locus]] on [[chromosome]] 11 called the Harvey ras-1 gene locus. This sparked a rapid and significant endeavor to elucidate the genetic underpinnings of LQTS. By the mid 1990’s three genes had been discovered as LQTS loci. | ||
To date, many more LQTS loci have been discovered. | *To date, many more LQTS loci have been discovered. These loci affect a diverse group of cardiac [[ion channels]] and the supporting cast of proteins which orchestrate the [[cardiac action potential]]. Most of these mutations are implicit in the three most prominent types of LQTS including [[LQT1]], [[LQT2]], and [[LQT3]]. Sudden cardiac death is responsible for the greatest number of deaths in the U.S. every year compared to other major disease processes.<ref name="pmid11684624">{{cite journal |author=Zheng ZJ, Croft JB, Giles WH, Mensah GA |title=Sudden cardiac death in the United States, 1989 to 1998 |journal=[[Circulation]] |volume=104 |issue=18 |pages=2158–63 |year=2001 |month=October |pmid=11684624 |doi= |url=http://circ.ahajournals.org/cgi/pmidlookup?view=long&pmid=11684624}}</ref> In fact, it is the cause of more deaths than [[stroke]], [[lung cancer]], [[breast cancer]], and aids combined. Thus, a long term goal of these efforts continues to be the development of insightful and clinically-relevant risk stratification algorithms to better predict and treat LQTS in at-risk patients. | ||
==References== | ==References== |
Latest revision as of 15:45, 9 April 2020
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Assistant Editor(s)-In-Chief: William Patrick, B.S.
Long QT Syndrome Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Long QT Syndrome historical perspective On the Web |
American Roentgen Ray Society Images of Long QT Syndrome historical perspective |
Risk calculators and risk factors for Long QT Syndrome historical perspective |
Overview
Long QT syndrome (LQTS) was first documented in the mid 1800’s. Since then, LQTS has been the focus of further characterization. By the 1990’s the majority of investigative focus on LQTS has been on elucidating its genetic underpinnings. The first complete description of LQTS came in 1957 when Anton Jarvell and Fred Lange-Nielson described a specific form of LQTS that would become known as “Jervell and Lange-Nielsen Syndrome”.
Historical Perspective
- In 1856, the German physician Friedrich Ludwig Meissner witnessed a deaf girl collapse and die after being sternly admonished at school.[1] This is the earliest record of what is thought to have been a stress-induced, fatal, cardiac arrhythmia. Current understanding of the pathophysiology of long QT syndrome (LQTS) indicates stress as a known trigger for an elongated QT interval and subsequent fatal arrhythmia. Furthermore, mutations in LQT1, an LQTS loci, have been identified as the most common form of LQTS.
- In the years following, there were several accounts of familial-associated syncope and deafness that occasionally resulted in death. By the 1950’s electrocardiography was a well established and defined method for observation and diagnoses. The advent of a robust electrocardiogram (ECG) allowed for the precise measurement of intervals between different lines on ECG that by then had been been established as reliable markers of cardiac electrical events.
- In 1953, a physician examining the ECG of a deaf boy suffering from frequent syncopes was the first to document what would become the prominent diagnostic feature and namesake of LQTS - the prolonged QT interval. The first complete description of LQTS came in 1957 when Anton Jarvell and Fred Lange-Nielson described a specific form of LQTS that would become known as “Jervell and Lange-Nielsen Syndrome”.
- By the early 1990’s, it was becoming clear that LQTS was more than a strict “electrical” disease, but one which also conferred mechanical abnormalities to heart. Furthermore, for the first time, LQTS was discovered to be linked to a particular locus on chromosome 11 called the Harvey ras-1 gene locus. This sparked a rapid and significant endeavor to elucidate the genetic underpinnings of LQTS. By the mid 1990’s three genes had been discovered as LQTS loci.
- To date, many more LQTS loci have been discovered. These loci affect a diverse group of cardiac ion channels and the supporting cast of proteins which orchestrate the cardiac action potential. Most of these mutations are implicit in the three most prominent types of LQTS including LQT1, LQT2, and LQT3. Sudden cardiac death is responsible for the greatest number of deaths in the U.S. every year compared to other major disease processes.[2] In fact, it is the cause of more deaths than stroke, lung cancer, breast cancer, and aids combined. Thus, a long term goal of these efforts continues to be the development of insightful and clinically-relevant risk stratification algorithms to better predict and treat LQTS in at-risk patients.
References
- ↑ "QTsyndrome.ch - History Of a Heart Disease".
- ↑ Zheng ZJ, Croft JB, Giles WH, Mensah GA (2001). "Sudden cardiac death in the United States, 1989 to 1998". Circulation. 104 (18): 2158–63. PMID 11684624. Unknown parameter
|month=
ignored (help)