Post-polio syndrome: Difference between revisions

Jump to navigation Jump to search
Prashanthsaddala (talk | contribs)
WikiBot (talk | contribs)
m Changes made per Mahshid's request
 
(11 intermediate revisions by 2 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{Infobox disease|
  Name          = Post-polio syndrome |
  Image          = PPS.jpeg|
  Caption        = Science fiction writer [[Arthur C. Clarke]] developed post-polio syndrome in 1988 after initially contracting polio in 1962. |
}}
'''For patient information, click [[Post-polio syndrome (patient information)|here]]'''
'''For patient information, click [[Post-polio syndrome (patient information)|here]]'''


{{CMG}}
{{CMG}}
{{SI}}
{{Post-polio syndrome}}
==Overview==
'''Post-polio syndrome''' ('''PPS''') is a condition that affects survivors of [[poliomyelitis]], a [[virus|viral]] [[infection]] of the [[nervous system]], after recovery from an initial paralytic attack of the virus.  Typically the symptoms appear 20-40 years after the original infection, at an age of 35 to 60.  Symptoms include new or increased [[muscular weakness]], [[Pain and nociception|pain]] in the [[muscle]]s, and [[fatigue (physical)|fatigue]].<ref name=Cashman_2005>{{cite journal |author=Trojan D, Cashman N |title=Post-poliomyelitis syndrome |journal=Muscle Nerve |volume=31 |issue=1 |pages=6-19 |year=2005 |pmid = 15599928}}</ref>
 
The precise mechanism that causes post-polio syndrome is unknown.  It shares many features in common with [[myalgic encephalomyelitis]], a form of [[chronic fatigue syndrome]] that is apparently caused by viral infections, but unlike those disorders it tends to be progressive, and can cause tangible loss of muscle strength.


Treatment generally is limited to supportive measures, primarily [[leg braces]] and energy-saving devices such as powered wheelchairs, plus pain relievers, sleep aids, etc. 
==[[Post-polio syndrome overview|Overview]]==


==Diagnosis==
==[[Post-polio syndrome historical perspective|Historical Perspective]]==
Diagnosis of post-polio syndrome can be difficult, since the symptoms are hard to separate from the original symptoms of polio and from the normal infirmities of [[Senescence|aging]].  There is no laboratory test for post-polio syndrome, nor is there any other specific diagnostic, and diagnosis is usually a "diagnosis of exclusion" whereby other possible causes of the symptoms are eliminated.<ref name=Silver_2003>{{cite book | author = Silver JK, Gawne AC | title = Postpolio Syndrome | publisher = Hanley & Belfus | location = Philadelphia | year = 2003 | isbn = 1560536063 }}</ref>


PPS may be difficult to diagnose in some because it is hard to determine what component of a neuromuscular deficit is old and what is new: Neurological examination aided by other laboratory studies can help to exclude all other possible diagnoses. Objective assessment of muscle strength in PPS patients may not be easy. Changes in muscle strength are determined in specific muscle groups sing various muscle scales which [[quantitative|quantify]] strength, such as the Medical Research Council (MRC) scale. [[Magnetic resonance imaging]] (MRI), [[neuroimaging]], and [[electrophysiology|electrophysiological]] studies, muscle [[biopsies]], or [[Lumbar puncture|spinal fluid analysis]] may also be used in establishing a PPS diagnosis.<ref name=Silver_2003 />
==[[Post-polio syndrome classification|Classification]]==


In general, PPS is not life-threatening. The only exception is in patients left with severe residual respiratory difficulties, who may experience new severe respiratory impairment. Studies have proven that, compared to control populations, PPS patients lack any elevation of [[antibodies]] against the [[poliovirus]], and because no poliovirus is excreted in the feces, it is not considered a recurrence of the original polio. Further, there is no evidence that the poliovirus can cause a persistent infection in humans. PPS can be confused with [[Amyotrophic lateral sclerosis]] (ALS), which progressively weakens muscles. PPS patients do not have an elevated risk of ALS.
==[[Post-polio syndrome pathophysiology|Pathophysiology]]==


==Symptoms==
==[[Post-polio syndrome causes|Causes]]==


Symptoms include new or increased [[muscular weakness]], [[Pain and nociception|pain]] in the [[muscle]]s, and [[fatigue (physical)|fatigue]].<ref name=Cashman_2005>{{cite journal |author=Trojan D, Cashman N |title=Post-poliomyelitis syndrome |journal=Muscle Nerve |volume=31 |issue=1 |pages=6-19 |year=2005 |pmid = 15599928}}</ref> [[Fatigue (medical)|Fatigue]] is often the most disabling symptom, as often even slight exertion can produce disabling fatigue and also increase other symptoms.<ref name=Jubelt_2000>{{cite journal |author=Jubelt B, Agre JC |title=Characteristics and management of postpolio syndrome |journal=JAMA |volume=284 |issue=4 |pages=412-4 |year=2000 |pmid=10904484}}</ref>
==[[Post-polio syndrome differential diagnosis|Differentiating Post-polio syndrome from other Diseases]]==


Some post-polio patients report having [[memory]]  problems, or various other  [[cognition|cognitive]] difficulties that are difficult to distinguish from normal aging.  Some physicians have suspected that post-polio patients have an increased sensitivity to [[anesthetic]]s, but rigorous work on the subject remains to be done.  Weight gain is also a frequently noted symptom, though it is hard to tell if this is due to the disorder directly or due to the decreased level of physical activity that usually accompanies the disorder.
==[[Post-polio syndrome epidemiology and demographics|Epidemiology and Demographics]]==


== Causes ==
==[[Post-polio syndrome risk factors|Risk Factors]]==


Several theories have been proposed to explain post-polio symptoms. One theory of the mechanism behind the disorder is that it is due to "neural fatigue" from overworked [[neuron]]s.  The original polio infection generally results in the death of a substantial fraction of the [[motor neuron]]s controlling [[skeletal muscle]]s, and the theory is that the remaining neurons are thus overworked and eventually wear out.
==[[Post-polio syndrome natural history, complications and prognosis|Natural History, Complications and Prognosis]]==


Another theory holds that the original viral infection damages portions of the lower [[brain]], possibly including the [[thalamus]] and [[hypothalamus]].  This somehow upsets the hormones that control muscle metabolism, and the result is a [[metabolic disorder]] similar to [[mitochondrial disease|mitochondrial disorder]] that causes muscle pain and injury (via [[rhabdomyolysis]]) and also causes the fatigue. Some also believe that the original polio caused the [[atrophy]]ing of some muscles and as the person ages the weakness caused by loss of muscle mass due to aging is accelerated due to the person starting off with less muscle. Another possibility is that post-polio symptoms are due to some combination of mechanisms.
==Diagnosis==
 
===Neural fatigue===
 
The most widely accepted theory is the "neural fatigue" one.  [[Motor neuron]] fibers were originally damaged by the polio virus and were subsequently over-stressed because too few surviving neurons activated too many muscles.  Eventually these neurons become fatigued and die, leading to the slowly advancing loss of muscle function that is typical of post-polio.  This scenario may be accelerated by the fall-off in production of [[nerve growth factor]] (NGF) that occurs with [[menopause]]/[[andropause]].
 
===Mitochondrial disruption===  


This theory assumes that the major symptoms of PPS are a result of some interference with the action of [[mitochondria]] in the muscles and possibly the nerves.  Failure of the mitochondria to produce sufficient energy would result in the muscle pain typical of PPS, and would, over time, cause muscle death ([[rhabdomyolysis]]) due to exerting the muscle beyond its ability to recover.  The cause of this interference with mitochondrial action is presumably a change in the body's [[hormone]] balance, as mediated by the [[hypothalamus]] and other lower [[brain]] areas that control hormones (and which were, presumably, damaged by the original polio virus infection).  As with the ''neural fatigue'' theory, menopause/andropause accelerates the process, though this time by most likely disrupting the [[Notch signaling|NOTCH pathway]] that controls cell differentiation and damage repair.
[[Post-polio syndrome history and symptoms|History and Symptoms]] | [[Post-polio syndrome physical examination|Physical Examination]] | [[Post-polio syndrome laboratory findings|Laboratory Findings]] | [[Post-polio syndrome MRI|MRI]] | [[Post-polio syndrome imaging findings|Other Imaging Findings]] | [[Post-polio syndrome other diagnostic studies|Other Diagnostic Studies]]


One significant argument in favor of the mitochondrial disruption theory is that it explains the fatigue and [[cognitive]] difficulties ("brain fog") symptoms that usually accompany post-polio better than the neural fatigue theory does.
==Treatment==


===Reticular activating system damage===
[[Post-polio syndrome medical therapy|Medical Therapy]] | [[Post-polio syndrome surgery|Surgery]] | [[Post-polio syndrome prevention|Prevention]] | [[Post-polio syndrome cost-effectiveness of therapy|Cost-Effectiveness of Therapy]] | [[Post-polio syndrome future or investigational therapies|Future or Investigational Therapies]]


Damage to the [[reticular activating system]] and related areas such as the [[thalamus]] can also produce most of the fatigue, "brain fog", and [[dysautonomia]] symptoms of post-polio, and may be able to cause hormonal changes that result in progressive muscle weakness.  [[Post-mortem examination]]s of polio patients have shown damage to these areas, and some PPS patients show lesions in these areas when examined by MRI.  Many authorities believe that these areas are damaged by the initial polio infection, either as a direct result of the polio virus, or due to an [[autoimmune]] reaction following the polio infection.
==Case Studies==


One problem with this theory, though, is that it doesn't easily explain the delayed onset of PPS.  It may be that this theory needs to be combined with one of the others to explain delayed onset.
[[Post-polio syndrome case study one|Case #1]]


===Mechanical overwork===
==Further Reading==
 
The stresses placed on nerves, muscles, and joints in a polio survivor are in many cases several times those experienced by other people.  Problems with [[gait (human)|gait]], in particular, can greatly over-stress joints and the surviving muscles, and the polio survivor is also likely to compensate for weakened arms by jerking more when lifting/pulling something.  Over time (and again with menopause/andropause), this results in fatigue and damage.
 
===Reactivated polio===
 
An early theory stated that PPS is caused by reactivation of latent polio virus in the body, similar to the way that [[shingles]] is a reactivation of the [[chicken pox]] virus. This theory has been discredited by laboratory studies that show no active polio virus in the body.
 
==Prognosis==
In general, PPS is not life-threatening. The major exception are patients left with severe residual respiratory difficulties, who may experience new severe respiratory impairment. Studies have shown that, compared to control populations, PPS patients lack any elevation of [[antibodies]] against the [[poliovirus]], and because no poliovirus is excreted in the feces, it is not considered a recurrence of the original polio. Further, there is no evidence that the poliovirus can cause a persistent infection in humans. PPS has been confused with [[amyotrophic lateral sclerosis]] (ALS), which progressively weakens muscles. PPS patients do not have an elevated risk of ALS.<ref name="khan"/>
 
There have been no sufficient longitudinal studies on the prognosis of post-polio syndrome; however, speculations have been made by several physicians based on experience. Fatigue and mobility usually return to normal over a long period of time. The prognosis also differs depending upon different causes and factors affecting the individual.<ref name="howard"/> An overall mortality rate of 25% exists due to possible respiratory paralysis of persons with post-polio syndrome; otherwise, post-polio syndrome is usually non-lethal.<ref name="N&NI">{{Cite book|title=Neurology and Neurosurgery Illustrated |last=Lindsay |first=Kenneth W |coauthors=Ian Bone, Robin Callander, J. van Gijn |year=1991 |publisher=Churchill Livingstone |location=United States |isbn=0-443-04345-0 |pages=489–490}}</ref>
 
== Treatment ==
 
Treatment for post-polio is primarily [[palliative]], as no reliable therapy to reverse symptoms is known.  Palliative treatment includes:
 
Very often fatigue is the most disabling symptom of PPS, and many of those with the disease have discovered that by carefully managing energy expenditure they can prevent or reduce the worst fatigue episodes.  Further, for many this "energy management" approach appears to reduce pain. Though most authorities agree that rest is an important component of post-polio treatment, there is significant disagreement as to how much rest is necessary.  Some hold that the best approach is to expend the absolute minimum amount of energy necessary to enjoy a reasonable lifestyle, while others feel that there is some threshold below which energy conservation is not helpful and may in fact be harmful (due to the general effects caused by lack of exercise).
 
The treatment for post-polio syndrome is generally [[palliative]] and consists of rest, [[analgesia]] (pain relief) and utilisation of mechanisms to make life easier such as powered wheelchairs. There are no reversive therapies. Fatigue is usually the most disabling symptom; energy conservation can significantly reduce fatigue episodes. Such conservation can be achieved with lifestyle changes, reducing workload and daytime sleeping. Weight loss is also recommended if patients are [[obese]]. In some cases, the use of lower limb [[orthotics]] can reduce energy usage. Medications for fatigue, such as [[amantadine]] and [[pyridostigmine]],<ref>{{cite journal|last=Horemans|first=HL|coauthors=Nollet, F, Beelen, A, Drost, G, Stegeman, DF, Zwarts, MJ, Bussmann, JB, de Visser, M, Lankhorst, GJ|title=Pyridostigmine in postpolio syndrome: no decline in fatigue and limited functional improvement.|journal=Journal of neurology, neurosurgery, and psychiatry|date=2003 Dec|volume=74|issue=12|pages=1655–61|pmid=14638885|accessdate=2 November 2011|pmc=1757426}}</ref><ref>{{cite journal|last=Trojan|first=DA|coauthors=Collet, JP, Shapiro, S, Jubelt, B, Miller, RG, Agre, JC, Munsat, TL, Hollander, D, Tandan, R, Granger, C, Robinson, A, Finch, L, Ducruet, T, Cashman, NR|title=A multicenter, randomized, double-blinded trial of pyridostigmine in postpolio syndrome.|journal=Neurology|date=12 October 1999|volume=53|issue=6|pages=1225–33|pmid=10522877|accessdate=2 November 2011}}</ref> have not been found to be effective in the management of PPS.<ref name="khan"/> Muscle strength and endurance training are more important in managing the symptoms of PPS than the ability to perform long aerobic activity. Management should focus on treatments such as hydrotherapy and developing other routines that encourage strength but do not affect fatigue levels.<ref name="khan"/> The recent trend is towards use of intravenous immunoglobulin (IVIG)which has yielded promising, albeit modest results.<ref>{{cite journal |author=Farbu E |title=Update on current and emerging treatment options for post-polio syndrome |journal=Ther Clin Risk Manag |volume=6 |issue= |pages=307–13 |year=2010 |pmid=20668713 |pmc=2909497 |doi=10.2147/TCRM.S4440  |url=http://www.dovepress.com/articles.php?article_id=4784}}</ref>
 
PPS increases the stress on the musculoskeletal system due to increasing muscular atrophy. A recent study showed that in a review of 539 PPS patients, 80% reported pain in muscles and joints and 87% only had fatigue.<ref name="ehde">{{Cite journal| author = Ehde DM, Jensen MP, Engel JM, Turner JA, Hoffman AJ, Cardenas DD | title = Chronic pain secondary to disability: a review | journal = Clin J Pain | volume = 19 | issue = 1 | pages = 3–17 | year = 2003 | pmid = 12514452 | doi = 10.1097/00002508-200301000-00002| url = http://meta.wkhealth.com/pt/pt-core/template-journal/lwwgateway/media/landingpage.htm?issn=0749-8047&volume=19&issue=1&spage=3| accessdate = 24 December 2008}}</ref> Joint instability can cause significant pain in individuals with PPS should be adequately treated with painkillers. Supervised activity programs, decreasing mechanical stress with braces and adaptive equipment is recommended.<ref name="jubelt">{{Cite journal| author = Jubelt B, Agre JC | title = Characteristics and management of postpolio syndrome | journal = JAMA | volume = 284 | issue = 4 | pages = 412–4 | year = 2000 | month = July | pmid = 10904484 | doi = 10.1001/jama.284.4.412| url = http://jama.ama-assn.org/cgi/pmidlookup?view=long&pmid=10904484| accessdate = 24 December 2008}}</ref><ref name="khan"/>
 
Because PPS can fatigue facial muscles, as well as cause [[dysphagia]] (difficulty swallowing), [[dysarthria]] (difficulty speaking) or [[aphonia]] (inability to produce speech), persons with PPS may become malnourished due to difficulty eating. Compensatory routines can help relieve these symptoms such as eating smaller portions at a time and sitting down whilst eating.<ref name="silbergleit">{{Cite journal| author = Silbergleit AK, Waring WP, Sullivan MJ, Maynard FM | title = Evaluation, treatment, and follow-up results of post polio patients with dysphagia | journal = Otolaryngol Head Neck Surg | volume = 104 | issue = 3 | pages = 333–8 | year = 1991 | month = March | pmid = 1902934 | doi = | url = | issn = | accessdate = 24 December 2008}}</ref> PPS with respiratory involvement requires special management such as breathing exercises, chest percussion with a stethoscope on regular occasions for observation of the disease and management of secretions. Failure to properly assess PPS with respiratory involvement can increase the risk of missing aspiration [[pneumonia]] (an infection of the lower respiratory tract) in an individual. Severe cases may require permanent ventilation or [[tracheostomy]]. [[Sleep apnoea]] may also occur. Other management strategies that may lead to improvement include [[smoking cessation]], treatment of other respiratory diseases and [[vaccination]] against respiratory infections such as [[influenza]].<ref name="jubelt"/>
 
[[Leg braces]] and other [[orthosis|orthotics]] can reduce the stress on joints and, in some cases, muscles, and so may slow the progression of joint and muscle damage related to PPS.  However, some authorities feel that many PPS patients rely on such items too much and for too long when they should be graduating to a wheelchair. [[Wheelchair]]s (particularly powered wheelchairs) and "scooters" (small battery-powered vehicles) are useful both to conserve energy and to reduce the stress on weakened joints and muscles.  Non-powered wheelchairs, however, are not generally recommended since they place too much stress on arm muscles and joints and may take too much energy to operate.  In some cases even the scooters are not recommended since operating the "tiller" of the typical scooter can be tiring to arm muscles. A [[standing frame]] can be used in conjunction with the wheelchair to provide alternative positioning and prevent secondary complications.
 
Post-polio syndrome often causes significant levels of pain, sometimes in specific muscles or joints, and sometimes body-wide.  Various forms of [[narcotic]] and non-narcotic [[Analgesic|pain-reliever]]s, [[muscle relaxant]]s, [[tranquilizer]]s, and sleep medications may help to deal with the pain and related sleep problems. In some cases surgery can be used to repair joint deformities, or to fuse joints (as in the back or ankle) that have become too weak.
 
Very few non-palliative treatments for post-polio syndrome have shown any promise, and none have been subjected to any sort of rigorous clinical testing.  There are, however, a few treatments that have developed some "following" in the PPS community:
 
The [[amino acid]], [[Carnitine|L-carnitine]] has several functions in the body, one of the most important being the transport of [[fatty acid]]s into the mitochondria.  Researchers in Australia have had some success using doses of several grams per day.
 
[[Coenzyme Q10]]is a general [[antioxidant]], but it also plays a critical role in the function of the mitochondria, transporting electrons between the "complexes" that participate in the energy conversion cycle.  A shortage of CoQ10 can cause the fatigue and muscle pain much like that experienced with PPS.  Some PPS patients have reported significant improvements in their symptoms when taking several hundred milligrams of CoQ10 per day.
 
The [[pentose]] sugar <small>D</small>-[[ribose]] is the "R" in [[RNA]] and a critical component of [[DNA]], RNA, and [[enzyme]]s.  It is also a component of [[Adenosine triphosphate|ATP]], the energy-transporting molecule produced by the mitochondria.  A shortage of <small>D</small>-ribose can produce fatigue and muscle pain.  Some PPS patients have reported significant improvement in pain and fatigue symptoms when taking on the order of 20 grams/day of <small>D</small>-ribose.
 
==References==
{{Reflist}}
 
===Further reading===
* {{cite book | last = Bruno | first = Richard L. | title = The Polio Paradox | publisher = Warner Books | location = New York | year = 2002 | isbn = 0446529079 }}
* {{cite book | last = Bruno | first = Richard L. | title = The Polio Paradox | publisher = Warner Books | location = New York | year = 2002 | isbn = 0446529079 }}


Line 99: Line 54:
* Silver, Julie K. (2001). ''Post-Polio Syndrome: A Guide for Polio Survivors and Their Families.''  New Haven: Yale University Press. (Dr. Silver is Medical Director, Spaulding-Framingham Outpatient Center; Assistant Professor, Department of Physical Medicine and Rehabilitation, Harvard Medical School.)
* Silver, Julie K. (2001). ''Post-Polio Syndrome: A Guide for Polio Survivors and Their Families.''  New Haven: Yale University Press. (Dr. Silver is Medical Director, Spaulding-Framingham Outpatient Center; Assistant Professor, Department of Physical Medicine and Rehabilitation, Harvard Medical School.)


==External links==
==External Links==


* [http://www.ninds.nih.gov/disorders/post_polio/post_polio.htm National Institute of Neurological Disorders and Stroke]
* [http://www.ninds.nih.gov/disorders/post_polio/post_polio.htm National Institute of Neurological Disorders and Stroke]


* [http://www.post-polio.org Post-Polio Health International]
* [http://www.post-polio.org Post-Polio Health International]
* [http://www.disabledservices.net/ Post Polio and Equipment]
* [http://www.poliocanada.com/ Polio Canada]


{{Viral diseases}}
{{Viral diseases}}
Line 113: Line 64:
[[Category:Poliomyelitis]]
[[Category:Poliomyelitis]]
[[Category:Motor neuron disease]]
[[Category:Motor neuron disease]]
[[Category:Infectious disease]]
 


{{WikiDoc Help Menu}}
{{WikiDoc Help Menu}}
{{WikiDoc Sources}}
{{WikiDoc Sources}}

Latest revision as of 18:46, 18 September 2017

Post-polio syndrome
Classification and external resources
Science fiction writer Arthur C. Clarke developed post-polio syndrome in 1988 after initially contracting polio in 1962.

For patient information, click here

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Post-polio syndrome Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Post-polio syndrome from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Post-polio syndrome On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Post-polio syndrome

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Post-polio syndrome

CDC on Post-polio syndrome

Post-polio syndrome in the news

Blogs on Post-polio syndrome

Directions to Hospitals Treating Post-polio syndrome

Risk calculators and risk factors for Post-polio syndrome

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Post-polio syndrome from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms | Physical Examination | Laboratory Findings | MRI | Other Imaging Findings | Other Diagnostic Studies

Treatment

Medical Therapy | Surgery | Prevention | Cost-Effectiveness of Therapy | Future or Investigational Therapies

Case Studies

Case #1

Further Reading

  • Bruno, Richard L. (2002). The Polio Paradox. New York: Warner Books. ISBN 0446529079.
  • Maynard, F.M., & Headley, J.H. (Eds.) (1999). Handbook on the Late Effects of Poliomyelitis for Physicians and Survivors. Saint Louis, MO: GINI (now Post-Polio Health International). Information on 90 post-polio topics; a compilation of the research and experience of over 40 experts.
  • March of Dimes Birth Defects Foundation. (1999). Identifying Best Practices in Diagnosis & Care. Warm Springs, GA: March of Dimes International Conference on Post-Polio Syndrome
  • Nollet F. "Perceived health and physical functioning in postpoliomyelitis syndrome". Vrije Universiteit Amsterdam, 2002.
  • Nollet, F. "Post-polio syndrome". Orphanet Ecyclopaedia, 2003
  • Silver, Julie K. (2001). Post-Polio Syndrome: A Guide for Polio Survivors and Their Families. New Haven: Yale University Press. (Dr. Silver is Medical Director, Spaulding-Framingham Outpatient Center; Assistant Professor, Department of Physical Medicine and Rehabilitation, Harvard Medical School.)

External Links

Template:Viral diseases


Template:WikiDoc Sources