Management of the thrombotic lesion: Difference between revisions

Jump to navigation Jump to search
Shankar Kumar (talk | contribs)
Rim Halaby (talk | contribs)
 
(7 intermediate revisions by one other user not shown)
Line 26: Line 26:
* Alternate / additional strategies include the use of [[distal]] protection and [[saphenous vein graft]]s to minimize [[distal]] [[embolization]].
* Alternate / additional strategies include the use of [[distal]] protection and [[saphenous vein graft]]s to minimize [[distal]] [[embolization]].


==Pharmacologic Therapy==
===Pharmacologic Therapy===
===Antiplatelet Therapy===
====Antiplatelet Therapy====
* The incidence of thrombus on the coronary angiogram can be reduced by and complications of the PCI procedure can be reduced by upstream pharmacologic therapy with antiplatelet therapy including [[aspirin]], platelet glycoprotein IIb/IIIa receptor (GP IIb/IIIa) antagonists in patients who are [[troponin]] positive ([[abciximab]], [[eptifibatide]], [[tirofiban]]), and [[ADP receptor|ADP receptor/P2Y12 inhibitors]] ([[plavix]], [[ticagrelor]], [[prasugrel]])
* The [[incidence]] of [[thrombus]] on the [[coronary angiogram]] can be reduced by and [[complication]]s of the PCI procedure can be reduced by upstream [[pharmacologic]] [[therapy]] with [[antiplatelet]] [[therapy]] including [[aspirin]], [[platelet]] [[glycoprotein IIb/IIIa antagonist|glycoprotein IIb/IIIa receptor (GP IIb/IIIa) antagonists]] in patients who are [[troponin]] positive ([[abciximab]], [[eptifibatide]], [[tirofiban]]), and [[ADP receptor|ADP receptor/P2Y12 inhibitors]] ([[plavix]], [[ticagrelor]], [[prasugrel]])
* Aspirin is a conventional therapy that reduces [[ischemic]] complications after [[PCI]].
* [[Aspirin]] is a conventional [[therapy]] that reduces [[ischemic]] [[complication]]s after [[PCI]].
* GP IIb/IIIa antagonists are used adjunctively to treat and prevent [[thrombus]] formation and decreases [[ischemic]] complications post-PCI in patients with angiographic evidence of or suspected [[thrombus]]. In patients with STEMI undergoing primary PCI, GP IIb/IIIa antagonists have been shown to reduce mortality in meta-analyses. There is an ongoing debate as to the optimal timing of their administration (upstream vs in-lab administration).
* [[Glycoprotein IIb/IIIa antagonists]] are used adjunctively to treat and prevent [[thrombus]] formation and decreases [[ischemic]] [[complication]]s post-PCI in patients with [[angiographic]] evidence of or suspected [[thrombus]]. In patients with [[STEMI]] undergoing [[primary PCI]], [[glycoprotein IIb/IIIa antagonists]] have been shown to reduce [[mortality]] in [[meta-analyses]]. There is an ongoing debate as to the optimal timing of their administration (upstream vs in-lab administration).


===Antithrombin Therapy===
====Antithrombin Therapy====
*Antithrombin Therapy: [[UFH|Ufractionated heparin (UFH)]], [[LMWH|low molecular weight heparin (LMWH)]]. [[Fondaparinux]] is not recommended in primary [[PCI]].
*[[Antithrombotic therapy|Antithrombin Therapy]]: [[UFH|Ufractionated heparin (UFH)]], [[LMWH|low molecular weight heparin (LMWH)]]. [[Fondaparinux]] is not recommended in [[primary PCI]].
*UFH is a conventionally used [[thrombin]] inhibitor that prevents arterial [[thrombus]] formation at the site of a vessel wall injury, on catheters, and on equipment during [[PCI]].
*[[UFH]] is a conventionally used [[thrombin]] inhibitor that prevents [[arterial]] [[thrombus]] formation at the site of a [[vessel]] wall injury, on catheters, and on equipment during PCI.
*LMWH: ExTRACT-TIMI 25<ref name="pmid17456482">{{cite journal |author=White HD, Braunwald E, Murphy SA, ''et al.'' |title=Enoxaparin vs. unfractionated heparin with fibrinolysis for ST-elevation myocardial infarction in elderly and younger patients: results from ExTRACT-TIMI 25 |journal=Eur. Heart J. |volume=28 |issue=9 |pages=1066–71 |year=2007 |month=May |pmid=17456482 |doi=10.1093/eurheartj/ehm081 |url=}}</ref> demonstrated that there were improved clinical outcomes with LMWH in patients with [[STEMI]] undergoing [[fibrinolysis]] and subsequent PCI.  
*[[LMWH]]: ExTRACT-TIMI 25<ref name="pmid17456482">{{cite journal |author=White HD, Braunwald E, Murphy SA, ''et al.'' |title=Enoxaparin vs. unfractionated heparin with fibrinolysis for ST-elevation myocardial infarction in elderly and younger patients: results from ExTRACT-TIMI 25 |journal=Eur. Heart J. |volume=28 |issue=9 |pages=1066–71 |year=2007 |month=May |pmid=17456482 |doi=10.1093/eurheartj/ehm081 |url=}}</ref> demonstrated that there were improved clinical outcomes with [[LMWH]] in patients with [[STEMI]] undergoing [[fibrinolysis]] and subsequent PCI.  
*Direct thrombin inhibitors (DTI):  [[Hirudin]], [[bivalirudin]], [[argatroban]] may be used as an alternative to [[heparin]] and [[GP IIb/IIIa]]. The optimal strategy is to pre-load with [[clopidogrel]] if a DTI is used, which is the drug of choice in patients with a history of heparin-induced [[thrombocytopenia]].
*[[Direct thrombin inhibitor]]s (DTI):  [[Hirudin]], [[bivalirudin]], [[argatroban]] may be used as an alternative to [[heparin]] and [[GP IIb/IIIa]]. The optimal strategy is to pre-load with [[clopidogrel]] if a [[Direct thrombin inhibitor|DTI]] is used, which is the drug of choice in patients with a history of [[HIT|heparin-induced thrombocytopenia]].


===Thrombolytic Therapy===
====Thrombolytic Therapy====
*Thrombolytic Therapy: [[Urokinase|Urokinase (UK)]], [[tPA|tissue plasminogen activator (tPA)]] for STEMI when other pharmacologic and mechanical treatments are not successful. Caution: intracoronary administration of fibrinolytic agents is an "off label" the use of these agents (this mode of administration is not been approved by the FDA, but fibrinolytic agents are an FDA approved drug). The total dose of tPA is 20 mg which is approximately the 1/5 of that generally used for systemic fibrinolysis. tPA can it be administered 2 mg at a time to evaluate its efficacy.
*[[Thrombolytic therapy|Thrombolytic Therapy]]: [[Urokinase|Urokinase (UK)]], [[tPA|tissue plasminogen activator (tPA)]] for [[STEMI]] when other [[pharmacologic]] and mechanical treatments are not successful. Caution: [[intracoronary pharmacotherapy|intracoronary]] administration of [[fibrinolytic therapy|fibrinolytic agents]] is an "off label" the use of these agents (this mode of administration is not been approved by the [[FDA]], but [[fibrinolytic therapy|fibrinolytic agents]] are an [[FDA]] approved drug). The total dose of [[TPA|tPA]] is 20 mg which is approximately the 1/5 of that generally used for [[systemic]] [[fibrinolysis]]. [[TPA|tPA]] can it be administered 2 mg at a time to evaluate its efficacy.


==Mechanical Therapy==
===Mechanical Therapy===
===Thrombus Aspiration===
====Thrombus Aspiration====
* Thrombus aspiration can be achieved with the Export, Pronto, and other devices   
* [[Thrombus]] [[aspiration]] can be achieved with the Export, Pronto, and other devices   
* Thrombus aspiration is the preferred treatment and has been associated with improved myocardial perfusion and mortality.
* [[Thrombus]] [[aspiration]] is the preferred treatment and has been associated with improved [[myocardial perfusion]] and [[mortality]].
* Care should be exercised in very proximal lesions in the [[LAD]] and the [[circumflex]], as the clot may [[embolize]] into the other artery.
* Care should be exercised in very [[proximal]] [[lesion]]s in the [[LAD]] and the [[circumflex]], as the [[clot]] may [[embolus|embolize]] into the other [[artery]].
* After aspiration, direct stenting is associated with improved rates of [[recurrent MI]] in meta-analyses, improved myocardial perfusion, and improved ST segment resolution. Stenting reduces the risk of abrupt closure.
* After [[aspiration]], direct [[stent]]ing is associated with improved rates of [[recurrent MI]] in [[meta-analyses]], improved [[myocardial perfusion]], and improved [[ST segment]] resolution. [[Stent]]ing reduces the risk of abrupt closure.


===Direct Stenting===
====Direct Stenting====
* Direct placement of the stent without pre-dilation by a balloon has been associated with a reduction in myonecrosis in meta-analyses.
* Direct placement of the [[stent]] without pre-[[dilation]] by a balloon has been associated with a reduction in [[myonecrosis]] in [[meta-analyses]].
====Distal Protection====
*[[Distal]] Protection can be achieved with the following devices (Percusurge guardwire, Triactive, Spider wire, Proxis), particularly in [[SVG|saphenous vein grafts]]
*Occlusive (Percusurge guardwire, Triactive) and filter (Filterwire) methods may improve safety and [[efficacy]] of PCI in patients with [[thrombotic lesion]]s in [[SVG]]; SAFER study of Percusurge device demonstrated lower rate of death/[[MI]]
*[[Distal]] [[embolic protection]] has not shown to be efficacious in the setting of [[STEMI]] in native [[coronary artery|coronary arteries]] with either Percusurge (EMERALD trial)<ref name="pmid19755327">{{cite journal |author=Nikolsky E, Stone GW, Lee E, ''et al.'' |title=Correlations between epicardial flow, microvascular reperfusion, infarct size and clinical outcomes in patients with anterior versus non-anterior myocardial infarction treated with primary or rescue angioplasty: analysis from the EMERALD trial |journal=EuroIntervention |volume=5 |issue=4 |pages=417–24 |year=2009 |month=September |pmid=19755327 |doi= |url=}}</ref> or Filterwire (PROMISE trial).<ref name="pmid16129793">{{cite journal |author=Gick M, Jander N, Bestehorn HP, ''et al.'' |title=Randomized evaluation of the effects of filter-based distal protection on myocardial perfusion and infarct size after primary percutaneous catheter intervention in myocardial infarction with and without ST-segment elevation |journal=Circulation |volume=112 |issue=10 |pages=1462–9 |year=2005 |month=September |pmid=16129793 |doi=10.1161/CIRCULATIONAHA.105.545178 |url=}}</ref>


===Distal Protection===
====Rheolytic Thrombectomy====
*Distal Protection can be achieved with the following devices (Percusurge guardwire, Triactive, Spider wire, Proxis), particularly in [[SVG|saphenous vein grafts]]
*Rheolytic [[thrombectomy]] with Possis Angiojet was not found to have any benefit in the setting of [[STEMI]] in native [[coronary artery|coronary arteries]] in the AIMI trial. [[Infarct]] sizes were larger and [[mortality]] was higher.
*Occlusive (Percusurge guardwire, Triactive) and filter (Filterwire) methods may improve safety and efficacy of PCI in patients with thrombotic lesions in SVG; SAFER study of Percusurge device demonstrated lower rate of death/MI
*Distal embolic protection has not shown to be efficacious in the setting of [[STEMI]] in native coronary arteries with either Percusurge (EMERALD trial<ref name="pmid19755327">{{cite journal |author=Nikolsky E, Stone GW, Lee E, ''et al.'' |title=Correlations between epicardial flow, microvascular reperfusion, infarct size and clinical outcomes in patients with anterior versus non-anterior myocardial infarction treated with primary or rescue angioplasty: analysis from the EMERALD trial |journal=EuroIntervention |volume=5 |issue=4 |pages=417–24 |year=2009 |month=September |pmid=19755327 |doi= |url=}}</ref>) or Filterwire (PROMISE trial<ref name="pmid16129793">{{cite journal |author=Gick M, Jander N, Bestehorn HP, ''et al.'' |title=Randomized evaluation of the effects of filter-based distal protection on myocardial perfusion and infarct size after primary percutaneous catheter intervention in myocardial infarction with and without ST-segment elevation |journal=Circulation |volume=112 |issue=10 |pages=1462–9 |year=2005 |month=September |pmid=16129793 |doi=10.1161/CIRCULATIONAHA.105.545178 |url=}}</ref>).


===Rheolytic Thrombectomy===
====Less Frequently Used Modalities====
*Rheolytic thrombectomy with Possis Angiojet was not found to have any benefit in the setting of [[STEMI]] in native coronary arteries in the AIMI trial. Infarct sizes were larger and mortality was higher.
 
===Less Frequently Used Modalities===
*Directional [[Atherectomy]]
*Directional [[Atherectomy]]
*Transluminal Extraction Catheter (TEC)
*Transluminal Extraction Catheter (TEC)


==Management of No Reflow==
===Management of No Reflow===
Distal embolization of thrombus often occurs, and you should be prepared to treat the patient for potential [[spasm]] or [[no-reflow]] with a [[calcium channel blocker]], [[adenosine]] (100 mcg IC) or [[nitroprusside]] (100 mcg IC).
[[Distal]] [[embolization]] of [[thrombus]] often occurs, and you should be prepared to treat the patient for potential [[spasm]] or [[no-reflow]] with a [[calcium channel blocker]], [[adenosine]] (100 mcg IC) or [[nitroprusside]] (100 mcg IC).


==References==
==References==

Latest revision as of 16:25, 4 September 2013

Percutaneous coronary intervention Microchapters

Home

Patient Information

Overview

Risk Stratification and Benefits of PCI

Preparation of the Patient for PCI

Equipment Used During PCI

Pharmacotherapy to Support PCI

Vascular Closure Devices

Recommendations for Perioperative Management–Timing of Elective Noncardiac Surgery in Patients Treated With PCI and DAPT

Post-PCI Management

Risk Reduction After PCI

Post-PCI follow up

Hybrid coronary revascularization

PCI approaches

PCI Complications

Factors Associated with Complications
Vessel Perforation
Dissection
Distal Embolization
No-reflow
Coronary Vasospasm
Abrupt Closure
Access Site Complications
Peri-procedure Bleeding
Restenosis
Renal Failure
Thrombocytopenia
Late Acquired Stent Malapposition
Loss of Side Branch
Multiple Complications

PCI in Specific Patients

Cardiogenic Shock
Left Main Coronary Artery Disease
Refractory Ventricular Arrhythmia
Severely Depressed Ventricular Function
Sole Remaining Conduit
Unprotected Left Main Patient
Adjuncts for High Risk PCI

PCI in Specific Lesion Types

Classification of the Lesion
The Calcified Lesion
The Ostial Lesion
The Angulated or Tortuous Lesion
The Bifurcation Lesion
The Long Lesion
The Bridge Lesion
Vasospasm
The Chronic Total Occlusion
The Left Internal Mammary Artery
Multivessel Disease
Distal Anastomotic Lesions
Left Main Intervention
The Thrombotic Lesion

Management of the thrombotic lesion On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Management of the thrombotic lesion

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Management of the thrombotic lesion

CDC on Management of the thrombotic lesion

Management of the thrombotic lesion in the news

Blogs on Management of the thrombotic lesion

Directions to Hospitals Treating Percutaneous coronary intervention

Risk calculators and risk factors for Management of the thrombotic lesion

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editors-In-Chief: Brian C. Bigelow, M.D.

Overview

The presence of angiographically apparent thrombus is associated with poorer outcomes in patients undergoing PCI. Thrombus often embolizes distally and causes no reflow and associated myonecrosis. There are two broad strategies to reduce thrombus burden: mechanical strategies and pharmacologic strategies.

Management of The Thrombotic Lesion

Differentiating Thrombus from Other Angiographic Abnormalities

Goals of Treatment

Goals in the management of the thrombotic lesion include:

Step-By-Step Strategy in the Management of the Thrombotic Lesion

Pharmacologic Therapy

Antiplatelet Therapy

Antithrombin Therapy

Thrombolytic Therapy

Mechanical Therapy

Thrombus Aspiration

Direct Stenting

Distal Protection

  • Distal Protection can be achieved with the following devices (Percusurge guardwire, Triactive, Spider wire, Proxis), particularly in saphenous vein grafts
  • Occlusive (Percusurge guardwire, Triactive) and filter (Filterwire) methods may improve safety and efficacy of PCI in patients with thrombotic lesions in SVG; SAFER study of Percusurge device demonstrated lower rate of death/MI
  • Distal embolic protection has not shown to be efficacious in the setting of STEMI in native coronary arteries with either Percusurge (EMERALD trial)[2] or Filterwire (PROMISE trial).[3]

Rheolytic Thrombectomy

Less Frequently Used Modalities

  • Directional Atherectomy
  • Transluminal Extraction Catheter (TEC)

Management of No Reflow

Distal embolization of thrombus often occurs, and you should be prepared to treat the patient for potential spasm or no-reflow with a calcium channel blocker, adenosine (100 mcg IC) or nitroprusside (100 mcg IC).

References

  1. White HD, Braunwald E, Murphy SA; et al. (2007). "Enoxaparin vs. unfractionated heparin with fibrinolysis for ST-elevation myocardial infarction in elderly and younger patients: results from ExTRACT-TIMI 25". Eur. Heart J. 28 (9): 1066–71. doi:10.1093/eurheartj/ehm081. PMID 17456482. Unknown parameter |month= ignored (help)
  2. Nikolsky E, Stone GW, Lee E; et al. (2009). "Correlations between epicardial flow, microvascular reperfusion, infarct size and clinical outcomes in patients with anterior versus non-anterior myocardial infarction treated with primary or rescue angioplasty: analysis from the EMERALD trial". EuroIntervention. 5 (4): 417–24. PMID 19755327. Unknown parameter |month= ignored (help)
  3. Gick M, Jander N, Bestehorn HP; et al. (2005). "Randomized evaluation of the effects of filter-based distal protection on myocardial perfusion and infarct size after primary percutaneous catheter intervention in myocardial infarction with and without ST-segment elevation". Circulation. 112 (10): 1462–9. doi:10.1161/CIRCULATIONAHA.105.545178. PMID 16129793. Unknown parameter |month= ignored (help)

Template:WikiDoc Sources