Botulism laboratory findings: Difference between revisions

Jump to navigation Jump to search
m (Prashanthsaddala moved page Botulism laboratory tests to Botulism laboratory findings)
No edit summary
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{Botulism}}
{{Botulism}}
{{CMG}}
{{CMG}}; {{AE}}{{SMP}}
{{MJM}}


==Overview==
==Overview==
Clinical  diagnosis of botulism is confirmed by specialized laboratory testing that often  requires days to complete. Routine laboratory test results are usually  unremarkable. Therefore, clinical diagnosis is the foundation for early recognition  of and response to a bioterrorist attack with [[botulinum toxin]], and all  treatment and management decisions should be made based on clinical diagnosis.
Toxin assay is the prefered method of laboratory work up for diagnosis botulism. Serum, stool, gastric secretions, and suspected food sources should be collected and toxin assay must be performed. However, role of clinical suspicion must not be undertaken.<ref name="pmid16461671">{{cite journal |vauthors=Sharma SK, Ferreira JL, Eblen BS, Whiting RC |title=Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies |journal=Appl. Environ. Microbiol. |volume=72 |issue=2 |pages=1231–8 |year=2006 |pmid=16461671 |pmc=1392902 |doi=10.1128/AEM.72.2.1231-1238.2006 |url=}}</ref><ref name="pmid333132">{{cite journal |vauthors=Dowell VR, McCroskey LM, Hatheway CL, Lombard GL, Hughes JM, Merson MH |title=Coproexamination for botulinal toxin and clostridium botulinum. A new procedure for laboratory diagnosis of botulism |journal=JAMA |volume=238 |issue=17 |pages=1829–32 |year=1977 |pmid=333132 |doi= |url=}}</ref><ref name="pmid22935296">{{cite journal |vauthors=Zhang Y, Lou J, Jenko KL, Marks JD, Varnum SM |title=Simultaneous and sensitive detection of six serotypes of botulinum neurotoxin using enzyme-linked immunosorbent assay-based protein antibody microarrays |journal=Anal. Biochem. |volume=430 |issue=2 |pages=185–92 |year=2012 |pmid=22935296 |pmc=3589981 |doi=10.1016/j.ab.2012.08.021 |url=}}</ref><ref name="pmid16614251">{{cite journal |vauthors=Lindström M, Korkeala H |title=Laboratory diagnostics of botulism |journal=Clin. Microbiol. Rev. |volume=19 |issue=2 |pages=298–314 |year=2006 |pmid=16614251 |pmc=1471988 |doi=10.1128/CMR.19.2.298-314.2006 |url=}}</ref><ref name="pmid19779029">{{cite journal |vauthors=Satterfield BA, Stewart AF, Lew CS, Pickett DO, Cohen MN, Moore EA, Luedtke PF, O'Neill KL, Robison RA |title=A quadruplex real-time PCR assay for rapid detection and differentiation of the Clostridium botulinum toxin genes A, B, E and F |journal=J. Med. Microbiol. |volume=59 |issue=Pt 1 |pages=55–64 |year=2010 |pmid=19779029 |doi=10.1099/jmm.0.012567-0 |url=}}</ref><ref name="pmid22993181">{{cite journal |vauthors=Mazuet C, Ezan E, Volland H, Popoff MR, Becher F |title=Toxin detection in patients' sera by mass spectrometry during two outbreaks of type A Botulism in France |journal=J. Clin. Microbiol. |volume=50 |issue=12 |pages=4091–4 |year=2012 |pmid=22993181 |pmc=3502950 |doi=10.1128/JCM.02392-12 |url=}}</ref>


==Laboratory Findings==
==Laboratory Findings==
Lab tests should not be relied upon for diagnosis of botulism. The diagnosis will be done by a physical exam.
Toxin assay is the prefered method of laboratory work up for diagnosis botulism. Serum, stool, gastric secretions, and suspected food sources should be collected and toxin assay must be performed. Urine toxicology screen must be performed to rule out other possible diseases, such as substance abuse, medications, and environmental exposure.<ref name="pmid16461671">{{cite journal |vauthors=Sharma SK, Ferreira JL, Eblen BS, Whiting RC |title=Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies |journal=Appl. Environ. Microbiol. |volume=72 |issue=2 |pages=1231–8 |year=2006 |pmid=16461671 |pmc=1392902 |doi=10.1128/AEM.72.2.1231-1238.2006 |url=}}</ref><ref name="pmid333132">{{cite journal |vauthors=Dowell VR, McCroskey LM, Hatheway CL, Lombard GL, Hughes JM, Merson MH |title=Coproexamination for botulinal toxin and clostridium botulinum. A new procedure for laboratory diagnosis of botulism |journal=JAMA |volume=238 |issue=17 |pages=1829–32 |year=1977 |pmid=333132 |doi= |url=}}</ref><ref name="pmid22935296">{{cite journal |vauthors=Zhang Y, Lou J, Jenko KL, Marks JD, Varnum SM |title=Simultaneous and sensitive detection of six serotypes of botulinum neurotoxin using enzyme-linked immunosorbent assay-based protein antibody microarrays |journal=Anal. Biochem. |volume=430 |issue=2 |pages=185–92 |year=2012 |pmid=22935296 |pmc=3589981 |doi=10.1016/j.ab.2012.08.021 |url=}}</ref><ref name="pmid16614251">{{cite journal |vauthors=Lindström M, Korkeala H |title=Laboratory diagnostics of botulism |journal=Clin. Microbiol. Rev. |volume=19 |issue=2 |pages=298–314 |year=2006 |pmid=16614251 |pmc=1471988 |doi=10.1128/CMR.19.2.298-314.2006 |url=}}</ref><ref name="pmid19779029">{{cite journal |vauthors=Satterfield BA, Stewart AF, Lew CS, Pickett DO, Cohen MN, Moore EA, Luedtke PF, O'Neill KL, Robison RA |title=A quadruplex real-time PCR assay for rapid detection and differentiation of the Clostridium botulinum toxin genes A, B, E and F |journal=J. Med. Microbiol. |volume=59 |issue=Pt 1 |pages=55–64 |year=2010 |pmid=19779029 |doi=10.1099/jmm.0.012567-0 |url=}}</ref><ref name="pmid22993181">{{cite journal |vauthors=Mazuet C, Ezan E, Volland H, Popoff MR, Becher F |title=Toxin detection in patients' sera by mass spectrometry during two outbreaks of type A Botulism in France |journal=J. Clin. Microbiol. |volume=50 |issue=12 |pages=4091–4 |year=2012 |pmid=22993181 |pmc=3502950 |doi=10.1128/JCM.02392-12 |url=}}</ref>
*The typical routine lab tests, such as [[CBC]], [[electrolytes]], [[LFT]]s, [[urinalysis]], will not be helpful for botulism.
* In order to diagnose wound botulism, wound exudates and swab sampling must be done in addition to toxin assay. Wound culture should be performed in anaerobic media.
*[[Cerebrospinal fluid]] tests will basically be normal, but there might be a bit of protein elevation.
* Confirmatory diagnosis of infant botulism is based on serum and stool screening for botulism's toxins or isolation of toxigenic ''C botulinum'' in stool.
*Laboratory confirmation is done by demonstrating the presence of [[toxin]] in [[serum]], [[stool]], or food, or by culturing C. botulinum from  stool, a [[wound]] or food.
*[[Cerebrospinal fluid]] analysis should be performed to rule out other diseases mimicking botulism. However, minimal [[protein]] elevation is a common finding in botulism.
*Laboratory testing may take hours or days. Initial diagnosis and appropriate treatment depend on clinical diagnosis through a thorough history and physical examination.
*Laboratory testing may take hours or days. Initial diagnosis and appropriate treatment depend on clinical diagnosis through a thorough history and physical examination.
*The most traditional way for laboratory diagnosis is, injecting the serum sample of suspected person to mouse and following mice up for symptom development. To detect the toxin type, the affected mice must be injected by type-specific anti toxin. Botulism symptoms are absent in mice that received the appropriate anti toxin.
*Novel assays use mass spectroscopy instead of mouse bioassay.
*Toxin excretion and positive stool culture may be remain for one month after infection.
*[[Enzyme linked immunosorbent assay (ELISA)|ELISA]] and [[PCR]] of suspected food source for toxin assay are another helpful method of diagnosis.


The following gallery shows microscopic features of ''C. botulinum.''
==Gallery==
<gallery>
Image: Botulism20.jpeg| Clostridium botulinum growing on egg yolk agar showing the lipase reaction 72hrs. <SMALL><SMALL>''[http://phil.cdc.gov/phil/home.asp From Public Health Image Library (PHIL).] ''<ref name=PHIL> {{Cite web | title = Public Health Image Library (PHIL) | url = http://phil.cdc.gov/phil/home.asp}}</ref></SMALL></SMALL>
Image: Botulism19.jpeg| Clostridium botulinum spores stained with malachite green stain. <SMALL><SMALL>''[http://phil.cdc.gov/phil/home.asp From Public Health Image Library (PHIL).] ''<ref name=PHIL> {{Cite web | title = Public Health Image Library (PHIL) | url = http://phil.cdc.gov/phil/home.asp}}</ref></SMALL></SMALL>
Image: Botulism18.jpeg| Clostridium botulinum spores stained with malachite green stain. <SMALL><SMALL>''[http://phil.cdc.gov/phil/home.asp From Public Health Image Library (PHIL).] ''<ref name=PHIL> {{Cite web | title = Public Health Image Library (PHIL) | url = http://phil.cdc.gov/phil/home.asp}}</ref></SMALL></SMALL>
Image: Botulism12.jpeg| Clostridium botulinum Type A colonies blood agar plate 24hrs. <SMALL><SMALL>''[http://phil.cdc.gov/phil/home.asp From Public Health Image Library (PHIL).] ''<ref name=PHIL> {{Cite web | title = Public Health Image Library (PHIL) | url = http://phil.cdc.gov/phil/home.asp}}</ref></SMALL></SMALL>
Image: Botulism11.jpeg| Clostridium botulinum Type A colonies blood agar plate 72hrs (5x). <SMALL><SMALL>''[http://phil.cdc.gov/phil/home.asp From Public Health Image Library (PHIL).] ''<ref name=PHIL> {{Cite web | title = Public Health Image Library (PHIL) | url = http://phil.cdc.gov/phil/home.asp}}</ref></SMALL></SMALL>
Image: Botulism10.jpeg| Clostridium botulinum Type-A in thioglycollate broth was incubated for 48hrs. <SMALL><SMALL>''[http://phil.cdc.gov/phil/home.asp From Public Health Image Library (PHIL).] ''<ref name=PHIL> {{Cite web | title = Public Health Image Library (PHIL) | url = http://phil.cdc.gov/phil/home.asp}}</ref></SMALL></SMALL>
Image: Botulism09.jpeg| Clostridium botulinum Type E colonies displaying an opaque zone grown on a 48hr egg yolk agar plate (1.9x mag). <SMALL><SMALL>''[http://phil.cdc.gov/phil/home.asp From Public Health Image Library (PHIL).] ''<ref name=PHIL> {{Cite web | title = Public Health Image Library (PHIL) | url = http://phil.cdc.gov/phil/home.asp}}</ref></SMALL></SMALL>
Image: Botulism08.jpeg| Contaminated Jalapeño peppers involved in an outbreak of botulism. <SMALL><SMALL>''[http://phil.cdc.gov/phil/home.asp From Public Health Image Library (PHIL).] ''<ref name=PHIL> {{Cite web | title = Public Health Image Library (PHIL) | url = http://phil.cdc.gov/phil/home.asp}}</ref></SMALL></SMALL>
Image: Botulism07.jpeg| Clostridium sp. Gram-positive bacteria, which had been grown on a 4% blood agar plate (BAP) 48hrs. <SMALL><SMALL>''[http://phil.cdc.gov/phil/home.asp From Public Health Image Library (PHIL).] ''<ref name=PHIL> {{Cite web | title = Public Health Image Library (PHIL) | url = http://phil.cdc.gov/phil/home.asp}}</ref></SMALL></SMALL>
Image: Botulism05.jpeg| Clostridium innocuum bacteria cultivated in a thioglycollate fluid medium 24hrs (956x mag). <SMALL><SMALL>''[http://phil.cdc.gov/phil/home.asp From Public Health Image Library (PHIL).] ''<ref name=PHIL> {{Cite web | title = Public Health Image Library (PHIL) | url = http://phil.cdc.gov/phil/home.asp}}</ref></SMALL></SMALL>
Image: Botulism04.jpeg| Gram-positive Clostridium subterminale bacteria on BAP medium 48hrs (956x mag). <SMALL><SMALL>''[http://phil.cdc.gov/phil/home.asp From Public Health Image Library (PHIL).] ''<ref name=PHIL> {{Cite web | title = Public Health Image Library (PHIL) | url = http://phil.cdc.gov/phil/home.asp}}</ref></SMALL></SMALL>
Image: Botulism03.jpeg|Clostridium sp. Gram-positive bacteria grown on a chopped meat medium 48hrs (956x mag). <SMALL><SMALL>''[http://phil.cdc.gov/phil/home.asp From Public Health Image Library (PHIL).] ''<ref name=PHIL> {{Cite web | title = Public Health Image Library (PHIL) | url = http://phil.cdc.gov/phil/home.asp}}</ref></SMALL></SMALL>
Image: Botulism01.jpeg|Clostridium sp. Gram-positive bacteria grown on a chopped meat medium 48hrs (956x mag). <SMALL><SMALL>''[http://phil.cdc.gov/phil/home.asp From Public Health Image Library (PHIL).] ''<ref name=PHIL> {{Cite web | title = Public Health Image Library (PHIL) | url = http://phil.cdc.gov/phil/home.asp}}</ref></SMALL></SMALL>
</gallery>
==References==
==References==
{{Reflist|2}}
{{Reflist|2}}


[[Category:Pediatrics]]
[[Category:Neonatology]]
[[Category:Foodborne illnesses]]
[[Category:Biological weapons]]
[[Category:Conditions diagnosed by stool test]]
[[Category:Poultry diseases]]
[[Category:Zoonoses]]
[[Category:Neurology]]
[[Category:Infectious disease]]
[[Category:Emergency medicine]]
[[Category:Disease]]
[[Category:Bacterial diseases]]
{{WikiDoc Help Menu}}
{{WikiDoc Help Menu}}
{{WikiDoc Sources}}
{{WikiDoc Sources}}

Latest revision as of 15:59, 24 May 2017

Botulism Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Botulism from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

CT

MRI

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Botulism laboratory findings On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Botulism laboratory findings

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Botulism laboratory findings

CDC on Botulism laboratory findings

Botulism laboratory findings in the news

Blogs on Botulism laboratory findings

Directions to Hospitals Treating Botulism

Risk calculators and risk factors for Botulism laboratory findings

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Seyedmahdi Pahlavani, M.D. [2]

Overview

Toxin assay is the prefered method of laboratory work up for diagnosis botulism. Serum, stool, gastric secretions, and suspected food sources should be collected and toxin assay must be performed. However, role of clinical suspicion must not be undertaken.[1][2][3][4][5][6]

Laboratory Findings

Toxin assay is the prefered method of laboratory work up for diagnosis botulism. Serum, stool, gastric secretions, and suspected food sources should be collected and toxin assay must be performed. Urine toxicology screen must be performed to rule out other possible diseases, such as substance abuse, medications, and environmental exposure.[1][2][3][4][5][6]

  • In order to diagnose wound botulism, wound exudates and swab sampling must be done in addition to toxin assay. Wound culture should be performed in anaerobic media.
  • Confirmatory diagnosis of infant botulism is based on serum and stool screening for botulism's toxins or isolation of toxigenic C botulinum in stool.
  • Cerebrospinal fluid analysis should be performed to rule out other diseases mimicking botulism. However, minimal protein elevation is a common finding in botulism.
  • Laboratory testing may take hours or days. Initial diagnosis and appropriate treatment depend on clinical diagnosis through a thorough history and physical examination.
  • The most traditional way for laboratory diagnosis is, injecting the serum sample of suspected person to mouse and following mice up for symptom development. To detect the toxin type, the affected mice must be injected by type-specific anti toxin. Botulism symptoms are absent in mice that received the appropriate anti toxin.
  • Novel assays use mass spectroscopy instead of mouse bioassay.
  • Toxin excretion and positive stool culture may be remain for one month after infection.
  • ELISA and PCR of suspected food source for toxin assay are another helpful method of diagnosis.

The following gallery shows microscopic features of C. botulinum.

Gallery

References

  1. 1.0 1.1 Sharma SK, Ferreira JL, Eblen BS, Whiting RC (2006). "Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies". Appl. Environ. Microbiol. 72 (2): 1231–8. doi:10.1128/AEM.72.2.1231-1238.2006. PMC 1392902. PMID 16461671.
  2. 2.0 2.1 Dowell VR, McCroskey LM, Hatheway CL, Lombard GL, Hughes JM, Merson MH (1977). "Coproexamination for botulinal toxin and clostridium botulinum. A new procedure for laboratory diagnosis of botulism". JAMA. 238 (17): 1829–32. PMID 333132.
  3. 3.0 3.1 Zhang Y, Lou J, Jenko KL, Marks JD, Varnum SM (2012). "Simultaneous and sensitive detection of six serotypes of botulinum neurotoxin using enzyme-linked immunosorbent assay-based protein antibody microarrays". Anal. Biochem. 430 (2): 185–92. doi:10.1016/j.ab.2012.08.021. PMC 3589981. PMID 22935296.
  4. 4.0 4.1 Lindström M, Korkeala H (2006). "Laboratory diagnostics of botulism". Clin. Microbiol. Rev. 19 (2): 298–314. doi:10.1128/CMR.19.2.298-314.2006. PMC 1471988. PMID 16614251.
  5. 5.0 5.1 Satterfield BA, Stewart AF, Lew CS, Pickett DO, Cohen MN, Moore EA, Luedtke PF, O'Neill KL, Robison RA (2010). "A quadruplex real-time PCR assay for rapid detection and differentiation of the Clostridium botulinum toxin genes A, B, E and F". J. Med. Microbiol. 59 (Pt 1): 55–64. doi:10.1099/jmm.0.012567-0. PMID 19779029.
  6. 6.0 6.1 Mazuet C, Ezan E, Volland H, Popoff MR, Becher F (2012). "Toxin detection in patients' sera by mass spectrometry during two outbreaks of type A Botulism in France". J. Clin. Microbiol. 50 (12): 4091–4. doi:10.1128/JCM.02392-12. PMC 3502950. PMID 22993181.
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 "Public Health Image Library (PHIL)".


Template:WikiDoc Sources