Autism epidemiology and demographics: Difference between revisions

Jump to navigation Jump to search
Shankar Kumar (talk | contribs)
Aditya Ganti (talk | contribs)
 
(12 intermediate revisions by 2 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{Autism}}
{{Autism}}
{{CMG}}
{{CMG}}


Line 7: Line 8:


==Epidemiology and Demographics==
==Epidemiology and Demographics==
{{Main|Epidemiology of autism}}
 
=== Incidence ===
* According to National Survey of Children’s Health, by the Autism and Developmental Disabilities Monitoring (ADDM) network, the estimated annual incidence of ASD world wide is 1 child in every 110 children.<ref>{{cite journal |title= Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP)|author=Baird G, Simonoff E, Pickles A ''et al.'' |journal=Lancet |volume=368 |issue=9531 |pages=210–5 |date=2006 |pmid=16844490 |doi=10.1016/S0140-6736(06)69041-7}}</ref> 
* The estimated annual incidence of autism in the United states of America is similar to the world estimate, that 1 in 91 children aged 3 to 17 years. 
* These numbers are similar to regional data
** In Massachusetts, the incidence of ASD in 2005 was 1 per 108 in children less than 3 years of age.
 
===Prevalence===
===Prevalence===
[[Image:US-autism-6-11-1996-2005.png|thumb|left|Reports of autism cases grew dramatically in the U.S. in 1996–2005. It is unknown how much, if any, growth came from changes in autism's [[prevalence]].]]
* The estimated annual prevalence of is 100– 200 per 100,000 for autism and close to 600 per 100,000 for ASD.<ref name="Newschaffer">{{cite journal |author= Newschaffer CJ, Croen LA, Daniels J ''et al.'' |title= The epidemiology of autism spectrum disorders |journal= Annu Rev Public Health |year=2007 |volume=28 |pages=235–58 |pmid=17367287 |doi=10.1146/annurev.publhealth.28.021406.144007}}</ref><ref name="Caronna">{{cite journal |journal= Arch Dis Child |date=2008 |volume=93 |issue=6 |pages=518–23 |title= Autism spectrum disorders: clinical and research frontiers |author= Caronna EB, Milunsky JM, Tager-Flusberg H |doi=10.1136/adc.2006.115337 |pmid=18305076}}</ref>  
Most recent [[review]]s tend to estimate a prevalence of 100– 200 per 100,000 for autism and close to 600 per 100,000 for ASD;<ref name=Newschaffer>{{cite journal |author= Newschaffer CJ, Croen LA, Daniels J ''et al.'' |title= The epidemiology of autism spectrum disorders |journal= Annu Rev Public Health |year=2007 |volume=28 |pages=235–58 |pmid=17367287 |doi=10.1146/annurev.publhealth.28.021406.144007}}</ref> because of inadequate data, these numbers may underestimate ASD's true prevalence.<ref name=Caronna>{{cite journal |journal= Arch Dis Child |date=2008 |volume=93 |issue=6 |pages=518–23 |title= Autism spectrum disorders: clinical and research frontiers |author= Caronna EB, Milunsky JM, Tager-Flusberg H |doi=10.1136/adc.2006.115337 |pmid=18305076}}</ref> [[PDD-NOS]] is the vast majority of ASD, [[Asperger's]] is about 30 per 100,000 and the remaining ASD forms are much rarer.<ref>{{cite journal |journal= J Clin Psychiatry |date=2005 |volume=66 |issue=Suppl 10 |pages=3–8 |title= Epidemiology of autistic disorder and other pervasive developmental disorders |author= [[Eric Fombonne|Fombonne E]] |pmid=16401144}}</ref>  A 2006 study of nearly 57,000 British nine- and ten-year-olds reported a prevalence of 389 per 100,000 for autism and 1,161 per 100,000 for ASD; these higher figures could be associated with broadening diagnostic criteria.<ref>{{cite journal |title= Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP)|author=Baird G, Simonoff E, Pickles A ''et al.'' |journal=Lancet |volume=368 |issue=9531 |pages=210–5 |date=2006 |pmid=16844490 |doi=10.1016/S0140-6736(06)69041-7}}</ref> Studies based on more-detailed information, such as direct observation rather than examination of medical records, identify higher prevalence; this suggests that published figures may underestimate ASD's true prevalence.<ref name=Caronna>{{cite journal |journal= Arch Dis Child |date=2008 |volume=93 |issue=6 |pages=518–23 |title= Autism spectrum disorders: clinical and research frontiers |author= Caronna EB, Milunsky JM, Tager-Flusberg H |doi=10.1136/adc.2006.115337 |pmid=18305076}}</ref>
* [[PDD-NOS]] is the vast majority of ASD, [[Asperger's]] is about 30 per 100,000 and the remaining ASD forms are much rarer.<ref>{{cite journal |journal= J Clin Psychiatry |date=2005 |volume=66 |issue=Suppl 10 |pages=3–8 |title= Epidemiology of autistic disorder and other pervasive developmental disorders |author= [[Eric Fombonne|Fombonne E]] |pmid=16401144}}</ref>   
====Changes with Time====
[[Image:US-autism-6-11-1996-2005.png|thumb|Reports of autism cases grew dramatically in the U.S. in 1996–2005. It is unknown how much, if any, growth came from changes in autism's [[prevalence]].|center]]
Attention has been focused on whether the prevalence of autism is increasing with time. Earlier prevalence estimates were lower, centering at about 50 per 100,000 for autism during the 1960s and 1970s and about 100 per 100,000 in the 1980s, as opposed to today's 100- 200 per 100,000.<ref name=Newschaffer/>


The number of reported cases of autism increased dramatically in the 1990s and early 2000s, prompting investigations into several potential reasons:<ref>{{cite web |url=http://www.nas.org.uk/nas/jsp/polopoly.jsp?d=364&a=2618 |title= Notes on the prevalence of autism spectrum disorders |author= [[Lorna Wing|Wing L]], Potter D |publisher= National Autistic Society |date=1999 |accessdate=2007-12-10}}</ref>
== Demographics ==
* More children may have autism; that is, the true frequency of autism may have increased.
* There may be more complete pickup of autism (case finding), as a result of increased awareness and funding. For example, attempts to sue vaccine companies may have increased case-reporting.
* The diagnosis may be applied more broadly than before, as a result of the changing definition of the disorder, particularly changes in [[DSM-III-R]] and DSM-IV.
* Successively earlier diagnosis in each succeeding cohort of children, including recognition in nursery (preschool), may have affected apparent prevalence but not incidence.


The reported increase is largely attributable to changes in diagnostic practices, referral patterns, availability of services, age at diagnosis, and public awareness.<ref name=Newschaffer/><ref name=Rutter/><ref name=Prevalence>Prevalence and changes in diagnostic practice:
===Gender===
*{{cite journal |author=Fombonne E |title= The prevalence of autism |journal=JAMA |date=2003 |volume=289 |issue=1 |pages=87–9 |pmid=12503982 |doi= 10.1001/jama.289.1.87}}
* Males are more commonly affected by ASD than females.<ref>{{cite journal |author= Newschaffer CJ, Croen LA, Daniels J ''et al.'' |title= The epidemiology of autism spectrum disorders |journal= Annu Rev Public Health |year=2007 |volume=28 |pages=235–58 |pmid=17367287 |doi=10.1146/annurev.publhealth.28.021406.144007}}</ref>
*{{cite journal |author=Wing L, Potter D |title= The epidemiology of autistic spectrum disorders: is the prevalence rising? |journal= Ment Retard Dev Disabil Res Rev |volume=8 |issue=3 |year=2002 |pages=151–61 |pmid=12216059 |doi=10.1002/mrdd.10029}}</ref> A widely cited 2002 pilot study concluded that the observed increase in autism in California cannot be explained by changes in diagnostic criteria,<ref>{{cite paper |author= Byrd RS, Sage AC, Keyzer J ''et al.'' |publisher=[[M.I.N.D. Institute]] |title= Report to the legislature on the principal findings of the epidemiology of autism in California: a comprehensive pilot study |date=2002 |url=http://www.ucdmc.ucdavis.edu/mindinstitute/newsroom/study_final.pdf |accessdate=2006-09-18 |format=PDF}}</ref> but a 2006 analysis found that special education data poorly measured prevalence because so many cases were undiagnosed, and that the 1994–2003 U.S. increase was associated with declines in other diagnostic categories, indicating that diagnostic substitution had occurred.<ref name=Shattuck>{{cite journal |journal=Pediatrics |date=2006 |volume=117 |issue=4 |pages=1028–37 |title= The contribution of diagnostic substitution to the growing administrative prevalence of autism in US special education |author= Shattuck PT |doi=10.1542/peds.2005-1516 |pmid=16585296 |url=http://pediatrics.aappublications.org/cgi/content/full/117/4/1028 |laysummary=http://www.news.wisc.edu/12368 |laydate=2006-04-03}}</ref> A 2007 study that modeled autism incidence found that broadened diagnostic criteria, diagnosis at a younger age, and improved efficiency of case ascertainment, can produce an increase in the frequency of autism ranging up to 29-fold depending on the frequency measure, suggesting that methodological factors may explain the observed increases in autism over time.<ref>{{cite journal |journal= J Am Acad Child Adolesc Psychiatry |date=2007 |volume=46 |issue=6 |pages=721–30 |title= The autism epidemic: fact or artifact? |author= Wazana A, Bresnahan M, Kline J |pmid=17513984 |doi= 10.1097/chi.0b013e31804a7f3b}}</ref> A small 2008 study found that a significant number of people diagnosed with language impairments as children in previous decades would now be given a diagnosis as autism.<ref>{{cite journal |journal= Dev Med Child Neurol |date=2008 |volume=50 |issue=5 |pages=341–5 |title= Autism and diagnostic substitution: evidence from a study of adults with a history of developmental language disorder |author= Bishop DVM, Whitehouse AJO, Watt HJ, Line EA |doi=10.1111/j.1469-8749.2008.02057.x |pmid=18384386}}</ref>
* The male to female ratio is approximately 4.3 to 1.
 
* The ASD sex ratio is greatly modified by cognitive impairment, it may be close to 2:1 with mental retardation and more than 5.5:1 for HFA.


Several contributing environmental risk factors have been proposed to support the hypothesis that the actual frequency of autism has increased. These include certain foods, infectious disease, [[pesticides]], [[MMR vaccine controversy|MMR vaccine]], and vaccines containing the preservative [[Thiomersal controversy|thiomersal]], formerly used in several childhood vaccines in the U.S.<ref name=Newschaffer/> Although there is overwhelming scientific evidence against the MMR hypothesis and no convincing evidence for the thiomersal hypothesis, other as-yet-unidentified contributing environmental risk factors cannot be ruled out.<ref name=Rutter>{{cite journal |author= [[Professor Sir Michael Rutter|Rutter M]] |title= Incidence of autism spectrum disorders: changes over time and their meaning |journal= Acta Paediatr |volume=94 |issue=1 |date=2005 |pages=2–15 |pmid=15858952}}</ref> Although it is unknown whether autism's frequency has increased, any such increase would suggest directing more attention and funding toward changing environmental factors instead of continuing to focus on genetics.<ref>{{cite journal |journal= Environ Health Perspect |date=2006 |volume=114 |issue=7 |pages=A412–8 |title= Tracing the origins of autism: a spectrum of new studies |author= Szpir M |url=http://www.ehponline.org/members/2006/114-7/focus.html |pmid=16835042}}</ref>
===Developed Countries===
===Developed Countries===
====Australia====
====Australia====
A 2008 Australian study reported wide variation and inconsistent results in prevalence estimates; for example, national estimates for the prevalence of ASD in Australia ranged from 1.21 to 3.57 per 1,000 for children aged 6–12 years. The study concluded that the prevalence of ASD in Australian children cannot be estimated accurately from existing data.<ref>{{cite journal |journal= J Paediatr Child Health |date=2008 |title= The prevalence of autism in Australia. Can it be established from existing data? |author= Williams K, Macdermott S, Ridley G, Glasson EJ, Wray JA |doi=10.1111/j.1440-1754.2008.01331.x |pmid=18564076}}</ref>
* The national estimates for the prevalence of ASD in Australia ranged from 121 to 357 per 100,000 for children aged 6–12 years.<ref>{{cite journal |journal= J Paediatr Child Health |date=2008 |title= The prevalence of autism in Australia. Can it be established from existing data? |author= Williams K, Macdermott S, Ridley G, Glasson EJ, Wray JA |doi=10.1111/j.1440-1754.2008.01331.x |pmid=18564076}}</ref>
 
====Denmark====
====Denmark====
A 2003 study reported that the cumulative incidence of autism in Denmark began a steep increase starting around 1990, and continued to grow until 2000, despite the withdrawal of thiomersal-containing vaccines in 1992. For example, for children aged 2–4 years, the cumulative incidence was about 0.5 new cases per 10,000 children in 1990 and about 4.5 new cases per 10,000 children in 2000.<ref>{{cite journal |author=Madsen KM, Lauritsen MB, Pedersen CB ''et al.'' |title= Thimerosal and the occurrence of autism: negative ecological evidence from Danish population-based data |journal=Pediatrics |volume=112 |issue=3 |pages=604–6 |year=2003 |pmid=12949291  |url=http://pediatrics.aappublications.org/cgi/content/full/112/3/604 |doi= 10.1542/peds.112.3.604}}</ref>
* The annual estimate of ASD in Denamark is estimated to be 137 per 100,000.<ref>{{cite journal |author=Madsen KM, Lauritsen MB, Pedersen CB ''et al.'' |title= Thimerosal and the occurrence of autism: negative ecological evidence from Danish population-based data |journal=Pediatrics |volume=112 |issue=3 |pages=604–6 |year=2003 |pmid=12949291  |url=http://pediatrics.aappublications.org/cgi/content/full/112/3/604 |doi= 10.1542/peds.112.3.604}}</ref>
====Germany====
* A 2003 study reported that the cumulative incidence of autism in Denmark began a steep increase starting around 1990, and continued to grow until 2000, despite the withdrawal of thiomersal- containing vaccines in 1992.  
A 2008 study found that inpatient admission rates for children with ASD increased 30% from 2000 to 2005, with the largest rise between 2000 and 2001 and a decline between 2001 and 2003. Inpatient rates for all mental disorders also rose for ages up to 15 years, so that the ratio of ASD to all admissions rose from 1.3% to 1.4%.<ref>{{cite journal |journal=Epidemiology |date=2008 |volume=19 |issue=3 |pages=519–20 |title= Trends in autism spectrum disorder referrals |author= Bölte S, Poustka F, Holtmann M |doi=10.1097/EDE.0b013e31816a9e13 |pmid=18414094}}</ref>
** For example, for children aged 2–4 years, the cumulative incidence was about 5 new cases per 100,000 children in 1990 and about 45 new cases per 100,000 children in 2000.
====Japan====
 
A 2005 study of a part of [[Yokohama]] with a stable population of about 300,000 reported a cumulative incidence to age 7 years of 48 cases of ASD per 10,000 children in 1989, and 86 in 1990. After the vaccination rate of [[MMR vaccine]] dropped to near zero, the incidence rate grew to 97 and 161 cases per 10,000 children in 1993 and 1994, respectively, indicating that MMR vaccine did not cause autism.<ref>{{cite journal |author= Honda H, Shimizu Y, Rutter M |title= No effect of MMR withdrawal on the incidence of autism: a total population study |journal= J Child Psychol Psychiatry |volume=46 |issue=6 |pages=572–9 |year=2005 |pmid=15877763 |doi=10.1111/j.1469-7610.2005.01425.x |laysource=Bandolier |laysummary=http://www.jr2.ox.ac.uk/bandolier/booth/Vaccines/noMMR.html |laydate=2005}}</ref>
====United Kingdom====
====United Kingdom====
The incidence and changes in incidence with time are unclear in the UK.<ref>{{cite web |url=http://www.autism.org.uk/nas/jsp/polopoly.jsp?a=5576 |title= Incidence of autism |publisher= [[National Autistic Society]] |date=2004 |accessdate=2007-12-10}}</ref>
* The incidence and changes in incidence with time are unclear in the UK.<ref>{{cite web |url=http://www.autism.org.uk/nas/jsp/polopoly.jsp?a=5576 |title= Incidence of autism |publisher= [[National Autistic Society]] |date=2004 |accessdate=2007-12-10}}</ref>  
The reported autism incidence in the UK rose starting before the first introduction of the [[MMR vaccine]] in [[1989]].<ref>{{cite journal |author=Kaye JA, del Mar Melero-Montes M, Jick H |title=Mumps, measles, and rubella vaccine and the incidence of autism recorded by general practitioners: a time trend analysis |journal=BMJ |volume=322 |issue=7284 |pages=460–3 |year=2001 |pmid=11222420 |url=http://www.bmj.com/cgi/content/full/322/7284/460 |doi=10.1136/bmj.322.7284.460}}</ref> A 2004 study found that the reported incidence of pervasive developmental disorders in a general practice research database in England and Wales grew steadily during 1988–2001 from 0.11 to 2.98 per 10,000 person-years, and concluded that much of this increase may be due to changes in diagnostic practice.<ref>{{cite journal |journal= BMC Med |date=2004 |volume=2 |pages=39 |title= Rate of first recorded diagnosis of autism and other pervasive developmental disorders in United Kingdom general practice, 1988 to 2001 |author= Smeeth L, Cook C, Fombonne E ''et al.'' |doi=10.1186/1741-7015-2-39 |pmid=15535890 |url=http://www.biomedcentral.com/1741-7015/2/39}}</ref>
* The reported autism incidence in the UK rose starting before the first introduction of the [[MMR vaccine]] in [[1989]].<ref>{{cite journal |author=Kaye JA, del Mar Melero-Montes M, Jick H |title=Mumps, measles, and rubella vaccine and the incidence of autism recorded by general practitioners: a time trend analysis |journal=BMJ |volume=322 |issue=7284 |pages=460–3 |year=2001 |pmid=11222420 |url=http://www.bmj.com/cgi/content/full/322/7284/460 |doi=10.1136/bmj.322.7284.460}}</ref>  
====United States====
* The estimated annual incidence of ASD is 2.98 per 10,000 person.<ref>{{cite journal |journal= BMC Med |date=2004 |volume=2 |pages=39 |title= Rate of first recorded diagnosis of autism and other pervasive developmental disorders in United Kingdom general practice, 1988 to 2001 |author= Smeeth L, Cook C, Fombonne E ''et al.'' |doi=10.1186/1741-7015-2-39 |pmid=15535890 |url=http://www.biomedcentral.com/1741-7015/2/39}}</ref>
The number of diagnosed cases of autism grew dramatically in the U.S. in the 1990s and early 2000s. For example, in 1996, 21,669 children and students aged 6–11 years diagnosed with autism were served under Part B of the [[Individuals with Disabilities Education Act]] (IDEA) in the U.S. and outlying areas; by 2001 this number had risen to 64,094, and by 2005 to 110,529.<ref>{{cite web |url=http://www.ideadata.org/tables29th%5Car_1-9.htm |year=2006 |accessdate=2007-10-03 |title= Children and students served under IDEA, Part B, in the U.S. and outlying areas by age group, year and disability category: fall 1996 through fall 2005 |publisher= U.S. Department of Education, Office of Special Education Programs}}</ref> These numbers measure what is sometimes called "administrative prevalence", that is, the number of known cases per unit of population, as opposed to the true number of cases.<ref name=Shattuck/>
 
A population-based study of one [[Minnesota]] county found that the cumulative incidence of autism grew eightfold from the 1980–83 period to the 1995–97 period. The increase occurred after the introduction of broader, more-precise diagnostic criteria, increased service availability, and increased awareness of autism.<ref>{{cite journal |journal= Arch Pediatr Adolesc Med |date=2005 |volume=159 |issue=1 |pages=37–44 |title= The incidence of autism in Olmsted County, Minnesota, 1976-1997: results from a population-based study |author= Barbaresi WJ, Katusic SK, Colligan RC, Weaver AL, Jacobsen SJ |doi=10.1001/archpedi.159.1.37 |pmid=15630056 |url=http://archpedi.ama-assn.org/cgi/content/full/159/1/37}}</ref>
===Developing Countries===
====China====
A 2008 Hong Kong study reported an ASD incidence rate similar to those reported in Australia and North America, and lower than Europeans. It also reported a prevalence of 1.68 per 1,000 for children under 15 years.<ref>{{cite journal |journal= J Child Neurol |date=2008 |volume=23 |issue=1 |pages=67–72 |title= Epidemiological study of autism spectrum disorder in China |author= Wong VCN, Hui SLH |doi=10.1177/0883073807308702 |pmid=18160559}}</ref>
====Venezuela====
A 2008 study reported a prevalence of 110 per 100,000 for autism and 170 per 100,000 for ASD.<ref>{{cite journal |journal=Autism |date=2008 |volume=12 |issue=2 |pages=191–202 |title= Epidemiological findings of pervasive developmental disorders in a Venezuelan study |author= Montiel-Nava C, Peña JA |doi=10.1177/1362361307086663 |pmid=18308767}}</ref>


==References==
==References==

Latest revision as of 21:58, 30 March 2018

Autism Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Autism from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Behavioral Therapy

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Autism epidemiology and demographics On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Autism epidemiology and demographics

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Autism epidemiology and demographics

CDC on Autism epidemiology and demographics

Autism epidemiology and demographics in the news

Blogs on Autism epidemiology and demographics

Directions to Hospitals Treating Type page name here

Risk calculators and risk factors for Autism epidemiology and demographics

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Most recent reviews estimate a prevalence of 100- 200 cases per 100,000 people for autism, and about 600 per 100,000 for ASD, with ASD averaging a 4.3:1 male-to-female ratio. The number of people known to have autism has increased dramatically since the 1980s, at least partly due to changes in diagnostic practice; the question of whether actual prevalence has increased is unresolved.

Epidemiology and Demographics

Incidence

  • According to National Survey of Children’s Health, by the Autism and Developmental Disabilities Monitoring (ADDM) network, the estimated annual incidence of ASD world wide is 1 child in every 110 children.[1] 
  • The estimated annual incidence of autism in the United states of America is similar to the world estimate, that 1 in 91 children aged 3 to 17 years. 
  • These numbers are similar to regional data
    • In Massachusetts, the incidence of ASD in 2005 was 1 per 108 in children less than 3 years of age.

Prevalence

  • The estimated annual prevalence of is 100– 200 per 100,000 for autism and close to 600 per 100,000 for ASD.[2][3]
  • PDD-NOS is the vast majority of ASD, Asperger's is about 30 per 100,000 and the remaining ASD forms are much rarer.[4]
Reports of autism cases grew dramatically in the U.S. in 1996–2005. It is unknown how much, if any, growth came from changes in autism's prevalence.

Demographics

Gender

  • Males are more commonly affected by ASD than females.[5]
  • The male to female ratio is approximately 4.3 to 1.
  • The ASD sex ratio is greatly modified by cognitive impairment, it may be close to 2:1 with mental retardation and more than 5.5:1 for HFA.

Developed Countries

Australia

  • The national estimates for the prevalence of ASD in Australia ranged from 121 to 357 per 100,000 for children aged 6–12 years.[6]

Denmark

  • The annual estimate of ASD in Denamark is estimated to be 137 per 100,000.[7]
  • A 2003 study reported that the cumulative incidence of autism in Denmark began a steep increase starting around 1990, and continued to grow until 2000, despite the withdrawal of thiomersal- containing vaccines in 1992.
    • For example, for children aged 2–4 years, the cumulative incidence was about 5 new cases per 100,000 children in 1990 and about 45 new cases per 100,000 children in 2000.

United Kingdom

  • The incidence and changes in incidence with time are unclear in the UK.[8]
  • The reported autism incidence in the UK rose starting before the first introduction of the MMR vaccine in 1989.[9]
  • The estimated annual incidence of ASD is 2.98 per 10,000 person.[10]

References

  1. Baird G, Simonoff E, Pickles A; et al. (2006). "Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP)". Lancet. 368 (9531): 210–5. doi:10.1016/S0140-6736(06)69041-7. PMID 16844490.
  2. Newschaffer CJ, Croen LA, Daniels J; et al. (2007). "The epidemiology of autism spectrum disorders". Annu Rev Public Health. 28: 235–58. doi:10.1146/annurev.publhealth.28.021406.144007. PMID 17367287.
  3. Caronna EB, Milunsky JM, Tager-Flusberg H (2008). "Autism spectrum disorders: clinical and research frontiers". Arch Dis Child. 93 (6): 518–23. doi:10.1136/adc.2006.115337. PMID 18305076.
  4. Fombonne E (2005). "Epidemiology of autistic disorder and other pervasive developmental disorders". J Clin Psychiatry. 66 (Suppl 10): 3–8. PMID 16401144.
  5. Newschaffer CJ, Croen LA, Daniels J; et al. (2007). "The epidemiology of autism spectrum disorders". Annu Rev Public Health. 28: 235–58. doi:10.1146/annurev.publhealth.28.021406.144007. PMID 17367287.
  6. Williams K, Macdermott S, Ridley G, Glasson EJ, Wray JA (2008). "The prevalence of autism in Australia. Can it be established from existing data?". J Paediatr Child Health. doi:10.1111/j.1440-1754.2008.01331.x. PMID 18564076.
  7. Madsen KM, Lauritsen MB, Pedersen CB; et al. (2003). "Thimerosal and the occurrence of autism: negative ecological evidence from Danish population-based data". Pediatrics. 112 (3): 604–6. doi:10.1542/peds.112.3.604. PMID 12949291.
  8. "Incidence of autism". National Autistic Society. 2004. Retrieved 2007-12-10.
  9. Kaye JA, del Mar Melero-Montes M, Jick H (2001). "Mumps, measles, and rubella vaccine and the incidence of autism recorded by general practitioners: a time trend analysis". BMJ. 322 (7284): 460–3. doi:10.1136/bmj.322.7284.460. PMID 11222420.
  10. Smeeth L, Cook C, Fombonne E; et al. (2004). "Rate of first recorded diagnosis of autism and other pervasive developmental disorders in United Kingdom general practice, 1988 to 2001". BMC Med. 2: 39. doi:10.1186/1741-7015-2-39. PMID 15535890.

Template:WH Template:WS