High density lipoprotein prevention: Difference between revisions

Jump to navigation Jump to search
Ayokunle Olubaniyi (talk | contribs)
Rim Halaby (talk | contribs)
 
(24 intermediate revisions by 4 users not shown)
Line 4: Line 4:


==Overview==
==Overview==
[[Statins]] and [[fibrate]] appear to be effective in patients with low [[HDL]] levels compared to those in normal [[HDL]] levels in terms of risk reduction.[[Fibrates]] are more effective when low [[HDL]] levels coincide with low levels of [[LDL]] levels. Before a combination of [[statins]] and [[fibrates]] are considered, dietary modifications and lifestyle changes can be effective tools to raise [[HDL]] levels. However, a combination therapy of statins with fibrates can result in [[myopathy]] as a potential adverse effect.
Prevention of low HDL may be achieved through lifestyle modifications such as [[physical exercise]], [[smoking cessation]], [[weight loss]],<ref name="Berns-1989">{{Cite journal  | last1 = Berns | first1 = MA. | last2 = de Vries | first2 = JH. | last3 = Katan | first3 = MB. | title = Increase in body fatness as a major determinant of changes in serum total cholesterol and high density lipoprotein cholesterol in young men over a 10-year period.|journal = Am J Epidemiol | volume = 130 | issue = 6 | pages = 1109-22 | month = Dec | year = 1989 | doi =  | PMID = 2589304 }}</ref> [[dieting]],<ref name="Wood-1988">{{Cite journal  | last1 = Wood|first1 = PD. | last2 = Stefanick | first2 = ML. | last3 = Dreon | first3 = DM. | last4 = Frey-Hewitt | first4 = B. | last5 = Garay | first5 = SC. | last6 = Williams | first6 = PT. | last7 = Superko | first7 = HR. | last8 = Fortmann | first8 = SP. | last9 = Albers | first9 = JJ. | title = Changes in plasma lipids and lipoproteins in overweight men during weight loss through dieting as compared with exercise. | journal = N Engl J Med | volume = 319 | issue = 18 | pages = 1173-9 | month = Nov | year = 1988 | doi = 10.1056/NEJM198811033191801 | PMID = 3173455 }}</ref>  and intake of unhydrogenated [[monounsaturated fat]].<ref name="Oh-2005">{{Cite journal  | last1 = Oh | first1 = K. | last2 = Hu | first2 = FB. | last3 = Manson | first3 = JE. | last4 = Stampfer | first4 = MJ. | last5 = Willett | first5 = WC. | title = Dietary fat intake and risk of coronary heart disease in women: 20 years of follow-up of the nurses' health study. | journal = Am J Epidemiol | volume = 161 | issue = 7 | pages = 672-9 | month = Apr | year = 2005 | doi = 10.1093/aje/kwi085 | PMID = 15781956 }}</ref><ref name="Mensink-1990">{{Cite journal  | last1 = Mensink | first1 = RP. | last2 = Katan | first2 = MB. | title = Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. | journal = N Engl J Med | volume = 323| issue = 7 | pages = 439-45 | month = Aug | year = 1990 | doi = 10.1056/NEJM199008163230703 | PMID = 2374566 }}</ref>


==Secondary Prevention==
==Primary Prevention==
As of 2006, randomized clinical trials have demonstrated significant reduction of [[atherosclerosis]] progression and cardiovascular events with treatments that increase HDL-cholesterol (nicotinic acid or a fibrate).<ref name="ehjs">Reducing risk by raising HDL-cholesterol: the evidence. # European Heart Journal Supplements Vol 8 Suppl F p. F23-F29 http://eurheartjsupp.oxfordjournals.org/cgi/content/abstract/8/suppl_F/F23</ref> Pharmacological therapy to increase the level of HDL cholesterol includes use of [[fibrate]]s and [[niacin]]. Consumption of niacin, an immediate release crystalline form of Vitamin B3, can increase HDL levels by 10–30%, and is the most powerful agent currently available to increase HDL-cholesterol.<ref name="ehjs" /><ref name="rhcrcr">Raising HDL-Cholesterol and Reducing Cardiovascular Risk. Medscape Cardiology http://www.medscape.com/viewarticle/520393</ref>
Shown below is a table summarizing lifestyle modifications and their effect on HDL concentration.
<ref>Chapman M, Assmann G, Fruchart J, Shepherd J, Sirtori C. ''Raising high-density lipoprotein cholesterol with reduction of cardiovascular risk: the role of nicotinic acid - a position paper developed by the European Consensus Panel on HDL-C''. Cur Med Res Opin. 2004 Aug;20(8):1253-68. {{PMID|15324528}}</ref>
The use of [[statins]] is effective against high levels of LDL cholesterol, but it has little or no effect in raising HDL-cholesterol. <ref name="rhcrcr" />The use of antioxidants in combination with statin and niacin therapy reduces the effectiveness of niacin by 33%. (NIH HATS).
===Diet and Lifestyle===
Certain changes in lifestyle can have a positive impact on raising HDL levels:<ref>{{cite web|author= Richard N. Fogoros, M.D.|url=http://heartdisease.about.com/cs/cholesterol/a/raiseHDL.htm|title=Raising Your HDL Levels}}</ref>
* [[Aerobic exercise]]<ref>Spate-Douglas, T., Keyser, R. E.  Exercise intensity: its effect on the high-density lipoprotein profile.  ''Arch Phys Med Rehabil 80'', 691-695. {{PMID|10378497}}</ref>
* [[Weight loss]]
* [[Smoking cessation]]
* Using supplements such as [[omega 3]] fish oil
* Limiting intake of dietary fat to 30–35% of total calories
* Removing [[trans fat|trans]] fatty acids from the diet
* Adding [[monounsaturated fat|monounsaturated]] and [[polyunsaturated fat|polyunsaturated]] fats to the diet, and reducing or eliminating [[saturated fat]]s.
* Drinking 1–2 servings of [[alcoholic beverages]] per day
* Adding [[Dietary fiber|soluble fiber]] to diet


<div class="mw-collapsible mw-collapsed">
{| cellpadding=3 cellspacing=0 border=1 style="border-collapse:collapse"
===Pharmacotherapy===
|bgcolor="#cccccc"| '''LIFESTYLE MEASURE'''
<div class="mw-collapsible-content">
|bgcolor="#cccccc"| '''EFFECT ON HDL'''
<div class="mw-collapsible-content">
|-
{{familytree/start |summary=Treatment of low HDL}}
| [[Physical exercise]]<ref name="pmid2317921">{{cite journal|author=Thompson PD| title=What do muscles have to do with lipoproteins? | journal=Circulation |year= 1990 | volume= 81 | issue= 4 | pages= 1428-30|pmid=2317921 | doi= |pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2317921}} </ref>
{{familytree | | | | | A01 | | | | | A01='''Low HDL'''}}
| 5-30% increase
{{familytree | | | | | |!| | | | | | | }}
|-
{{familytree | | | | | B02 | | | | | | B02=Rule out secondary causes e.g., [[Hypothyroidism]], [[diabetes mellitus]], [[uremia]], [[liver disease]], Medications - [[diuretic]]s, [[progestin]], [[androgen]]s, [[beta blocker]]s, Acute illness - MI, burns, surgery}}
| [[Weight loss|Weight reduction]]
{{familytree | | | | | |!| | | | | | | }}
| 5-20% increase<ref name="pmid1386186">{{cite journal|author=Dattilo AM, Kris-Etherton PM| title=Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. | journal=Am J Clin Nutr |year= 1992| volume= 56 |issue= 2 | pages= 320-8 | pmid=1386186 | doi= | pmc= |url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=1386186  }} </ref>
{{familytree | | | | | C01 | | | | | | C01=Lifestyle modification - [[Diet]], [[physical exercise]], [[smoking cessation]], [[weight loss]], Intake of unhydrogenated [[monounsaturated fat]] e.g., olive oil, canola oil}}
|-
{{familytree | | | | | |!| | | | | | | | | | | | | | }}
| [[Smoking cessation]]
{{familytree | | | | | D02 | |D02='''No [[Coronary heart disease]]'''}}
| 5% increase<ref name="pmid21167347">{{cite journal| author=Gepner AD, Piper ME, Johnson HM, Fiore MC, Baker TB, Stein JH|title=Effects of smoking and smoking cessation on lipids and lipoproteins: outcomes from a randomized clinical trial. | journal=Am Heart J | year= 2011|volume= 161 | issue= 1 | pages= 145-51 |pmid=21167347 | doi=10.1016/j.ahj.2010.09.023 |pmc=PMC3110741|url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21167347  }} </ref>
{{familytree | | | | | |!| | | | | | | | | | | | |}}
|-
{{familytree | | | | | E02 | |E02=Assess risk}}
| Multivitamins
{{familytree | | | |,|-|^|-|-|-|-|.| | | | | |}}
| 31% increase in HDL
{{familytree | | | F03 | | | | | F04 | |F03='''High risk'''<br> CHD risk>20% per 10 years|F04='''Low risk'''<br>CHD≤20% per 10 years}}
|-
{{familytree | | | |!| | | | | | |!| | | |}}
| [[Dietary Approaches to Stop Hypertension|DASH diet]]
{{familytree | | | |!| | | | | | |!| | |}}
| 21% increase in HDL<ref name="Azadbakht-2005">{{Cite journal  | last1 = Azadbakht | first1 = L. | last2 = Mirmiran | first2 = P. | last3 = Esmaillzadeh |first3 = A. | last4 = Azizi | first4 = T. | last5 = Azizi | first5 = F. | title = Beneficial effects of a Dietary Approaches to Stop Hypertension eating plan on features of the metabolic syndrome. | journal = Diabetes Care | volume = 28 | issue = 12 | pages = 2823-31 | month = Dec | year = 2005 | doi =  | PMID = 16306540 }}</ref>
{{familytree | | | |!| | | | | | |!| | }}
|-
{{familytree | | | H04 | | | | | |!| |H04=[[Statins]] or [[Niacin]]}}
| Low carbohydrate diet
{{familytree | | | | | | | | | | |!| | | | | | | |}}
| 4.5 mg/dl increase in HDL<ref name="Nordmann-2006">{{Cite journal  | last1 = Nordmann | first1 = AJ. | last2 = Nordmann | first2 = A. | last3 = Briel | first3 = M. | last4 = Keller | first4 = U. | last5 = Yancy | first5 = WS. | last6 = Brehm | first6 = BJ. | last7 = Bucher | first7 = HC. | title = Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. | journal = Arch Intern Med |volume = 166 | issue = 3 | pages = 285-93 | month = Feb | year = 2006 | doi = 10.1001/archinte.166.3.285 | PMID = 16476868 }}</ref>
{{familytree | | | | | | |,|-|-|-|^|-|-|-|.| | }}
|-
{{familytree | | | | | | I05 | | | | | | I06 | |I05=Positive family history of premature CHD|I06=Negative family history of premature CHD}}
| Soy protein with isoflavones
{{familytree | | | | | | |!| | | | | | | |!| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |}}
| 3% increase in HDL<ref name="Zhan-2005">{{Cite journal  | last1 = Zhan | first1 = S. | last2 = Ho | first2 = SC. | title = Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. | journal = Am J Clin Nutr | volume = 81 | issue = 2 | pages = 397-408 | month = Feb | year = 2005 |doi =  | PMID = 15699227 }}</ref>
{{familytree | | | | | | |!| | | | | | | |!| | | |}}
|-
{{familytree | | | | | | |!| | | | | | | |!| | | | | | | | | | | | |}}
| Fish oil (omega-3 fatty acid)
{{familytree | | | | | | K04 | | | | | | K05 |K04=Considar [[statin]]s or [[niacin]]|K05=Continue non-pharmacological approach}}
| Significant increase in HDL2 fraction<ref name="pmid7769501">{{cite journal| author=Sacks FM, Hebert P, Appel LJ, Borhani NO, Applegate WB, Cohen JD et al.|title=The effect of fish oil on blood pressure and high-density lipoprotein-cholesterol levels in phase I of the Trials of Hypertension Prevention. Trials of Hypertension Prevention Collaborative Research Group. | journal=J Hypertens Suppl | year= 1994 | volume= 12 | issue= 7 | pages= S23-31 | pmid=7769501 | doi= |pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7769501  }} </ref>
{{familytree/end}}
|-
</div></div>
| Fish oil with exercise
| 8% increase in HDL<ref name="pmid7653444">{{cite journal| author=Herrmann W, Biermann J, Kostner GM| title=Comparison of effects of N-3 to N-6 fatty acids on serum level of lipoprotein(a) in patients with coronary artery disease. | journal=Am J Cardiol | year= 1995 | volume= 76 | issue= 7 | pages= 459-62 |pmid=7653444 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7653444 }} </ref>
|-
| Low fat diet
|5-14% increase in HDL when combined with exercise<ref name="pmid16046704">{{cite journal| author=Varady KA, Jones PJ| title=Combination diet and exercise interventions for the treatment of dyslipidemia: an effective preliminary strategy to lower cholesterol levels? | journal=J Nutr | year= 2005 | volume= 135 |issue= 8 | pages= 1829-35 | pmid=16046704 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16046704  }} </ref>
|-


====CETP Inhibition====
| Moderate [[alcohol]] consumption
=====Anacetrapib=====
| 5-10% increase in HDL<ref name="Rimm-1999">{{Cite journal  | last1 = Rimm | first1 = EB. | last2 = Williams | first2 = P. | last3 = Fosher | first3 = K. | last4 = Criqui | first4 = M. | last5 = Stampfer | first5 = MJ. | title = Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. | journal = BMJ | volume = 319 | issue = 7224 | pages = 1523-8 | month = Dec | year = 1999 | doi = | PMID = 10591709 }}</ref>
[[Anacetrapib]] raises HDL by 138%, and lowers LDL by 35% to 40%.
|}
 
=====Evacetrapib=====
[[Evacetrapib]] raises HDL by 130% and lowers LDL by 35% to 40%.


==References==
==References==
Line 68: Line 57:
[[Category:Cardiology]]
[[Category:Cardiology]]
[[Category:Lipoproteins]]
[[Category:Lipoproteins]]
[[Category:HDLpedia]]


{{WikiDoc Help Menu}}
{{WikiDoc Help Menu}}
{{WikiDoc Sources}}
{{WikiDoc Sources}}

Latest revision as of 16:03, 9 October 2014

High Density Lipoprotein Microchapters

Home

Patient information

Overview

Historical Perspective

Classification

Physiology

Pathophysiology

Causes

Low HDL
High HDL

Epidemiology and Demographics

Screening

Natural History, Complications and Prognosis

Diagnosis

HDL Laboratory Test

Treatment

Medical Therapy

Prevention

Future or Investigational Therapies

Clinical Trials

Landmark Trials

List of All Trials

Case Studies

Case #1

High density lipoprotein prevention On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of High density lipoprotein prevention

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on High density lipoprotein prevention

CDC on High density lipoprotein prevention

High density lipoprotein prevention in the news

Blogs on High density lipoprotein prevention

Directions to Hospitals Treating High density lipoprotein

Risk calculators and risk factors for High density lipoprotein prevention

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Aarti Narayan, M.B.B.S [2]; Raviteja Guddeti, M.B.B.S. [3]

Overview

Prevention of low HDL may be achieved through lifestyle modifications such as physical exercise, smoking cessation, weight loss,[1] dieting,[2] and intake of unhydrogenated monounsaturated fat.[3][4]

Primary Prevention

Shown below is a table summarizing lifestyle modifications and their effect on HDL concentration.

LIFESTYLE MEASURE EFFECT ON HDL
Physical exercise[5] 5-30% increase
Weight reduction 5-20% increase[6]
Smoking cessation 5% increase[7]
Multivitamins 31% increase in HDL
DASH diet 21% increase in HDL[8]
Low carbohydrate diet 4.5 mg/dl increase in HDL[9]
Soy protein with isoflavones 3% increase in HDL[10]
Fish oil (omega-3 fatty acid) Significant increase in HDL2 fraction[11]
Fish oil with exercise 8% increase in HDL[12]
Low fat diet 5-14% increase in HDL when combined with exercise[13]
Moderate alcohol consumption 5-10% increase in HDL[14]

References

  1. Berns, MA.; de Vries, JH.; Katan, MB. (1989). "Increase in body fatness as a major determinant of changes in serum total cholesterol and high density lipoprotein cholesterol in young men over a 10-year period". Am J Epidemiol. 130 (6): 1109–22. PMID 2589304. Unknown parameter |month= ignored (help)
  2. Wood, PD.; Stefanick, ML.; Dreon, DM.; Frey-Hewitt, B.; Garay, SC.; Williams, PT.; Superko, HR.; Fortmann, SP.; Albers, JJ. (1988). "Changes in plasma lipids and lipoproteins in overweight men during weight loss through dieting as compared with exercise". N Engl J Med. 319 (18): 1173–9. doi:10.1056/NEJM198811033191801. PMID 3173455. Unknown parameter |month= ignored (help)
  3. Oh, K.; Hu, FB.; Manson, JE.; Stampfer, MJ.; Willett, WC. (2005). "Dietary fat intake and risk of coronary heart disease in women: 20 years of follow-up of the nurses' health study". Am J Epidemiol. 161 (7): 672–9. doi:10.1093/aje/kwi085. PMID 15781956. Unknown parameter |month= ignored (help)
  4. Mensink, RP.; Katan, MB. (1990). "Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects". N Engl J Med. 323 (7): 439–45. doi:10.1056/NEJM199008163230703. PMID 2374566. Unknown parameter |month= ignored (help)
  5. Thompson PD (1990). "What do muscles have to do with lipoproteins?". Circulation. 81 (4): 1428–30. PMID 2317921.
  6. Dattilo AM, Kris-Etherton PM (1992). "Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis". Am J Clin Nutr. 56 (2): 320–8. PMID 1386186.
  7. Gepner AD, Piper ME, Johnson HM, Fiore MC, Baker TB, Stein JH (2011). "Effects of smoking and smoking cessation on lipids and lipoproteins: outcomes from a randomized clinical trial". Am Heart J. 161 (1): 145–51. doi:10.1016/j.ahj.2010.09.023. PMC 3110741. PMID 21167347.
  8. Azadbakht, L.; Mirmiran, P.; Esmaillzadeh, A.; Azizi, T.; Azizi, F. (2005). "Beneficial effects of a Dietary Approaches to Stop Hypertension eating plan on features of the metabolic syndrome". Diabetes Care. 28 (12): 2823–31. PMID 16306540. Unknown parameter |month= ignored (help)
  9. Nordmann, AJ.; Nordmann, A.; Briel, M.; Keller, U.; Yancy, WS.; Brehm, BJ.; Bucher, HC. (2006). "Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials". Arch Intern Med. 166 (3): 285–93. doi:10.1001/archinte.166.3.285. PMID 16476868. Unknown parameter |month= ignored (help)
  10. Zhan, S.; Ho, SC. (2005). "Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile". Am J Clin Nutr. 81 (2): 397–408. PMID 15699227. Unknown parameter |month= ignored (help)
  11. Sacks FM, Hebert P, Appel LJ, Borhani NO, Applegate WB, Cohen JD; et al. (1994). "The effect of fish oil on blood pressure and high-density lipoprotein-cholesterol levels in phase I of the Trials of Hypertension Prevention. Trials of Hypertension Prevention Collaborative Research Group". J Hypertens Suppl. 12 (7): S23–31. PMID 7769501.
  12. Herrmann W, Biermann J, Kostner GM (1995). "Comparison of effects of N-3 to N-6 fatty acids on serum level of lipoprotein(a) in patients with coronary artery disease". Am J Cardiol. 76 (7): 459–62. PMID 7653444.
  13. Varady KA, Jones PJ (2005). "Combination diet and exercise interventions for the treatment of dyslipidemia: an effective preliminary strategy to lower cholesterol levels?". J Nutr. 135 (8): 1829–35. PMID 16046704.
  14. Rimm, EB.; Williams, P.; Fosher, K.; Criqui, M.; Stampfer, MJ. (1999). "Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors". BMJ. 319 (7224): 1523–8. PMID 10591709. Unknown parameter |month= ignored (help)


Template:WikiDoc Sources