Metformin: Difference between revisions

Jump to navigation Jump to search
Deepika Beereddy (talk | contribs)
No edit summary
Deepika Beereddy (talk | contribs)
No edit summary
Line 25: Line 25:


<!--Guideline-Supported Use (Adult)-->
<!--Guideline-Supported Use (Adult)-->
|offLabelAdultGuideSupport=There is limited information regarding <i>Off-Label Guideline-Supported Use</i> of Metformin in adult patients.
|offLabelAdultNoGuideSupport======Hyperinsulinar obesity=====
|offLabelAdultNoGuideSupport======Hyperinsulinar obesity=====


Line 30: Line 31:


:* Dosage
:* Dosage
|offLabelPedGuideSupport=There is limited information regarding <i>Off-Label Guideline-Supported Use</i> of Metformin in pediatric patients.
|offLabelPedNoGuideSupport=There is limited information regarding <i>Off-Label Non–Guideline-Supported Use</i> of Metformin in pediatric patients.
|contraindications=Metformin Hydrochloride (HCl) Tablets, USP is an oral antihyperglycemic drug used in the management of type 2 diabetes. Metformin HCl, USP (N,N-dimethylimidodicarbonimidic diamide hydrochloride) is not chemically or pharmacologically related to any other classes of oral antihyperglycemic agents.
|contraindications=Metformin Hydrochloride (HCl) Tablets, USP is an oral antihyperglycemic drug used in the management of type 2 diabetes. Metformin HCl, USP (N,N-dimethylimidodicarbonimidic diamide hydrochloride) is not chemically or pharmacologically related to any other classes of oral antihyperglycemic agents.


Line 38: Line 41:


Metformin HCl Tablets, USP, contains 500 mg, 850 mg, or 1000 mg of metformin HCl, USP. Each tablet contains the inactive ingredients povidone, microcrystalline cellulose, croscarmellose sodium and magnesium stearate. In addition, the coating for the 500 mg, 850 mg and 1000 mg tablets contain polyethylene glycol, polyvinyl alcohol, titanium dioxide, talc, gum acacia, maltodextrin, propylene glycol and natural flavors.
Metformin HCl Tablets, USP, contains 500 mg, 850 mg, or 1000 mg of metformin HCl, USP. Each tablet contains the inactive ingredients povidone, microcrystalline cellulose, croscarmellose sodium and magnesium stearate. In addition, the coating for the 500 mg, 850 mg and 1000 mg tablets contain polyethylene glycol, polyvinyl alcohol, titanium dioxide, talc, gum acacia, maltodextrin, propylene glycol and natural flavors.
|warnings=* Description
|warnings=[[File:Metformin warnings.png|600px|thumbnail|left]]
{{clear}}


====Precautions====
====PRECAUTIONS====


* Description
'''General'''


<!--Adverse Reactions-->
*Macrovascular Outcomes—There have been no clinical studies establishing conclusive evidence of macrovascular risk reduction with Metformin HCl or any other anti-diabetic drug.


<!--Clinical Trials Experience-->
*Monitoring of renal function—Metformin is known to be substantially excreted by the kidney, and the risk of metformin accumulation and lactic acidosis increases with the degree of impairment of renal function. Thus, patients with serum creatinine levels above the upper limit of normal for their age should not receive Metformin HCl. In patients with advanced age, Metformin HCl should be carefully titrated to establish the minimum dose for adequate glycemic effect, because aging is associated with reduced renal function. In elderly patients, particularly those ≥80 years of age, renal function should be monitored regularly and, generally, Metformin HCl should not be titrated to the maximum dose (see WARNINGS and DOSAGE AND ADMINISTRATION).
|clinicalTrials=There is limited information regarding <i>Clinical Trial Experience</i> of {{PAGENAME}} in the drug label.


=====Body as a Whole=====
*Before initiation of Metformin HCl therapy and at least annually thereafter, renal function should be assessed and verified as normal. In patients in whom development of renal dysfunction is anticipated, renal function should be assessed more frequently and Metformin HCl discontinued if evidence of renal impairment is present.


*Use of concomitant medications that may affect renal function or metformin disposition—Concomitant medication(s) that may affect renal function or result in significant hemodynamic change or may interfere with the disposition of metformin, such as cationic drugs that are eliminated by renal tubular secretion (see PRECAUTIONS: Drug Interactions), should be used with caution.


*Radiologic studies involving the use of intravascular iodinated contrast materials (for example, intravenous urogram, intravenous cholangiography, angiography, and computed tomography (CT) scans with intravascular contrast materials)—Intravascular contrast studies with iodinated materials can lead to acute alteration of renal function and have been associated with lactic acidosis in patients receiving metformin (see CONTRAINDICATIONS). Therefore, in patients in whom any such study is planned, Metformin HCl should be temporarily discontinued at the time of or prior to the procedure, and withheld for 48 hours subsequent to the procedure and reinstituted only after renal function has been re-evaluated and found to be normal.


*Hypoxic states—Cardiovascular collapse (shock) from whatever cause, acute congestive heart failure, acute myocardial infarction and other conditions characterized by hypoxemia have been associated with lactic acidosis and may also cause prerenal azotemia. When such events occur in patients on Metformin HCl therapy, the drug should be promptly discontinued.


=====Cardiovascular=====
*Surgical procedures— Metformin HCl therapy should be temporarily suspended for any surgical procedure (except minor procedures not associated with restricted intake of food and fluids) and should not be restarted until the patient's oral intake has resumed and renal function has been evaluated as normal.


*Alcohol intake—Alcohol is known to potentiate the effect of metformin on lactate metabolism. Patients, therefore, should be warned against excessive alcohol intake, acute or chronic, while receiving Metformin HCl.


*Impaired hepatic function—Since impaired hepatic function has been associated with some cases of lactic acidosis, Metformin HCl should generally be avoided in patients with clinical or laboratory evidence of hepatic disease.


*Vitamin B12 levels—In controlled clinical trials of Metformin HCl of 29 weeks duration, a decrease to subnormal levels of previously normal serum vitamin B12 levels, without clinical manifestations, was observed in approximately 7% of patients. Such decrease, possibly due to interference with B12 absorption from the B12-intrinsic factor complex, is, however, very rarely associated with anemia and appears to be rapidly reversible with discontinuation of Metformin HCl or Vitamin B12 supplementation. Measurement of hematologic parameters on an annual basis is advised in patients on Metformin HCl and any apparent abnormalities should be appropriately investigated and managed (see PRECAUTIONS: Laboratory Tests).


=====Digestive=====
*Certain individuals (those with inadequate Vitamin B12 or calcium intake or absorption) appear to be predisposed to developing subnormal Vitamin B12 levels. In these patients, routine serum Vitamin B12 measurements at two- to three-year intervals may be useful.


*Change in clinical status of patients with previously controlled type 2 diabetes—A patient with type 2 diabetes previously well controlled on Metformin HCl who develops laboratory abnormalities or clinical illness (especially vague and poorly defined illness) should be evaluated promptly for evidence of ketoacidosis or lactic acidosis. Evaluation should include serum electrolytes and ketones, blood glucose and, if indicated, blood pH, lactate, pyruvate, and metformin levels. If acidosis of either form occurs, Metformin HCl must be stopped immediately and other appropriate corrective measures initiated (see also WARNINGS).


*Hypoglycemia—Hypoglycemia does not occur in patients receiving Metformin HCl alone under usual circumstances of use, but could occur when caloric intake is deficient, when strenuous exercise is not compensated by caloric supplementation, or during concomitant use with other glucose-lowering agents (such as sulfonylureas and insulin) or ethanol.


*Elderly, debilitated, or malnourished patients, and those with adrenal or pituitary insufficiency or alcohol intoxication are particularly susceptible to hypoglycemic effects. Hypoglycemia may be difficult to recognize in the elderly, and in people who are taking beta-adrenergic blocking drugs.


=====Endocrine=====
*Loss of control of blood glucose—When a patient stabilized on any diabetic regimen is exposed to stress such as fever, trauma, infection, or surgery, a temporary loss of glycemic control may occur. At such times, it may be necessary to withhold Metformin HCl and temporarily administer insulin. Metformin HCl may be reinstituted after the acute episode is resolved.


*


The effectiveness of oral antidiabetic drugs in lowering blood glucose to a targeted level decreases in many patients over a period of time. This phenomenon, which may be due to progression of the underlying disease or to diminished responsiveness to the drug, is known as secondary failure, to distinguish it from primary failure in which the drug is ineffective during initial therapy. Should secondary failure occur with either Metformin HCl or sulfonylurea monotherapy, combined therapy with Metformin HCl and sulfonylurea may result in a response. Should secondary failure occur with combined Metformin HCl /sulfonylurea therapy, it may be necessary to consider therapeutic alternatives including initiation of insulin therapy.


Laboratory Tests


=====Hematologic and Lymphatic=====
Response to all diabetic therapies should be monitored by periodic measurements of fasting blood glucose and glycosylated hemoglobin levels, with a goal of decreasing these levels toward the normal range. During initial dose titration, fasting glucose can be used to determine the therapeutic response. Thereafter, both glucose and glycosylated hemoglobin should be monitored. Measurements of glycosylated hemoglobin may be especially useful for evaluating long-term control (see also DOSAGE AND ADMINISTRATION).


Initial and periodic monitoring of hematologic parameters (e.g., hemoglobin/hematocrit and red blood cell indices) and renal function (serum creatinine) should be performed, at least on an annual basis. While megaloblastic anemia has rarely been seen with Metformin HCl therapy, if this is suspected, Vitamin B12 deficiency should be excluded.






=====Metabolic and Nutritional=====
|clinicalTrials=n a US double-blind clinical study of Metformin HCl in patients with type 2 diabetes, a total of 141 patients received Metformin HCl therapy (up to 2550 mg per day) and 145 patients received placebo. Adverse reactions reported in greater than 5% of the Metformin HCl patients, and that were more common in Metformin HCl - than placebo-treated patients, are listed in Table 9.


[[File:Metformin table 9.png|600px|thumbnail|left]]
{{clear}}


* Reactions that were more common in Metformin HCl -than placebo-treated patients.


Diarrhea led to discontinuation of study medication in 6% of patients treated with Metformin HCl. Additionally, the following adverse reactions were reported in ≥ 1.0 to ≤ 5.0% of Metformin HCl patients and were more commonly reported with Metformin HCl than placebo: abnormal stools, hypoglycemia, myalgia, lightheaded, dyspnea, nail disorder, rash, sweating increased, taste disorder, chest discomfort, chills, flu syndrome, flushing, palpitation.


=====Musculoskeletal=====
Pediatric Patients


In clinical trials with Metformin HCl in pediatric patients with type 2 diabetes, the profile of adverse reactions was similar to that observed in adults.
|drugInteractions= Drug Interactions (Clinical Evaluation of Drug Interactions Conducted with Metformin HCl)


Glyburide—In a single-dose interaction study in type 2 diabetes patients, co-administration of metformin and glyburide did not result in any changes in either metformin pharmacokinetics or pharmacodynamics. Decreases in glyburide AUC and Cmax were observed, but were highly variable. The single-dose nature of this study and the lack of correlation between glyburide blood levels and pharmacodynamic effects, makes the clinical significance of this interaction uncertain (see DOSAGE AND ADMINISTRATION: Concomitant Metformin HCl and Oral Sulfonylurea Therapy in Adult Patients).


Furosemide—A single-dose, metformin-furosemide drug interaction study in healthy subjects demonstrated that pharmacokinetic parameters of both compounds were affected by co-administration. Furosemide increased the metformin plasma and blood Cmax by 22% and blood AUC by 15%, without any significant change in metformin renal clearance. When administered with  metformin, the Cmax and AUC of furosemide were 31% and 12% smaller, respectively, than when administered alone, and the terminal half-life was decreased by 32%, without any significant change in furosemide renal clearance. No information is available about the interaction of metformin and furosemide when co-administered chronically.


=====Neurologic=====
Nifedipine—A single-dose, metformin-nifedipine drug interaction study in normal healthy volunteers demonstrated that co-administration of nifedipine increased plasma metformin Cmax and AUC by 20% and 9%, respectively, and increased the amount excreted in the urine. Tmax and half-life were unaffected. Nifedipine appears to enhance the absorption of metformin. Metformin had minimal effects on nifedipine.


Cationic drugs—Cationic drugs (e.g., amiloride, digoxin, morphine, procainamide, quinidine, quinine, ranitidine, triamterene, trimethoprim, or vancomycin) that are eliminated by renal tubular secretion theoretically have the potential for interaction with metformin by competing for common renal tubular transport systems. Such interaction between metformin and oral cimetidine has been observed in normal healthy volunteers in both single- and multiple-dose, metformin-cimetidine drug interaction studies, with a 60% increase in peak metformin plasma and whole blood concentrations and a 40% increase in plasma and whole blood metformin AUC. There was no change in elimination half-life in the single-dose study. Metformin had no effect on cimetidine pharmacokinetics. Although such interactions remain theoretical (except for cimetidine), careful patient monitoring and dose adjustment of Metformin HCl and/or the interfering drug is recommended in patients who are taking cationic medications that are excreted via the proximal renal tubular secretory system.


Other—Certain drugs tend to produce hyperglycemia and may lead to loss of glycemic control. These drugs include the thiazides and other diuretics, corticosteroids, phenothiazines, thyroid products, estrogens, oral contraceptives, phenytoin, nicotinic acid, sympathomimetics, calcium channel blocking drugs, and isoniazid. When such drugs are administered to a patient receiving Metformin HCl, the patient should be closely observed for loss of blood glucose control. When such drugs are withdrawn from a patient receiving Metformin HCl, the patient should be observed closely for hypoglycemia.


In healthy volunteers, the pharmacokinetics of metformin and propranolol, and metformin and ibuprofen were not affected when co-administered in single-dose interaction studies.


=====Respiratory=====
Metformin is negligibly bound to plasma proteins and is, therefore, less likely to interact with highly protein-bound drugs such as salicylates, sulfonamides, chloramphenicol, and probenecid, as compared to the sulfonylureas, which are extensively bound to serum proteins.
|FDAPregCat=B
|useInPregnancyFDA=Recent information strongly suggests that abnormal blood glucose levels during pregnancy are associated with a higher incidence of congenital abnormalities. Most experts recommend that insulin be used during pregnancy to maintain blood glucose levels as close to normal as possible. Because animal reproduction studies are not always predictive of human response, Metformin HCl should not be used during pregnancy unless clearly needed.


There are no adequate and well-controlled studies in pregnant women with Metformin HCl. Metformin was not teratogenic in rats and rabbits at doses up to 600 mg/kg/day. This represents an exposure of about two and six times the maximum recommended human daily dose of 2000 mg based on body surface area comparisons for rats and rabbits, respectively. Determination of fetal concentrations demonstrated a partial placental barrier to metformin.
|useInPregnancyAUS=* '''Australian Drug Evaluation Committee (ADEC) Pregnancy Category'''


There is no Australian Drug Evaluation Committee (ADEC) guidance on usage of {{PAGENAME}} in women who are pregnant.
|useInLaborDelivery=There is no FDA guidance on use of {{PAGENAME}} during labor and delivery.
|useInNursing=Studies in lactating rats show that metformin is excreted into milk and reaches levels comparable to those in plasma. Similar studies have not been conducted in nursing mothers. Because the potential for hypoglycemia in nursing infants may exist, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother. If Metformin HCl is discontinued, and if diet alone is inadequate for controlling blood glucose, insulin therapy should be considered.
|useInPed=The safety and effectiveness of Metformin HCl for the treatment of type 2 diabetes have been established in pediatric patients ages 10 to 16 years (studies have not been conducted in pediatric patients below the age of 10 years). Use of Metformin HCl in this age group is supported by evidence from adequate and well-controlled studies of Metformin HCl in adults with additional data from a controlled clinical study in pediatric patients ages 10 to 16 years with type 2 diabetes, which demonstrated a similar response in glycemic control to that seen in adults. (See CLINICAL PHARMACOLOGY: Pediatric Clinical Studies.) In this study, adverse effects were similar to those described in adults. (See ADVERSE REACTIONS: Pediatric Patients.) A maximum daily dose of 2000 mg is recommended. (See DOSAGE AND ADMINISTRATION: Recommended Dosing Schedule: Pediatrics.)
|useInGeri=Controlled clinical studies of Metformin HCl did not include sufficient numbers of elderly patients to determine whether they respond differently from younger patients, although other reported clinical experience has not identified differences in responses between the elderly and younger patients. Metformin is known to be substantially excreted by the kidney and because the risk of serious adverse reactions to the drug is greater in patients with impaired renal function, Metformin HCl should only be used in patients with normal renal function (see CONTRAINDICATIONS,WARNINGS, and CLINICAL PHARMACOLOGY: Pharmacokinetics). Because aging is associated with reduced renal function, Metformin HCl should be used with caution as age increases. Care should be taken in dose selection and should be based on careful and regular monitoring of renal function. Generally, elderly patients should not be titrated to the maximum dose of Metformin HCl (see also WARNINGS and DOSAGE AND ADMINISTRATION).
|useInGender=There is no FDA guidance on the use of {{PAGENAME}} with respect to specific gender populations.
|useInRace=There is no FDA guidance on the use of {{PAGENAME}} with respect to specific racial populations.
|useInRenalImpair=There is no FDA guidance on the use of {{PAGENAME}} in patients with renal impairment.
|useInHepaticImpair=There is no FDA guidance on the use of {{PAGENAME}} in patients with hepatic impairment.
|useInReproPotential=There is no FDA guidance on the use of {{PAGENAME}} in women of reproductive potentials and males.
|useInImmunocomp=There is no FDA guidance one the use of {{PAGENAME}} in patients who are immunocompromised.


<!--Administration and Monitoring-->
|administration=There is no fixed dosage regimen for the management of hyperglycemia in patients with type 2 diabetes with Metformin HCl, USP or any other pharmacologic agent. Dosage of Metformin HCl, USP must be individualized on the basis of both effectiveness and tolerance, while not exceeding the maximum recommended daily doses. The maximum recommended daily dose of Metformin HCl, USP is 2550 mg in adults and 2000 mg in pediatric patients (10 to 16 years of age).


=====Skin and Hypersensitivy Reactions=====
Metformin HCl, USP should be given in divided doses with meals. Metformin HCl, USP should be started at a low dose, with gradual dose escalation, both to reduce gastrointestinal side effects and to permit identification of the minimum dose required for adequate glycemic control of the patient.
 
 
 
 
=====Special Senses=====
 
 
 
 
=====Urogenital=====
 
 
 
 
=====Miscellaneous=====
 
 
 
<!--Postmarketing Experience-->
|postmarketing=There is limited information regarding <i>Postmarketing Experience</i> of {{PAGENAME}} in the drug label.
 
=====Body as a Whole=====
 
 
 
=====Cardiovascular=====
 
 
 
=====Digestive=====


During treatment initiation and dose titration (see Recommended Dosing Schedule), fasting plasma glucose should be used to determine the therapeutic response to Metformin HCl, USP and identify the minimum effective dose for the patient. Thereafter, glycosylated hemoglobin should be measured at intervals of approximately three months. The therapeutic goal should be to decrease both fasting plasma glucose and glycosylated hemoglobin levels to normal or near normal by using the lowest effective dose of Metformin HCl, USP, either when used as monotherapy or in combination with sulfonylurea or insulin.


Monitoring of blood glucose and glycosylated hemoglobin will also permit detection of primary failure, i.e., inadequate lowering of blood glucose at the maximum recommended dose of medication, and secondary failure, i.e., loss of an adequate blood glucose lowering response after an initial period of effectiveness.


=====Endocrine=====
Short-term administration of Metformin HCl, USP may be sufficient during periods of transient loss of control in patients usually well-controlled on diet alone.


Recommended Dosing Schedule


Adults - In general, clinically significant responses are not seen at doses below 1500 mg per day. However, a lower recommended starting dose and gradually increased dosage is advised to minimize gastrointestinal symptoms.


=====Hematologic and Lymphatic=====
The usual starting dose of Metformin HCl Tablets, USP is 500 mg twice a day or 850 mg once a day, given with meals. Dosage increases should be made in increments of 500 mg weekly or 850 mg every 2 weeks, up to a total of 2000 mg per day, given in divided doses. Patients can also be titrated from 500 mg twice a day to 850 mg twice a day after 2 weeks. For those patients requiring additional glycemic control, Metformin HCl, USP may be given to a maximum daily dose of 2550 mg per day. Doses above 2000 mg may be better tolerated given three times a day with meals.


If higher doses of metformin are required, Metformin HCl, USP should be used at total daily doses up to 2550 mg administered in divided daily doses, as described above. (See CLINICAL PHARMACOLOGY, Clinical Studies.)


Pediatrics - The usual starting dose of Metformin HCl, USP is 500 mg twice a day, given with meals. Dosage increases should be made in increments of 500 mg weekly up to a maximum of 2000 mg per day, given in divided doses.


=====Metabolic and Nutritional=====
Transfer From Other Antidiabetic Therapy


When transferring patients from standard oral hypoglycemic agents other than chlorpropamide to Metformin HCl, USP, no transition period generally is necessary. When transferring patients from chlorpropamide, care should be exercised during the first two weeks because of the prolonged retention of chlorpropamide in the body, leading to overlapping drug effects and possible hypoglycemia.


Concomitant Metformin HCl, USP and Oral Sulfonylurea Therapy in Adult Patients


=====Musculoskeletal=====
If patients have not responded to four weeks of the maximum dose of Metformin HCl, USP monotherapy, consideration should be given to gradual addition of an oral sulfonylurea while continuing Metformin HCl, USP at the maximum dose, even if prior primary or secondary failure to a sulfonylurea has occurred. Clinical and pharmacokinetic drug-drug interaction data are currently available only for metformin plus glyburide (glibenclamide).


With concomitant Metformin HCl, USP and sulfonylurea therapy, the desired control of blood glucose may be obtained by adjusting the dose of each drug. In a clinical trial of patients with type 2 diabetes and prior failure on glyburide, patients started on Metformin HCl, USP 500 mg and glyburide 20 mg were titrated to 1000/20 mg, 1500/20 mg, 2000/20 mg or 2500/20 mg of Metformin HCl, USP and glyburide, respectively, to reach the goal of glycemic control as measured by FPG, HbA1c and plasma glucose response (see CLINICAL PHARMACOLOGY: Clinical Studies). However, attempts should be made to identify the minimum effective dose of each drug to achieve this goal. With concomitant Metformin HCl, USP and sulfonylurea therapy, the risk of hypoglycemia associated with sulfonylurea therapy continues and may be increased. Appropriate precautions should be taken. (See Package Insert of the respective sulfonylurea.)


If patients have not satisfactorily responded to one to three months of concomitant therapy with the maximum dose of Metformin HCl, USP and the maximum dose of an oral sulfonylurea, consider therapeutic alternatives including switching to insulin with or without Metformin HCl, USP.


=====Neurologic=====
Concomitant Metformin HCl, USP and Insulin Therapy in Adult Patients


The current insulin dose should be continued upon initiation of Metformin HCl, USP therapy. Metformin HCl, USP therapy should be initiated at 500 mg once daily in patients on insulin therapy. For patients not responding adequately, the dose of Metformin HCl, USP should be increased by 500 mg after approximately 1 week and by 500 mg every week thereafter until adequate glycemic control is achieved. The maximum recommended daily dose is 2500 mg for Metformin HCl, USP. It is recommended that the insulin dose be decreased by 10% to 25% when fasting plasma glucose concentrations decrease to less than 120 mg/dL in patients receiving concomitant insulin and Metformin HCl, USP. Further adjustment should be individualized based on glucose-lowering response.


Specific Patient Populations


=====Respiratory=====
Metformin HCl, USP is not recommended for use in pregnancy. Metformin HCl, USP is not recommended in patients below the age of 10 years.


The initial and maintenance dosing of Metformin HCl, USP should be conservative in patients with advanced age, due to the potential for decreased renal function in this population. Any dosage adjustment should be based on a careful assessment of renal function. Generally, elderly, debilitated, and malnourished patients should not be titrated to the maximum dose of Metformin HCl, USP.


 
Monitoring of renal function is necessary to aid in prevention of lactic acidosis, particularly in the elderly. (See WARNINGS.)
=====Skin and Hypersensitivy Reactions=====
 
 
 
=====Special Senses=====
 
 
 
=====Urogenital=====
 
 
 
=====Miscellaneous=====
 
 
 
<!--Drug Interactions-->
|drugInteractions=* Drug
:* Description
 
<!--Use in Specific Populations-->
|useInPregnancyFDA=* '''Pregnancy Category'''
|useInPregnancyAUS=* '''Australian Drug Evaluation Committee (ADEC) Pregnancy Category'''
 
There is no Australian Drug Evaluation Committee (ADEC) guidance on usage of {{PAGENAME}} in women who are pregnant.
|useInLaborDelivery=There is no FDA guidance on use of {{PAGENAME}} during labor and delivery.
|useInNursing=There is no FDA guidance on the use of {{PAGENAME}} with respect to nursing mothers.
|useInPed=There is no FDA guidance on the use of {{PAGENAME}} with respect to pediatric patients.
|useInGeri=There is no FDA guidance on the use of {{PAGENAME}} with respect to geriatric patients.
|useInGender=There is no FDA guidance on the use of {{PAGENAME}} with respect to specific gender populations.
|useInRace=There is no FDA guidance on the use of {{PAGENAME}} with respect to specific racial populations.
|useInRenalImpair=There is no FDA guidance on the use of {{PAGENAME}} in patients with renal impairment.
|useInHepaticImpair=There is no FDA guidance on the use of {{PAGENAME}} in patients with hepatic impairment.
|useInReproPotential=There is no FDA guidance on the use of {{PAGENAME}} in women of reproductive potentials and males.
|useInImmunocomp=There is no FDA guidance one the use of {{PAGENAME}} in patients who are immunocompromised.
 
<!--Administration and Monitoring-->
|administration=* Oral
 
* Intravenous
|monitoring=There is limited information regarding <i>Monitoring</i> of {{PAGENAME}} in the drug label.
|monitoring=There is limited information regarding <i>Monitoring</i> of {{PAGENAME}} in the drug label.


Line 197: Line 184:


<!--IV Compatibility-->
<!--IV Compatibility-->
|IVCompat=There is limited information regarding <i>IV Compatibility</i> of {{PAGENAME}} in the drug label.
|overdose=Overdose of metformin HCl has occurred, including ingestion of amounts greater than 50 grams. Hypoglycemia was reported in approximately 10% of cases, but no causal association with metformin HCl has been established. Lactic acidosis has been reported in approximately 32% of metformin overdose cases (see WARNINGS). Metformin is dialyzable with a clearance of up to 170 mL/min under good hemodynamic conditions. Therefore, hemodialysis may be useful for removal of accumulated drug from patients in whom metformin overdosage is suspected.
 
|drugBox=[[File:Metformin image.png|600px|thumbnail|left]]
<!--Overdosage-->
{{clear}}
|overdose====Acute Overdose===
 
====Signs and Symptoms====
 
* Description
 
====Management====
 
* Description
 
===Chronic Overdose===
 
There is limited information regarding <i>Chronic Overdose</i> of {{PAGENAME}} in the drug label.
 
<!--Pharmacology-->
 
<!--Drug box 2-->
|drugBox=<!--Mechanism of Action-->
|mechAction=Metformin is an antihyperglycemic agent which improves glucose tolerance in patients with type 2 diabetes, lowering both basal and postprandial plasma glucose. Its pharmacologic mechanisms of action are different from other classes of oral antihyperglycemic agents. Metformin decreases hepatic glucose production, decreases intestinal absorption of glucose, and improves insulin sensitivity by increasing peripheral glucose uptake and utilization. Unlike sulfonylureas, metformin does not produce hypoglycemia in either patients with type 2 diabetes or normal subjects (except in special circumstances, see PRECAUTIONS) and does not cause hyperinsulinemia. With metformin therapy, insulin secretion remains unchanged while fasting insulin levels and day-long plasma insulin response may actually decrease.
|mechAction=Metformin is an antihyperglycemic agent which improves glucose tolerance in patients with type 2 diabetes, lowering both basal and postprandial plasma glucose. Its pharmacologic mechanisms of action are different from other classes of oral antihyperglycemic agents. Metformin decreases hepatic glucose production, decreases intestinal absorption of glucose, and improves insulin sensitivity by increasing peripheral glucose uptake and utilization. Unlike sulfonylureas, metformin does not produce hypoglycemia in either patients with type 2 diabetes or normal subjects (except in special circumstances, see PRECAUTIONS) and does not cause hyperinsulinemia. With metformin therapy, insulin secretion remains unchanged while fasting insulin levels and day-long plasma insulin response may actually decrease.
|structure=*  
|structure=*  
Line 256: Line 225:


Limited data from controlled pharmacokinetic studies of Metformin HCl in healthy elderly subjects suggest that total plasma clearance of metformin is decreased, the half-life is prolonged, and Cmax is increased, compared to healthy young subjects. From these data, it appears that the change in metformin pharmacokinetics with aging is primarily accounted for by a change in renal function (see Table 1). Metformin HCl Tablets treatment should not be initiated in patients ≥80 years of age unless measurement of creatinine clearance demonstrates that renal function is not reduced (see WARNINGS and DOSAGE AND ADMINISTRATION).
Limited data from controlled pharmacokinetic studies of Metformin HCl in healthy elderly subjects suggest that total plasma clearance of metformin is decreased, the half-life is prolonged, and Cmax is increased, compared to healthy young subjects. From these data, it appears that the change in metformin pharmacokinetics with aging is primarily accounted for by a change in renal function (see Table 1). Metformin HCl Tablets treatment should not be initiated in patients ≥80 years of age unless measurement of creatinine clearance demonstrates that renal function is not reduced (see WARNINGS and DOSAGE AND ADMINISTRATION).
|nonClinToxic=There is limited information regarding <i>Nonclinical Toxicology</i> of {{PAGENAME}} in the drug label.
|nonClinToxic= Carcinogenesis, Mutagenesis, Impairment of Fertility
 
Long-term carcinogenicity studies have been performed in rats (dosing duration of 104 weeks) and mice (dosing duration of 91 weeks) at doses up to and including 900 mg/kg/day and 1500 mg/kg/day, respectively.
 
These doses are both approximately four times the maximum recommended human daily dose of 2000 mg based on body surface area comparisons. No evidence of carcinogenicity with metformin was found in either male or female mice. Similarly, there was no tumorigenic potential observed with metformin in male rats. There was, however, an increased incidence of benign stromal uterine polyps in female rats treated with 900 mg/kg/day.


<!--Clinical Studies-->
There was no evidence of a mutagenic potential of metformin in the following in vitro tests: Ames test (S. typhimurium), gene mutation test (mouse lymphoma cells), or chromosomal aberrations test (human lymphocytes). Results in the in vivo mouse micronucleus test were also negative.
 
Fertility of male or female rats was unaffected by metformin when administered at doses as high as 600 mg/kg/day, which is approximately three times the maximum recommended human daily dose based on body surface area comparisons.
|clinicalStudies=There is limited information regarding <i>Clinical Studies</i> of {{PAGENAME}} in the drug label.
|clinicalStudies=There is limited information regarding <i>Clinical Studies</i> of {{PAGENAME}} in the drug label.


<!--How Supplied-->
<!--How Supplied-->
|howSupplied=*  
|howSupplied=Metformin HCl Tablets, USP 500 mg are blackberry flavored, white to off-white, round, biconvex, film-coated tablets debossed “IP 218” on obverse and “500” on the reverse.
 
They are available as follows:
 
Bottles of 100:                        NDC 65162-218-10
 
Bottles of 500:                        NDC 65162-218-50
 
Bottles of 1000:          NDC 65162-218-11
 
Metformin HCl Tablets, USP 850 mg are blackberry flavored, white to off-white, round, biconvex, film-coated tablets debossed “IP 219” on obverse and “850” on the reverse.
 
They are available as follows:
 
Bottles of 100:                        NDC 65162-219-10
 
Bottles of 500:                        NDC 65162-219-50
 
Bottles of 1000:          NDC 65162-219-11
 
Metformin HCl Tablets, USP 1000 mg are blackberry flavored, white to off-white, oval, biconvex, bisected, film-coated tablets debossed “IP 220” on obverse and “1000” on the reverse.
 
They are available as follows:
 
Bottles of 100:                        NDC 65162-220-10
 
Bottles of 500:                        NDC 65162-220-50
 
Bottles of 1000:          NDC 65162-220-11
|storage=*Store at 20° to 25° C (68° to 77° F); excursions permitted to 15° to 30° C (59° to 86° F) [See USP Controlled Room Temperature.]
|packLabel=[[File:Metformin pdp.png|600px|thumbnail|left]]
{{clear}}
 
[[File:Metformin label.png|600px|thumbnail|left]]
{{clear}}
|fdaPatientInfo=Patients should be informed of the potential risks and benefits of Metformin HCl and of alternative modes of therapy. They should also be informed about the importance of adherence to dietary instructions, of a regular exercise program, and of regular testing of blood glucose, glycosylated hemoglobin, renal function, and hematologic parameters.
 
The risks of lactic acidosis, its symptoms, and conditions that predispose to its development, as noted in the WARNINGS and PRECAUTIONS sections, should be explained to patients. Patients should be advised to discontinue Metformin HCl immediately and to promptly notify their health practitioner if unexplained hyperventilation, myalgia, malaise, unusual somnolence, or other nonspecific symptoms occur. Once a patient is stabilized on any dose level of Metformin HCl, gastrointestinal symptoms, which are common during initiation of metformin therapy, are unlikely to be drug related. Later occurrence of gastrointestinal symptoms could be due to lactic acidosis or other serious disease.
 
Patients should be counselled against excessive alcohol intake, either acute or chronic, while receiving Metformin HCl.


<!--Patient Counseling Information-->
Metformin HCl alone does not usually cause hypoglycemia, although it may occur when Metformin HCl is used in conjunction with oral sulfonylureas and insulin. When initiating combination therapy, the risks of hypoglycemia, its symptoms and treatment, and conditions that predispose to its development should be explained to patients and responsible family members. (See Patient Information printed below.)
|fdaPatientInfo=There is limited information regarding <i>Patient Counseling Information</i> of {{PAGENAME}} in the drug label.


<!--Precautions with Alcohol-->
[[File:Metformin medication guide.png|600px|thumbnail|left]]
{{clear}}
|alcohol=* Alcohol-{{PAGENAME}} interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.
|alcohol=* Alcohol-{{PAGENAME}} interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.



Revision as of 16:28, 31 October 2014

Metformin
Black Box Warning
Adult Indications & Dosage
Pediatric Indications & Dosage
Contraindications
Warnings & Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Administration & Monitoring
Overdosage
Pharmacology
Clinical Studies
How Supplied
Images
Patient Counseling Information
Precautions with Alcohol
Brand Names
Look-Alike Names

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Deepika Beereddy, MBBS [2]

Disclaimer

WikiDoc MAKES NO GUARANTEE OF VALIDITY. WikiDoc is not a professional health care provider, nor is it a suitable replacement for a licensed healthcare provider. WikiDoc is intended to be an educational tool, not a tool for any form of healthcare delivery. The educational content on WikiDoc drug pages is based upon the FDA package insert, National Library of Medicine content and practice guidelines / consensus statements. WikiDoc does not promote the administration of any medication or device that is not consistent with its labeling. Please read our full disclaimer here.

Black Box Warning

Title
See full prescribing information for complete Boxed Warning.
ConditionName:
  • Content

Overview

Metformin is a hypoglycemic agent that is FDA approved for the treatment of type 2 diabetes mellitus. There is a Black Box Warning for this drug as shown here. Common adverse reactions include cobalamin deficiency, diarrhea, flatulence, indigestion, malabsorption syndrome, nausea, vomiting, asthenia, headache.

Adult Indications and Dosage

FDA-Labeled Indications and Dosage (Adult)

Type 2 diabetes mellitus
  • Dosing Information
  • Dosage

Off-Label Use and Dosage (Adult)

Guideline-Supported Use

There is limited information regarding Off-Label Guideline-Supported Use of Metformin in adult patients.

Non–Guideline-Supported Use

Hyperinsulinar obesity
  • Dosing Information
  • Dosage

Pediatric Indications and Dosage

FDA-Labeled Indications and Dosage (Pediatric)

There is limited information regarding Metformin FDA-Labeled Indications and Dosage (Pediatric) in the drug label.

Off-Label Use and Dosage (Pediatric)

Guideline-Supported Use

There is limited information regarding Off-Label Guideline-Supported Use of Metformin in pediatric patients.

Non–Guideline-Supported Use

There is limited information regarding Off-Label Non–Guideline-Supported Use of Metformin in pediatric patients.

Contraindications

Metformin Hydrochloride (HCl) Tablets, USP is an oral antihyperglycemic drug used in the management of type 2 diabetes. Metformin HCl, USP (N,N-dimethylimidodicarbonimidic diamide hydrochloride) is not chemically or pharmacologically related to any other classes of oral antihyperglycemic agents.

The structural formula is as shown:

17bd7b7d-figure-01 Metformin HCl, USP is a white to off-white crystalline compound with a molecular formula of C4H11N5 • HCl and a molecular weight of 165.62. Metformin HCl, USP is freely soluble in water and is practically insoluble in acetone, ether, and chloroform. The pKa of metformin is 12.4. The pH of a 1% aqueous solution of metformin HCl, USP is 6.68.

Metformin HCl Tablets, USP, contains 500 mg, 850 mg, or 1000 mg of metformin HCl, USP. Each tablet contains the inactive ingredients povidone, microcrystalline cellulose, croscarmellose sodium and magnesium stearate. In addition, the coating for the 500 mg, 850 mg and 1000 mg tablets contain polyethylene glycol, polyvinyl alcohol, titanium dioxide, talc, gum acacia, maltodextrin, propylene glycol and natural flavors.

Warnings

Title
See full prescribing information for complete Boxed Warning.
ConditionName:
  • Content

PRECAUTIONS

General

  • Macrovascular Outcomes—There have been no clinical studies establishing conclusive evidence of macrovascular risk reduction with Metformin HCl or any other anti-diabetic drug.
  • Monitoring of renal function—Metformin is known to be substantially excreted by the kidney, and the risk of metformin accumulation and lactic acidosis increases with the degree of impairment of renal function. Thus, patients with serum creatinine levels above the upper limit of normal for their age should not receive Metformin HCl. In patients with advanced age, Metformin HCl should be carefully titrated to establish the minimum dose for adequate glycemic effect, because aging is associated with reduced renal function. In elderly patients, particularly those ≥80 years of age, renal function should be monitored regularly and, generally, Metformin HCl should not be titrated to the maximum dose (see WARNINGS and DOSAGE AND ADMINISTRATION).
  • Before initiation of Metformin HCl therapy and at least annually thereafter, renal function should be assessed and verified as normal. In patients in whom development of renal dysfunction is anticipated, renal function should be assessed more frequently and Metformin HCl discontinued if evidence of renal impairment is present.
  • Use of concomitant medications that may affect renal function or metformin disposition—Concomitant medication(s) that may affect renal function or result in significant hemodynamic change or may interfere with the disposition of metformin, such as cationic drugs that are eliminated by renal tubular secretion (see PRECAUTIONS: Drug Interactions), should be used with caution.
  • Radiologic studies involving the use of intravascular iodinated contrast materials (for example, intravenous urogram, intravenous cholangiography, angiography, and computed tomography (CT) scans with intravascular contrast materials)—Intravascular contrast studies with iodinated materials can lead to acute alteration of renal function and have been associated with lactic acidosis in patients receiving metformin (see CONTRAINDICATIONS). Therefore, in patients in whom any such study is planned, Metformin HCl should be temporarily discontinued at the time of or prior to the procedure, and withheld for 48 hours subsequent to the procedure and reinstituted only after renal function has been re-evaluated and found to be normal.
  • Hypoxic states—Cardiovascular collapse (shock) from whatever cause, acute congestive heart failure, acute myocardial infarction and other conditions characterized by hypoxemia have been associated with lactic acidosis and may also cause prerenal azotemia. When such events occur in patients on Metformin HCl therapy, the drug should be promptly discontinued.
  • Surgical procedures— Metformin HCl therapy should be temporarily suspended for any surgical procedure (except minor procedures not associated with restricted intake of food and fluids) and should not be restarted until the patient's oral intake has resumed and renal function has been evaluated as normal.
  • Alcohol intake—Alcohol is known to potentiate the effect of metformin on lactate metabolism. Patients, therefore, should be warned against excessive alcohol intake, acute or chronic, while receiving Metformin HCl.
  • Impaired hepatic function—Since impaired hepatic function has been associated with some cases of lactic acidosis, Metformin HCl should generally be avoided in patients with clinical or laboratory evidence of hepatic disease.
  • Vitamin B12 levels—In controlled clinical trials of Metformin HCl of 29 weeks duration, a decrease to subnormal levels of previously normal serum vitamin B12 levels, without clinical manifestations, was observed in approximately 7% of patients. Such decrease, possibly due to interference with B12 absorption from the B12-intrinsic factor complex, is, however, very rarely associated with anemia and appears to be rapidly reversible with discontinuation of Metformin HCl or Vitamin B12 supplementation. Measurement of hematologic parameters on an annual basis is advised in patients on Metformin HCl and any apparent abnormalities should be appropriately investigated and managed (see PRECAUTIONS: Laboratory Tests).
  • Certain individuals (those with inadequate Vitamin B12 or calcium intake or absorption) appear to be predisposed to developing subnormal Vitamin B12 levels. In these patients, routine serum Vitamin B12 measurements at two- to three-year intervals may be useful.
  • Change in clinical status of patients with previously controlled type 2 diabetes—A patient with type 2 diabetes previously well controlled on Metformin HCl who develops laboratory abnormalities or clinical illness (especially vague and poorly defined illness) should be evaluated promptly for evidence of ketoacidosis or lactic acidosis. Evaluation should include serum electrolytes and ketones, blood glucose and, if indicated, blood pH, lactate, pyruvate, and metformin levels. If acidosis of either form occurs, Metformin HCl must be stopped immediately and other appropriate corrective measures initiated (see also WARNINGS).
  • Hypoglycemia—Hypoglycemia does not occur in patients receiving Metformin HCl alone under usual circumstances of use, but could occur when caloric intake is deficient, when strenuous exercise is not compensated by caloric supplementation, or during concomitant use with other glucose-lowering agents (such as sulfonylureas and insulin) or ethanol.
  • Elderly, debilitated, or malnourished patients, and those with adrenal or pituitary insufficiency or alcohol intoxication are particularly susceptible to hypoglycemic effects. Hypoglycemia may be difficult to recognize in the elderly, and in people who are taking beta-adrenergic blocking drugs.
  • Loss of control of blood glucose—When a patient stabilized on any diabetic regimen is exposed to stress such as fever, trauma, infection, or surgery, a temporary loss of glycemic control may occur. At such times, it may be necessary to withhold Metformin HCl and temporarily administer insulin. Metformin HCl may be reinstituted after the acute episode is resolved.

The effectiveness of oral antidiabetic drugs in lowering blood glucose to a targeted level decreases in many patients over a period of time. This phenomenon, which may be due to progression of the underlying disease or to diminished responsiveness to the drug, is known as secondary failure, to distinguish it from primary failure in which the drug is ineffective during initial therapy. Should secondary failure occur with either Metformin HCl or sulfonylurea monotherapy, combined therapy with Metformin HCl and sulfonylurea may result in a response. Should secondary failure occur with combined Metformin HCl /sulfonylurea therapy, it may be necessary to consider therapeutic alternatives including initiation of insulin therapy.

Laboratory Tests

Response to all diabetic therapies should be monitored by periodic measurements of fasting blood glucose and glycosylated hemoglobin levels, with a goal of decreasing these levels toward the normal range. During initial dose titration, fasting glucose can be used to determine the therapeutic response. Thereafter, both glucose and glycosylated hemoglobin should be monitored. Measurements of glycosylated hemoglobin may be especially useful for evaluating long-term control (see also DOSAGE AND ADMINISTRATION).

Initial and periodic monitoring of hematologic parameters (e.g., hemoglobin/hematocrit and red blood cell indices) and renal function (serum creatinine) should be performed, at least on an annual basis. While megaloblastic anemia has rarely been seen with Metformin HCl therapy, if this is suspected, Vitamin B12 deficiency should be excluded.

Adverse Reactions

Clinical Trials Experience

n a US double-blind clinical study of Metformin HCl in patients with type 2 diabetes, a total of 141 patients received Metformin HCl therapy (up to 2550 mg per day) and 145 patients received placebo. Adverse reactions reported in greater than 5% of the Metformin HCl patients, and that were more common in Metformin HCl - than placebo-treated patients, are listed in Table 9.

  • Reactions that were more common in Metformin HCl -than placebo-treated patients.

Diarrhea led to discontinuation of study medication in 6% of patients treated with Metformin HCl. Additionally, the following adverse reactions were reported in ≥ 1.0 to ≤ 5.0% of Metformin HCl patients and were more commonly reported with Metformin HCl than placebo: abnormal stools, hypoglycemia, myalgia, lightheaded, dyspnea, nail disorder, rash, sweating increased, taste disorder, chest discomfort, chills, flu syndrome, flushing, palpitation.

Pediatric Patients

In clinical trials with Metformin HCl in pediatric patients with type 2 diabetes, the profile of adverse reactions was similar to that observed in adults.

Postmarketing Experience

There is limited information regarding Metformin Postmarketing Experience in the drug label.

Drug Interactions

Drug Interactions (Clinical Evaluation of Drug Interactions Conducted with Metformin HCl)

Glyburide—In a single-dose interaction study in type 2 diabetes patients, co-administration of metformin and glyburide did not result in any changes in either metformin pharmacokinetics or pharmacodynamics. Decreases in glyburide AUC and Cmax were observed, but were highly variable. The single-dose nature of this study and the lack of correlation between glyburide blood levels and pharmacodynamic effects, makes the clinical significance of this interaction uncertain (see DOSAGE AND ADMINISTRATION: Concomitant Metformin HCl and Oral Sulfonylurea Therapy in Adult Patients).

Furosemide—A single-dose, metformin-furosemide drug interaction study in healthy subjects demonstrated that pharmacokinetic parameters of both compounds were affected by co-administration. Furosemide increased the metformin plasma and blood Cmax by 22% and blood AUC by 15%, without any significant change in metformin renal clearance. When administered with metformin, the Cmax and AUC of furosemide were 31% and 12% smaller, respectively, than when administered alone, and the terminal half-life was decreased by 32%, without any significant change in furosemide renal clearance. No information is available about the interaction of metformin and furosemide when co-administered chronically.

Nifedipine—A single-dose, metformin-nifedipine drug interaction study in normal healthy volunteers demonstrated that co-administration of nifedipine increased plasma metformin Cmax and AUC by 20% and 9%, respectively, and increased the amount excreted in the urine. Tmax and half-life were unaffected. Nifedipine appears to enhance the absorption of metformin. Metformin had minimal effects on nifedipine.

Cationic drugs—Cationic drugs (e.g., amiloride, digoxin, morphine, procainamide, quinidine, quinine, ranitidine, triamterene, trimethoprim, or vancomycin) that are eliminated by renal tubular secretion theoretically have the potential for interaction with metformin by competing for common renal tubular transport systems. Such interaction between metformin and oral cimetidine has been observed in normal healthy volunteers in both single- and multiple-dose, metformin-cimetidine drug interaction studies, with a 60% increase in peak metformin plasma and whole blood concentrations and a 40% increase in plasma and whole blood metformin AUC. There was no change in elimination half-life in the single-dose study. Metformin had no effect on cimetidine pharmacokinetics. Although such interactions remain theoretical (except for cimetidine), careful patient monitoring and dose adjustment of Metformin HCl and/or the interfering drug is recommended in patients who are taking cationic medications that are excreted via the proximal renal tubular secretory system.

Other—Certain drugs tend to produce hyperglycemia and may lead to loss of glycemic control. These drugs include the thiazides and other diuretics, corticosteroids, phenothiazines, thyroid products, estrogens, oral contraceptives, phenytoin, nicotinic acid, sympathomimetics, calcium channel blocking drugs, and isoniazid. When such drugs are administered to a patient receiving Metformin HCl, the patient should be closely observed for loss of blood glucose control. When such drugs are withdrawn from a patient receiving Metformin HCl, the patient should be observed closely for hypoglycemia.

In healthy volunteers, the pharmacokinetics of metformin and propranolol, and metformin and ibuprofen were not affected when co-administered in single-dose interaction studies.

Metformin is negligibly bound to plasma proteins and is, therefore, less likely to interact with highly protein-bound drugs such as salicylates, sulfonamides, chloramphenicol, and probenecid, as compared to the sulfonylureas, which are extensively bound to serum proteins.

Use in Specific Populations

Pregnancy

Pregnancy Category (FDA): B Recent information strongly suggests that abnormal blood glucose levels during pregnancy are associated with a higher incidence of congenital abnormalities. Most experts recommend that insulin be used during pregnancy to maintain blood glucose levels as close to normal as possible. Because animal reproduction studies are not always predictive of human response, Metformin HCl should not be used during pregnancy unless clearly needed.

There are no adequate and well-controlled studies in pregnant women with Metformin HCl. Metformin was not teratogenic in rats and rabbits at doses up to 600 mg/kg/day. This represents an exposure of about two and six times the maximum recommended human daily dose of 2000 mg based on body surface area comparisons for rats and rabbits, respectively. Determination of fetal concentrations demonstrated a partial placental barrier to metformin.
Pregnancy Category (AUS):

  • Australian Drug Evaluation Committee (ADEC) Pregnancy Category

There is no Australian Drug Evaluation Committee (ADEC) guidance on usage of Metformin in women who are pregnant.

Labor and Delivery

There is no FDA guidance on use of Metformin during labor and delivery.

Nursing Mothers

Studies in lactating rats show that metformin is excreted into milk and reaches levels comparable to those in plasma. Similar studies have not been conducted in nursing mothers. Because the potential for hypoglycemia in nursing infants may exist, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother. If Metformin HCl is discontinued, and if diet alone is inadequate for controlling blood glucose, insulin therapy should be considered.

Pediatric Use

The safety and effectiveness of Metformin HCl for the treatment of type 2 diabetes have been established in pediatric patients ages 10 to 16 years (studies have not been conducted in pediatric patients below the age of 10 years). Use of Metformin HCl in this age group is supported by evidence from adequate and well-controlled studies of Metformin HCl in adults with additional data from a controlled clinical study in pediatric patients ages 10 to 16 years with type 2 diabetes, which demonstrated a similar response in glycemic control to that seen in adults. (See CLINICAL PHARMACOLOGY: Pediatric Clinical Studies.) In this study, adverse effects were similar to those described in adults. (See ADVERSE REACTIONS: Pediatric Patients.) A maximum daily dose of 2000 mg is recommended. (See DOSAGE AND ADMINISTRATION: Recommended Dosing Schedule: Pediatrics.)

Geriatic Use

Controlled clinical studies of Metformin HCl did not include sufficient numbers of elderly patients to determine whether they respond differently from younger patients, although other reported clinical experience has not identified differences in responses between the elderly and younger patients. Metformin is known to be substantially excreted by the kidney and because the risk of serious adverse reactions to the drug is greater in patients with impaired renal function, Metformin HCl should only be used in patients with normal renal function (see CONTRAINDICATIONS,WARNINGS, and CLINICAL PHARMACOLOGY: Pharmacokinetics). Because aging is associated with reduced renal function, Metformin HCl should be used with caution as age increases. Care should be taken in dose selection and should be based on careful and regular monitoring of renal function. Generally, elderly patients should not be titrated to the maximum dose of Metformin HCl (see also WARNINGS and DOSAGE AND ADMINISTRATION).

Gender

There is no FDA guidance on the use of Metformin with respect to specific gender populations.

Race

There is no FDA guidance on the use of Metformin with respect to specific racial populations.

Renal Impairment

There is no FDA guidance on the use of Metformin in patients with renal impairment.

Hepatic Impairment

There is no FDA guidance on the use of Metformin in patients with hepatic impairment.

Females of Reproductive Potential and Males

There is no FDA guidance on the use of Metformin in women of reproductive potentials and males.

Immunocompromised Patients

There is no FDA guidance one the use of Metformin in patients who are immunocompromised.

Administration and Monitoring

Administration

There is no fixed dosage regimen for the management of hyperglycemia in patients with type 2 diabetes with Metformin HCl, USP or any other pharmacologic agent. Dosage of Metformin HCl, USP must be individualized on the basis of both effectiveness and tolerance, while not exceeding the maximum recommended daily doses. The maximum recommended daily dose of Metformin HCl, USP is 2550 mg in adults and 2000 mg in pediatric patients (10 to 16 years of age).

Metformin HCl, USP should be given in divided doses with meals. Metformin HCl, USP should be started at a low dose, with gradual dose escalation, both to reduce gastrointestinal side effects and to permit identification of the minimum dose required for adequate glycemic control of the patient.

During treatment initiation and dose titration (see Recommended Dosing Schedule), fasting plasma glucose should be used to determine the therapeutic response to Metformin HCl, USP and identify the minimum effective dose for the patient. Thereafter, glycosylated hemoglobin should be measured at intervals of approximately three months. The therapeutic goal should be to decrease both fasting plasma glucose and glycosylated hemoglobin levels to normal or near normal by using the lowest effective dose of Metformin HCl, USP, either when used as monotherapy or in combination with sulfonylurea or insulin.

Monitoring of blood glucose and glycosylated hemoglobin will also permit detection of primary failure, i.e., inadequate lowering of blood glucose at the maximum recommended dose of medication, and secondary failure, i.e., loss of an adequate blood glucose lowering response after an initial period of effectiveness.

Short-term administration of Metformin HCl, USP may be sufficient during periods of transient loss of control in patients usually well-controlled on diet alone.

Recommended Dosing Schedule

Adults - In general, clinically significant responses are not seen at doses below 1500 mg per day. However, a lower recommended starting dose and gradually increased dosage is advised to minimize gastrointestinal symptoms.

The usual starting dose of Metformin HCl Tablets, USP is 500 mg twice a day or 850 mg once a day, given with meals. Dosage increases should be made in increments of 500 mg weekly or 850 mg every 2 weeks, up to a total of 2000 mg per day, given in divided doses. Patients can also be titrated from 500 mg twice a day to 850 mg twice a day after 2 weeks. For those patients requiring additional glycemic control, Metformin HCl, USP may be given to a maximum daily dose of 2550 mg per day. Doses above 2000 mg may be better tolerated given three times a day with meals.

If higher doses of metformin are required, Metformin HCl, USP should be used at total daily doses up to 2550 mg administered in divided daily doses, as described above. (See CLINICAL PHARMACOLOGY, Clinical Studies.)

Pediatrics - The usual starting dose of Metformin HCl, USP is 500 mg twice a day, given with meals. Dosage increases should be made in increments of 500 mg weekly up to a maximum of 2000 mg per day, given in divided doses.

Transfer From Other Antidiabetic Therapy

When transferring patients from standard oral hypoglycemic agents other than chlorpropamide to Metformin HCl, USP, no transition period generally is necessary. When transferring patients from chlorpropamide, care should be exercised during the first two weeks because of the prolonged retention of chlorpropamide in the body, leading to overlapping drug effects and possible hypoglycemia.

Concomitant Metformin HCl, USP and Oral Sulfonylurea Therapy in Adult Patients

If patients have not responded to four weeks of the maximum dose of Metformin HCl, USP monotherapy, consideration should be given to gradual addition of an oral sulfonylurea while continuing Metformin HCl, USP at the maximum dose, even if prior primary or secondary failure to a sulfonylurea has occurred. Clinical and pharmacokinetic drug-drug interaction data are currently available only for metformin plus glyburide (glibenclamide).

With concomitant Metformin HCl, USP and sulfonylurea therapy, the desired control of blood glucose may be obtained by adjusting the dose of each drug. In a clinical trial of patients with type 2 diabetes and prior failure on glyburide, patients started on Metformin HCl, USP 500 mg and glyburide 20 mg were titrated to 1000/20 mg, 1500/20 mg, 2000/20 mg or 2500/20 mg of Metformin HCl, USP and glyburide, respectively, to reach the goal of glycemic control as measured by FPG, HbA1c and plasma glucose response (see CLINICAL PHARMACOLOGY: Clinical Studies). However, attempts should be made to identify the minimum effective dose of each drug to achieve this goal. With concomitant Metformin HCl, USP and sulfonylurea therapy, the risk of hypoglycemia associated with sulfonylurea therapy continues and may be increased. Appropriate precautions should be taken. (See Package Insert of the respective sulfonylurea.)

If patients have not satisfactorily responded to one to three months of concomitant therapy with the maximum dose of Metformin HCl, USP and the maximum dose of an oral sulfonylurea, consider therapeutic alternatives including switching to insulin with or without Metformin HCl, USP.

Concomitant Metformin HCl, USP and Insulin Therapy in Adult Patients

The current insulin dose should be continued upon initiation of Metformin HCl, USP therapy. Metformin HCl, USP therapy should be initiated at 500 mg once daily in patients on insulin therapy. For patients not responding adequately, the dose of Metformin HCl, USP should be increased by 500 mg after approximately 1 week and by 500 mg every week thereafter until adequate glycemic control is achieved. The maximum recommended daily dose is 2500 mg for Metformin HCl, USP. It is recommended that the insulin dose be decreased by 10% to 25% when fasting plasma glucose concentrations decrease to less than 120 mg/dL in patients receiving concomitant insulin and Metformin HCl, USP. Further adjustment should be individualized based on glucose-lowering response.

Specific Patient Populations

Metformin HCl, USP is not recommended for use in pregnancy. Metformin HCl, USP is not recommended in patients below the age of 10 years.

The initial and maintenance dosing of Metformin HCl, USP should be conservative in patients with advanced age, due to the potential for decreased renal function in this population. Any dosage adjustment should be based on a careful assessment of renal function. Generally, elderly, debilitated, and malnourished patients should not be titrated to the maximum dose of Metformin HCl, USP.

Monitoring of renal function is necessary to aid in prevention of lactic acidosis, particularly in the elderly. (See WARNINGS.)

Monitoring

There is limited information regarding Monitoring of Metformin in the drug label.

  • Description

IV Compatibility

There is limited information regarding the compatibility of Metformin and IV administrations.

Overdosage

Overdose of metformin HCl has occurred, including ingestion of amounts greater than 50 grams. Hypoglycemia was reported in approximately 10% of cases, but no causal association with metformin HCl has been established. Lactic acidosis has been reported in approximately 32% of metformin overdose cases (see WARNINGS). Metformin is dialyzable with a clearance of up to 170 mL/min under good hemodynamic conditions. Therefore, hemodialysis may be useful for removal of accumulated drug from patients in whom metformin overdosage is suspected.

Pharmacology

Mechanism of Action

Metformin is an antihyperglycemic agent which improves glucose tolerance in patients with type 2 diabetes, lowering both basal and postprandial plasma glucose. Its pharmacologic mechanisms of action are different from other classes of oral antihyperglycemic agents. Metformin decreases hepatic glucose production, decreases intestinal absorption of glucose, and improves insulin sensitivity by increasing peripheral glucose uptake and utilization. Unlike sulfonylureas, metformin does not produce hypoglycemia in either patients with type 2 diabetes or normal subjects (except in special circumstances, see PRECAUTIONS) and does not cause hyperinsulinemia. With metformin therapy, insulin secretion remains unchanged while fasting insulin levels and day-long plasma insulin response may actually decrease.

Structure

File:Metformin01.png
This image is provided by the National Library of Medicine.

Pharmacodynamics

There is limited information regarding Pharmacodynamics of Metformin in the drug label.

Pharmacokinetics

Absorption and Bioavailability

The absolute bioavailability of a Metformin HCl 500 mg tablet given under fasting conditions is approximately 50% to 60%. Studies using single oral doses of Metformin HCl 500 mg to 1500 mg, and 850 mg to 2550 mg, indicate that there is a lack of dose proportionality with increasing doses, which is due to decreased absorption rather than an alteration in elimination. Food decreases the extent of and slightly delays the absorption of metformin, as shown by approximately a 40% lower mean peak plasma concentration (Cmax), a 25% lower area under the plasma concentration versus time curve (AUC), and a 35 minute prolongation of time to peak plasma concentration (Tmax) following administration of a single 850 mg tablet of metformin with food, compared to the same tablet strength administered fasting. The clinical relevance of these decreases is unknown.

Distribution

The apparent volume of distribution (V/F) of metformin following single oral doses of Metformin HCl 850 mg averaged 654 ± 358 L. Metformin is negligibly bound to plasma proteins, in contrast to sulfonylureas, which are more than 90% protein bound. Metformin partitions into erythrocytes, most likely as a function of time. At usual clinical doses and dosing schedules of Metformin HCl, steady-state plasma concentrations of metformin are reached within 24 to 48 hours and are generally <1 mcg/mL. During controlled clinical trials of Metformin HCl, maximum metformin plasma levels did not exceed 5 mcg/mL, even at maximum doses.

Metabolism and Elimination

Intravenous single-dose studies in normal subjects demonstrate that metformin is excreted unchanged in the urine and does not undergo hepatic metabolism (no metabolites have been identified in humans) nor biliary excretion. Renal clearance (see Table 1) is approximately 3.5 times greater than creatinine clearance, which indicates that tubular secretion is the major route of metformin elimination. Following oral administration, approximately 90% of the absorbed drug is eliminated via the renal route within the first 24 hours, with a plasma elimination half-life of approximately 6.2 hours. In blood, the elimination half-life is approximately 17.6 hours, suggesting that the erythrocyte mass may be a compartment of distribution.

Special Populations

Patients with Type 2 Diabetes

In the presence of normal renal function, there are no differences between single- or multiple-dose pharmacokinetics of metformin between patients with type 2 diabetes and normal subjects (see Table 1), nor is there any accumulation of metformin in either group at usual clinical doses.

Renal Insufficiency

In patients with decreased renal function (based on measured creatinine clearance), the plasma and blood half-life of metformin is prolonged and the renal clearance is decreased in proportion to the decrease in creatinine clearance (see Table 1; also see WARNINGS).

Hepatic Insufficiency

No pharmacokinetic studies of metformin have been conducted in patients with hepatic insufficiency.

Geriatrics

Limited data from controlled pharmacokinetic studies of Metformin HCl in healthy elderly subjects suggest that total plasma clearance of metformin is decreased, the half-life is prolonged, and Cmax is increased, compared to healthy young subjects. From these data, it appears that the change in metformin pharmacokinetics with aging is primarily accounted for by a change in renal function (see Table 1). Metformin HCl Tablets treatment should not be initiated in patients ≥80 years of age unless measurement of creatinine clearance demonstrates that renal function is not reduced (see WARNINGS and DOSAGE AND ADMINISTRATION).

Nonclinical Toxicology

Carcinogenesis, Mutagenesis, Impairment of Fertility

Long-term carcinogenicity studies have been performed in rats (dosing duration of 104 weeks) and mice (dosing duration of 91 weeks) at doses up to and including 900 mg/kg/day and 1500 mg/kg/day, respectively.

These doses are both approximately four times the maximum recommended human daily dose of 2000 mg based on body surface area comparisons. No evidence of carcinogenicity with metformin was found in either male or female mice. Similarly, there was no tumorigenic potential observed with metformin in male rats. There was, however, an increased incidence of benign stromal uterine polyps in female rats treated with 900 mg/kg/day.

There was no evidence of a mutagenic potential of metformin in the following in vitro tests: Ames test (S. typhimurium), gene mutation test (mouse lymphoma cells), or chromosomal aberrations test (human lymphocytes). Results in the in vivo mouse micronucleus test were also negative.

Fertility of male or female rats was unaffected by metformin when administered at doses as high as 600 mg/kg/day, which is approximately three times the maximum recommended human daily dose based on body surface area comparisons.

Clinical Studies

There is limited information regarding Clinical Studies of Metformin in the drug label.

How Supplied

Metformin HCl Tablets, USP 500 mg are blackberry flavored, white to off-white, round, biconvex, film-coated tablets debossed “IP 218” on obverse and “500” on the reverse.

They are available as follows:

Bottles of 100: NDC 65162-218-10

Bottles of 500: NDC 65162-218-50

Bottles of 1000: NDC 65162-218-11

Metformin HCl Tablets, USP 850 mg are blackberry flavored, white to off-white, round, biconvex, film-coated tablets debossed “IP 219” on obverse and “850” on the reverse.

They are available as follows:

Bottles of 100: NDC 65162-219-10

Bottles of 500: NDC 65162-219-50

Bottles of 1000: NDC 65162-219-11

Metformin HCl Tablets, USP 1000 mg are blackberry flavored, white to off-white, oval, biconvex, bisected, film-coated tablets debossed “IP 220” on obverse and “1000” on the reverse.

They are available as follows:

Bottles of 100: NDC 65162-220-10

Bottles of 500: NDC 65162-220-50

Bottles of 1000: NDC 65162-220-11

Storage

  • Store at 20° to 25° C (68° to 77° F); excursions permitted to 15° to 30° C (59° to 86° F) [See USP Controlled Room Temperature.]

Images

Drug Images

{{#ask: Page Name::Metformin |?Pill Name |?Drug Name |?Pill Ingred |?Pill Imprint |?Pill Dosage |?Pill Color |?Pill Shape |?Pill Size (mm) |?Pill Scoring |?NDC |?Drug Author |format=template |template=DrugPageImages |mainlabel=- |sort=Pill Name }}

Package and Label Display Panel

{{#ask: Label Page::Metformin |?Label Name |format=template |template=DrugLabelImages |mainlabel=- |sort=Label Page }}

Patient Counseling Information

Patients should be informed of the potential risks and benefits of Metformin HCl and of alternative modes of therapy. They should also be informed about the importance of adherence to dietary instructions, of a regular exercise program, and of regular testing of blood glucose, glycosylated hemoglobin, renal function, and hematologic parameters.

The risks of lactic acidosis, its symptoms, and conditions that predispose to its development, as noted in the WARNINGS and PRECAUTIONS sections, should be explained to patients. Patients should be advised to discontinue Metformin HCl immediately and to promptly notify their health practitioner if unexplained hyperventilation, myalgia, malaise, unusual somnolence, or other nonspecific symptoms occur. Once a patient is stabilized on any dose level of Metformin HCl, gastrointestinal symptoms, which are common during initiation of metformin therapy, are unlikely to be drug related. Later occurrence of gastrointestinal symptoms could be due to lactic acidosis or other serious disease.

Patients should be counselled against excessive alcohol intake, either acute or chronic, while receiving Metformin HCl.

Metformin HCl alone does not usually cause hypoglycemia, although it may occur when Metformin HCl is used in conjunction with oral sulfonylureas and insulin. When initiating combination therapy, the risks of hypoglycemia, its symptoms and treatment, and conditions that predispose to its development should be explained to patients and responsible family members. (See Patient Information printed below.)

Precautions with Alcohol

  • Alcohol-Metformin interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.

Brand Names

Fortamet, Glucophage, Glucophage XR, Riomet, Glumetza.

Look-Alike Drug Names

Drug Shortage Status

Price

References

The contents of this FDA label are provided by the National Library of Medicine.

  1. "http://www.ismp.org". External link in |title= (help)

{{#subobject:

 |Page Name=Metformin
 |Pill Name=No image.jpg
 |Drug Name=
 |Pill Ingred=|+sep=;
 |Pill Imprint=
 |Pill Dosage={{{dosageValue}}} {{{dosageUnit}}}
 |Pill Color=|+sep=;
 |Pill Shape=
 |Pill Size (mm)=
 |Pill Scoring=
 |Pill Image=
 |Drug Author=
 |NDC=

}}

{{#subobject:

 |Label Page=Metformin
 |Label Name=Metformin11.png

}}

{{#subobject:

 |Label Page=Metformin
 |Label Name=Metformin11.png

}}