Topiramate: Difference between revisions
No edit summary |
No edit summary |
||
Line 463: | Line 463: | ||
|useInGender= | |useInGender= | ||
*Evaluation of effectiveness and safety of topiramate in clinical trials has shown no gender-related effects. | |||
|useInRace= | |useInRace= | ||
*Evaluation of effectiveness and safety of topiramate in clinical trials has shown no race-related effects. | |||
|useInRenalImpair= | |useInRenalImpair= | ||
*The clearance of topiramate was reduced by 42% in moderately renally impaired (creatinine clearance 30 to 69 mL/min/1.73m2) and by 54% in severely renally impaired subjects (creatinine clearance less than 30 mL/min/1.73m2) compared to normal renal function subjects (creatinine clearance greater than 70 mL/min/1.73m2). One-half the usual starting and maintenance dose is recommended in patients with moderate or severe renal impairment [see Dosage and Administration (2.3) and Clinical Pharmacology (12.3)]. | |||
|useInHepaticImpair= | |useInHepaticImpair= | ||
Line 475: | Line 478: | ||
|useInReproPotential= | |useInReproPotential= | ||
*Data from pregnancy registries indicate that infants exposed to topiramate in utero have an increased risk for cleft lip and/or cleft palate (oral clefts) [see Warnings and Precautions (5.7) and Use in Specific Populations (8.1)]. Consider the benefits and risks of topiramate when prescribing this drug to women of childbearing potential, particularly when topiramate is considered for a condition not usually associated with permanent injury or death. Because of the risk of oral clefts to the fetus, which occur in the first trimester of pregnancy before many women know they are pregnant, all women of childbearing potential should be apprised of the potential hazard to the fetus from exposure to topiramate. If the decision is made to use topiramate, women who are not planning a pregnancy should use effective contraception [see Drug Interactions (7.1)]. Women who are planning a pregnancy should be counseled regarding the relative risks and benefits of topiramate use during pregnancy, and alternative therapeutic options should be considered for these patients. | |||
|useInImmunocomp= | |useInImmunocomp= | ||
Line 485: | Line 489: | ||
* Oral | * Oral | ||
|monitoring= | |monitoring= | ||
There is limited information regarding <i>Monitoring</i> of {{PAGENAME}} in the drug label. | There is limited information regarding <i>Monitoring</i> of {{PAGENAME}} in the drug label. | ||
<!--IV Compatibility--> | <!--IV Compatibility--> | ||
Line 508: | Line 508: | ||
====Signs and Symptoms==== | ====Signs and Symptoms==== | ||
* | *Overdoses of topiramate resulted in signs and symptoms which included convulsions, drowsiness, speech disturbance, blurred vision, diplopia, mentation impaired, lethargy, abnormal coordination, stupor, hypotension, abdominal pain, agitation, dizziness and depression. The clinical consequences were not severe in most cases, but deaths have been reported after polydrug overdoses involving topiramate. | ||
*Topiramate overdose has resulted in severe metabolic acidosis [see Warnings and Precautions (5.4)]. | |||
*A patient who ingested a dose between 96 g and 110 g of topiramate was admitted to hospital with coma lasting 20 to 24 hours followed by full recovery after 3 to 4 days. | |||
====Management==== | ====Management==== | ||
* | *Similar signs, symptoms, and clinical consequences are expected to occur with overdosage of QUDEXY XR. Therefore, in acute QUDEXY XR overdose, if the ingestion is recent, the stomach should be emptied immediately by lavage or by induction of emesis. Activated charcoal has been shown to adsorb topiramate in vitro. Treatment should be appropriately supportive. Hemodialysis is an effective means of removing topiramate from the body. | ||
===Chronic Overdose=== | ===Chronic Overdose=== | ||
Line 530: | Line 534: | ||
|mechAction= | |mechAction= | ||
* | * The precise mechanisms by which topiramate exerts its anticonvulsant effects are unknown; however, preclinical studies have revealed four properties that may contribute to topiramate's efficacy for epilepsy. Electrophysiological and biochemical evidence suggests that topiramate, at pharmacologically relevant concentrations, blocks voltage-dependent sodium channels, augments the activity of the neurotransmitter gamma-aminobutyrate at some subtypes of the GABA-A receptor, antagonizes the AMPA/kainate subtype of the glutamate receptor, and inhibits the carbonic anhydrase enzyme, particularly isozymes II and IV. | ||
<!--Structure--> | <!--Structure--> | ||
Line 536: | Line 540: | ||
|structure= | |structure= | ||
* | * Topiramate, USP, is a sulfamate-substituted monosaccharide. QUDEXY XR (topiramate) extended-release capsules are available as 25 mg, 50 mg, 100 mg, 150 mg, and 200 mg capsules for oral administration as whole capsules or opened and sprinkled onto a spoonful of soft food. | ||
*Topiramate is a white to off-white powder. Topiramate is freely soluble in polar organic solvents such as acetonitrile and acetone; and very slightly soluble to practically insoluble in non-polar organic solvents such as hexanes. Topiramate has the molecular formula C12H21NO8S and a molecular weight of 339.4. Topiramate is designated chemically as 2,3:4,5-Di-O-isopropylidene-β-D-fructopyranose sulfamate and has the following structural formula: | |||
: [[File:{{PAGENAME}}01.png|thumb|none|600px|This image is provided by the National Library of Medicine.]] | : [[File:{{PAGENAME}}01.png|thumb|none|600px|This image is provided by the National Library of Medicine.]] | ||
*QUDEXY XR (topiramate) extended-release capsules contain beads of topiramate in a capsule. The inactive ingredients are microcrystalline cellulose, hypromellose 2910, ethylcellulose, diethyl phthalate. | |||
*In addition, the capsule shells for all strengths contain hypromellose 2910, titanium dioxide, black iron oxide, red iron oxide and/or yellow iron oxide, black pharmaceutical ink, and white pharmaceutical ink (200 mg only). | |||
<!--Pharmacodynamics--> | <!--Pharmacodynamics--> | ||
Line 544: | Line 554: | ||
|PD= | |PD= | ||
*Topiramate has anticonvulsant activity in rat and mouse maximal electroshock seizure (MES) tests. Topiramate is only weakly effective in blocking clonic seizures induced by the GABA-A receptor antagonist, pentylenetetrazole. Topiramate is also effective in rodent models of epilepsy, which include tonic and absence-like seizures in the spontaneous epileptic rat (SER) and tonic and clonic seizures induced in rats by kindling of the amygdala or by global ischemia. | |||
<!--Pharmacokinetics--> | <!--Pharmacokinetics--> | ||
Line 550: | Line 560: | ||
|PK= | |PK= | ||
There is | *Absorption and Distribution | ||
:*The pharmacokinetics of QUDEXY XR are linear with dose proportional increases in plasma concentration when administered as a single oral dose over the range of 50 mg to 1,400 mg. At 25 mg, the pharmacokinetics of QUDEXY XR are nonlinear, possibly due to the binding of topiramate to carbonic anhydrase in red blood cells. | |||
:*QUDEXY XR sprinkled on a spoonful of soft food is bioequivalent to the intact capsule formulation. | |||
:*Following a single 200 mg oral dose of QUDEXY XR, peak plasma concentrations (Tmax) occurred approximately 20 hours after dosing. Steady-state was reached in about 5 days following daily dosing of QUDEXY XR in subjects with normal renal function, with a Tmax of approximately 6 hours. | |||
:*At steady-state, the plasma exposure (AUC0-24hr, Cmax, and Cmin) of topiramate from QUDEXY XR administered once daily and the immediate-release topiramate tablets administered twice-daily were shown to be bioequivalent. Fluctuation of topiramate plasma concentrations at steady-state for QUDEXY XR administered once daily was approximately 40% in healthy subjects, compared to approximately 53% for immediate-release topiramate [see Clinical Pharmacology (12.6)]. | |||
:*Compared to the fasted state, high-fat meal had no effect on bioavailability (AUC and Cmax) but delayed the Tmax by approximately 4 hours following a single dose of QUDEXY XR. QUDEXY XR can be taken without regard to meals. | |||
:*Topiramate is 15% to 41% bound to human plasma proteins over the blood concentration range of 0.5 mcg/mL to 250 mcg/mL. The fraction bound decreased as blood concentration increased. | |||
:*Carbamazepine and phenytoin do not alter the binding of immediate-release topiramate. Sodium valproate, at 500 mcg/mL (a concentration 5 to 10 times higher than considered therapeutic for valproate) decreased the protein binding of immediate-release topiramate from 23% to 13%. Immediate-release topiramate does not influence the binding of sodium valproate. | |||
*Metabolism and Excretion | |||
:*Topiramate is not extensively metabolized and is primarily eliminated unchanged in the urine (approximately 70% of an administered dose). Six metabolites have been identified in humans, none of which constitutes more than 5% of an administered dose. The metabolites are formed via hydroxylation, hydrolysis, and glucuronidation. There is evidence of renal tubular reabsorption of topiramate. In rats, given probenecid to inhibit tubular reabsorption, along with topiramate, a significant increase in renal clearance of topiramate was observed. This interaction has not been evaluated in humans. Overall, oral plasma clearance (CL/F) is approximately 20 mL/min to 30 mL/min in adults following oral administration. The mean effective half-life of QUDEXY XR is approximately 56 hours. Steady-state is reached in about 5 days after QUDEXY XR dosing in subjects with normal renal function. | |||
*Specific Populations | |||
*Renal Impairment | |||
:*The clearance of topiramate was reduced by 42% in subjects with moderate renal impairment (creatinine clearance 30 to 69 mL/min/1.73 m2) and by 54% in subjects with severe renal impairment (creatinine clearance less than 30 mL/min/1.73 m2) compared to subjects with normal renal function (creatinine clearance greater than70 mL/min/1.73 m2). Since topiramate is presumed to undergo significant tubular reabsorption, it is uncertain whether this experience can be generalized to all situations of renal impairment. It is conceivable that some forms of renal disease could differentially affect glomerular filtration rate and tubular reabsorption resulting in a clearance of topiramate not predicted by creatinine clearance. In general, however, use of one-half the usual starting and maintenance dose is recommended in patients with creatinine clearance less than 70 mL/min/1.73 m2 [see Dosage and Administration (2.3) and Use in Specific Populations (8.7)]. | |||
*Hemodialysis | |||
:*Topiramate is cleared by hemodialysis. Using a high-efficiency, counterflow, single pass-dialysate hemodialysis procedure, topiramate dialysis clearance was 120 mL/min with blood flow through the dialyzer at 400 mL/min. This high clearance (compared to 20 mL/min to 30 mL/min total oral clearance in healthy adults) will remove a clinically significant amount of topiramate from the patient over the hemodialysis treatment period. Therefore, a supplemental dose may be required [see Dosage and Administration (2.4) and Use in Specific Populations (8.8)]. | |||
*Hepatic Impairment | |||
:*In subjects with hepatic impairment, the clearance of topiramate may be decreased; the mechanism underlying the decrease is not well understood. | |||
*Age, Gender and Race | |||
:*The pharmacokinetics of topiramate in elderly subjects (65 to 85 years of age, N=16) were evaluated in a controlled clinical study. The elderly subject population had reduced renal function (creatinine clearance [-20%]) compared to young adults. Following a single oral 100 mg dose, maximum plasma concentration for elderly and young adults was achieved at approximately 1 to 2 hours. Reflecting the primary renal elimination of topiramate, topiramate plasma and renal clearance were reduced 21% and 19%, respectively, in elderly subjects, compared to young adults. Similarly, topiramate half-life was longer (13%) in the elderly. Reduced topiramate clearance resulted in slightly higher maximum plasma concentration (23%) and AUC (25%) in elderly subjects than observed in young adults. Topiramate clearance is decreased in the elderly only to the extent that renal function is reduced. Because of this, dosage adjustment may be necessary [see Dosage and Administration (2.3), Use in Specific Populations (8.5 and 8.7) and Clinical Pharmacology (12.3)]. | |||
:*Clearance of topiramate in adults was not affected by gender or race. | |||
*Pediatric Pharmacokinetics | |||
:*Pharmacokinetics of immediate-release topiramate were evaluated in patients ages 2 years to less than 16 years. Patients received either no or a combination of other antiepileptic drugs. A population pharmacokinetic model was developed on the basis of pharmacokinetic data from relevant topiramate clinical studies. This dataset contained data from 1217 subjects including 258 pediatric patients aged 2 years to less than 16 years (95 pediatric patients less than 10 years of age). | |||
:*Pediatric patients on adjunctive treatment exhibited a higher oral clearance (L/h) of topiramate compared to patients on monotherapy, presumably because of increased clearance from concomitant enzyme-inducing antiepileptic drugs. In comparison, topiramate clearance per kg is greater in pediatric patients than in adults and in young pediatric patients (down to 2 years) than in older pediatric patients. Consequently, the plasma drug concentration for the same mg/kg/day dose would be lower in pediatric patients compared to adults and also in younger pediatric patients compared to older pediatric patients. Clearance was independent of dose. | |||
:*As in adults, hepatic enzyme-inducing antiepileptic drugs decrease the steady state plasma concentrations of topiramate. | |||
*Drug-Drug Interaction Studies | |||
*Antiepileptic Drugs | |||
:*Potential interactions between immediate-release topiramate and standard AEDs were assessed in controlled clinical pharmacokinetic studies in patients with epilepsy. The effects of these interactions on mean plasma AUCs are summarized in Table 9. Interaction of QUDEXY XR and standard AEDs is not expected to differ from the experience with immediate-release topiramate products. | |||
:*In Table 9, the second column (AED concentration) describes what happened to the concentration of the AED listed in the first column when topiramate was added. The third column (topiramate concentration) describes how the co-administration of a drug listed in the first column modified the concentration of topiramate in experimental settings when topiramate was given alone. | |||
<!--Nonclinical Toxicology--> | <!--Nonclinical Toxicology--> |
Revision as of 18:21, 1 December 2014
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Vignesh Ponnusamy, M.B.B.S. [2]
Disclaimer
WikiDoc MAKES NO GUARANTEE OF VALIDITY. WikiDoc is not a professional health care provider, nor is it a suitable replacement for a licensed healthcare provider. WikiDoc is intended to be an educational tool, not a tool for any form of healthcare delivery. The educational content on WikiDoc drug pages is based upon the FDA package insert, National Library of Medicine content and practice guidelines / consensus statements. WikiDoc does not promote the administration of any medication or device that is not consistent with its labeling. Please read our full disclaimer here.
Overview
Topiramate is an antiepileptic drug that is FDA approved for the {{{indicationType}}} of partial seizures, primary generalized tonic-clonic seizures and lennox-gastaut syndrome. Common adverse reactions include paresthesia, anorexia, weight decrease, fatigue, dizziness, somnolence, nervousness, psychomotor slowing, difficulty with memory, difficulty with concentration/attention, cognitive problem, confusion, mood problems, fever, infection, and flushing.
Adult Indications and Dosage
FDA-Labeled Indications and Dosage (Adult)
Partial Onset Seizures
- Monotherapy Use
- The recommended dose for topiramate monotherapy in adults is 400 mg orally once daily. Titrate QUDEXY XR according to the following schedule:
T
- Adjunctive Therapy Use
- The recommended total daily dose of QUDEXY XR as adjunctive therapy in adults with partial onset seizures is 200 mg to 400 mg orally once daily.
Primary Generalized Tonic-Clonic Seizures
- Monotherapy Use
- The recommended dose for topiramate monotherapy in adults is 400 mg orally once daily. Titrate QUDEXY XR according to the following schedule:
T
- Adjunctive Therapy Use
- The recommended total dose for adults with primary generalized tonic-clonic seizures is 400 mg orally once daily.
Lennox-Gastaut Syndrome
- Adjunctive Therapy Use
- The recommended total daily dose of QUDEXY XR as adjunctive therapy in adults with Lennox-Gastaut Syndrome is 200 mg to 400 mg orally once daily.
Off-Label Use and Dosage (Adult)
Guideline-Supported Use
Condition1
- Developed by:
- Class of Recommendation:
- Strength of Evidence:
- Dosing Information
- Dosage
Condition2
There is limited information regarding Off-Label Guideline-Supported Use of Topiramate in adult patients.
Non–Guideline-Supported Use
Condition1
- Dosing Information
- Dosage
Condition2
There is limited information regarding Off-Label Non–Guideline-Supported Use of Topiramate in adult patients.
Pediatric Indications and Dosage
FDA-Labeled Indications and Dosage (Pediatric)
Partial Onset Seizures
- Monotherapy Use
- The recommended dose for topiramate monotherapy in adults is 400 mg orally once daily. Titrate QUDEXY XR according to the following schedule:
T
- Adjunctive Therapy Use
- The recommended total daily dose of QUDEXY XR as adjunctive therapy in adults with partial onset seizures is 200 mg to 400 mg orally once daily.
Primary Generalized Tonic-Clonic Seizures
- Monotherapy Use
- The recommended dose for topiramate monotherapy in adults is 400 mg orally once daily. Titrate QUDEXY XR according to the following schedule:
T
- Adjunctive Therapy Use
- The recommended total dose for adults with primary generalized tonic-clonic seizures is 400 mg orally once daily.
Lennox-Gastaut Syndrome
- Adjunctive Therapy Use
- The recommended total daily dose of QUDEXY XR as adjunctive therapy in adults with Lennox-Gastaut Syndrome is 200 mg to 400 mg orally once daily.
Off-Label Use and Dosage (Pediatric)
Guideline-Supported Use
Condition1
- Developed by:
- Class of Recommendation:
- Strength of Evidence:
- Dosing Information
- Dosage
Condition2
There is limited information regarding Off-Label Guideline-Supported Use of Topiramate in pediatric patients.
Non–Guideline-Supported Use
Condition1
- Dosing Information
- Dosage
Condition2
There is limited information regarding Off-Label Non–Guideline-Supported Use of Topiramate in pediatric patients.
Contraindications
- QUDEXY XR is contraindicated in patients with metabolic acidosis who are taking concomitant metformin.
Warnings
Precautions
- Acute Myopia and Secondary Angle Closure Glaucoma
- A syndrome consisting of acute myopia associated with secondary angle closure glaucoma has been reported in patients receiving topiramate. Symptoms include acute onset of decreased visual acuity and/or ocular pain. Ophthalmologic findings can include myopia, anterior chamber shallowing, ocular hyperemia (redness) and increased intraocular pressure. Mydriasis may or may not be present. This syndrome may be associated with supraciliary effusion resulting in anterior displacement of the lens and iris, with secondary angle closure glaucoma. Symptoms typically occur within 1 month of initiating topiramate therapy. In contrast to primary narrow angle glaucoma, which is rare under 40 years of age, secondary angle closure glaucoma associated with topiramate has been reported in pediatric patients as well as adults. The primary treatment to reverse symptoms is discontinuation of QUDEXY XR as rapidly as possible, according to the judgment of the treating physician. Other measures, in conjunction with discontinuation of QUDEXY XR, may be helpful.
- Elevated intraocular pressure of any etiology, if left untreated, can lead to serious sequelae including permanent vision loss.
- Visual Field Defects
- Visual field defects have been reported in patients receiving topiramate independent of elevated intraocular pressure. In clinical trials, most of these events were reversible after topiramate discontinuation. If visual problems occur at any time during topiramate treatment, consideration should be given to discontinuing the drug.
- Oligohydrosis and Hyperthermia
- Oligohydrosis (decreased sweating), resulting in hospitalization in some cases, has been reported in association with topiramate use. Decreased sweating and an elevation in body temperature above normal characterized these cases. Some of the cases were reported after exposure to elevated environmental temperatures.
- The majority of the reports have been in pediatric patients. Patients, especially pediatric patients, treated with QUDEXY XR should be monitored closely for evidence of decreased sweating and increased body temperature, especially in hot weather. Caution should be used when QUDEXY XR is prescribed with other drugs that predispose patients to heat-related disorders; these drugs include, but are not limited to, other carbonic anhydrase inhibitors and drugs with anticholinergic activity.
- Metabolic Acidosis
- Hyperchloremic, non-anion gap, metabolic acidosis (i.e., decreased serum bicarbonate below the normal reference range in the absence of chronic respiratory alkalosis) is associated with topiramate treatment. This metabolic acidosis is caused by renal bicarbonate loss due to the inhibitory effect of topiramate on carbonic anhydrase. Such electrolyte imbalance has been observed with the use of topiramate in placebo-controlled clinical trials and in the post-marketing period. Generally, topiramate-induced metabolic acidosis occurs early in treatment although cases can occur at any time during treatment. Bicarbonate decrements are usually mild-moderate (average decrease of 4 mEq/L at daily doses of 400 mg in adults and at approximately 6 mg/kg/day in pediatric patients); rarely, patients can experience severe decrements to values below 10 mEq/L. Conditions or therapies that predispose patients to acidosis (such as renal disease, severe respiratory disorders, status epilepticus, diarrhea, ketogenic diet or specific drugs) may be additive to the bicarbonate lowering effects of topiramate.
- Adults
- In adults, the incidence of persistent treatment-emergent decreases in serum bicarbonate (levels of less than 20 mEq/L at two consecutive visits or at the final visit) in controlled clinical trials for adjunctive treatment of epilepsy was 32% for 400 mg per day, and 1% for placebo. Metabolic acidosis has been observed at doses as low as 50 mg per day. The incidence of persistent treatment-emergent decreases in serum bicarbonate in adults in a controlled clinical trial for monotherapy was 15% for 50 mg per day and 25% for 400 mg per day. The incidence of a markedly abnormally low serum bicarbonate (i.e., absolute value less than 17 mEq/L and greater than 5 mEq/L decrease from pretreatment) in the adjunctive therapy trials was 3% for 400 mg per day, and 0% for placebo and in the monotherapy trial was 1% for 50 mg per day and 7% for 400 mg per day. Serum bicarbonate levels have not been systematically evaluated at daily doses greater than 400 mg per day.
- Pediatric Patients (2 years to 16 years of age)
- The incidence of persistent treatment-emergent decreases in serum bicarbonate in placebo-controlled trials for adjunctive treatment of Lennox-Gastaut syndrome or refractory partial onset seizures in patients age 2 years to 16 years was 67% for topiramate (at approximately 6 mg/kg/day), and 10% for placebo. The incidence of a markedly abnormally low serum bicarbonate (i.e., absolute value less than 17 mEq/L and greater than 5 mEq/L decrease from pretreatment) in these trials was 11% for topiramate and 0% for placebo. Cases of moderately severe metabolic acidosis have been reported in patients as young as 5 months old, especially at daily doses above 5 mg/kg/day.
- In pediatric patients (6 years to 15 years of age), the incidence of persistent treatment-emergent decreases in serum bicarbonate in the epilepsy controlled clinical trial for monotherapy performed with topiramate was 9% for 50 mg per day and 25% for 400 mg per day. The incidence of a markedly abnormally low serum bicarbonate (i.e., absolute value less than 17 mEq/L and greater than 5 mEq/L decrease from pretreatment) in this trial was 1% for 50 mg per day and 6% for 400 mg per day.
- Pediatric Patients (under 2 years of age)
- Although QUDEXY XR is not approved for use in patients less than 2 years of age with partial onset seizures, a study of topiramate as adjunctive use in patients under 2 years of age revealed that topiramate produced a metabolic acidosis that is notably greater in magnitude than that observed in controlled trials in older children and adults. The mean treatment difference (25 mg/kg/day topiramate-placebo) was -5.9 mEq/L for bicarbonate. The incidence of metabolic acidosis (defined by a serum bicarbonate less than 20 mEq/L) was 0% for placebo, 30% for 5 mg/kg/day, 50% for 15 mg/kg/day, and 45% for 25 mg/kg/day [see Use in Specific Populations (8.4)].
- Manifestations of Metabolic Acidosis
- Some manifestations of acute or chronic metabolic acidosis may include hyperventilation, nonspecific symptoms such as fatigue and anorexia, or more severe sequelae including cardiac arrhythmias or stupor. Chronic, untreated metabolic acidosis may increase the risk for nephrolithiasis or nephrocalcinosis, and may also result in osteomalacia (referred to as rickets in pediatric patients) and/or osteoporosis with an increased risk for fractures. Chronic metabolic acidosis in pediatric patients may also reduce growth rates. A reduction in growth rate may eventually decrease the maximal height achieved. The effect of topiramate on growth and bone-related sequelae has not been systematically investigated in long-term, placebo-controlled trials. Long-term, open-label treatment of infants/toddlers, with intractable partial epilepsy, for up to 1 year, showed reductions from baseline in Z SCORES for length, weight, and head circumference compared to age and sex-matched normative data, although these patients are likely to have different growth rates than normal infants. Reductions in Z SCORES for length and weight were correlated to the degree of acidosis [see Use in Specific Populations (8.4)]. Topiramate treatment that causes metabolic acidosis during pregnancy can possibly produce adverse effects on the fetus and might also cause metabolic acidosis in the neonate from possible transfer of topiramate to the fetus [see Warnings and Precautions (5.7) and Use in Specific Populations (8.1)].
- Risk Mitigation Strategies
- Measurement of baseline and periodic serum bicarbonate during topiramate treatment is recommended. If metabolic acidosis develops and persists, consideration should be given to reducing the dose or discontinuing topiramate (using dose tapering). If the decision is made to continue patients on topiramate in the face of persistent acidosis, alkali treatment should be considered.
- Suicidal Behavior and Ideation
- Antiepileptic drugs (AEDs) increase the risk of suicidal thoughts or behavior in patients taking these drugs for any indication. Patients treated with any AED, including QUDEXY XR, for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behavior, and/or any unusual changes in mood or behavior.
- Pooled analyses of 199 placebo-controlled clinical trials (mono- and adjunctive therapy) of 11 different AEDs showed that patients randomized to one of the AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% CI:1.2, 2.7) of suicidal thinking or behavior compared to patients randomized to placebo. In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behavior or ideation among 27,863 AED-treated patients was 0.43%, compared to 0.24% among 16,029 placebo-treated patients, representing an increase of approximately one case of suicidal thinking or behavior for every 530 patients treated. There were four suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number is too small to allow any conclusion about drug effect on suicide.
- The increased risk of suicidal thoughts or behavior with AEDs was observed as early as one week after starting drug treatment with AEDs and persisted for the duration of treatment assessed. Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behavior beyond 24 weeks could not be assessed.
- The risk of suicidal thoughts or behavior was generally consistent among drugs in the data analyzed. The finding of increased risk with AEDs of varying mechanisms of action and across a range of indications suggests that the risk applies to all AEDs used for any indication. The risk did not vary substantially by age (5 to 100 years) in the clinical trials analyzed.
- Table 1 shows absolute and relative risk by indication for all evaluated AEDs.
T1
- The relative risk for suicidal thoughts or behavior was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications.
- Anyone considering prescribing QUDEXY XR or any other AED must balance the risk of suicidal thoughts or behavior with the risk of untreated illness. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behavior. Should suicidal thoughts and behavior emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated.
- Patients, their caregivers, and families should be informed that AEDs increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of the signs and symptoms of depression, any unusual changes in mood or behavior or the emergence of suicidal thoughts, behavior or thoughts about self-harm. Behaviors of concern should be reported immediately to healthcare providers.
- Cognitive/Neuropsychiatric Adverse Reactions
- Adverse reactions most often associated with the use of topiramate, and therefore expected to be associated with the use of QUDEXY XR were related to the central nervous system and were observed in the epilepsy population. In adults, the most frequent of these can be classified into three general categories: 1) Cognitive-related dysfunction (e.g. confusion, psychomotor slowing, difficulty with concentration/attention, difficulty with memory, speech or language problems, particularly word-finding difficulties), 2) Psychiatric/behavioral disturbances (e.g. depression or mood problems), and 3) Somnolence or fatigue.
- Adult Patients
- Cognitive Related Dysfunction
- The majority of cognitive-related adverse reactions were mild to moderate in severity, and they frequently occurred in isolation. Rapid titration rate and higher initial dose were associated with higher incidences of these reactions. Many of these reactions contributed to withdrawal from treatment.
- In the adjunctive epilepsy controlled trials conducted with topiramate (using rapid titration such as 100 mg per day to 200mg per day weekly increments), the proportion of patients who experienced one or more cognitive-related adverse reactions was 42% for 200mg per day, 41% for 400mg per day, 52% for 600mg per day, 56% for 800 and 1,000 mg per day, and 14% for placebo. These dose-related adverse reactions began with a similar frequency in the titration or in the maintenance phase, although in some patients the events began during titration and persisted into the maintenance phase. Some patients who experienced one or more cognitive-related adverse reactions in the titration phase had a dose-related recurrence of these reactions in the maintenance phase.
- In the monotherapy epilepsy controlled trial conducted with topiramate, the proportion of patients who experienced one or more cognitive-related adverse reactions was 19% for topiramate 50mg per day and 26% for 400mg per day.
- Psychiatric/Behavioral Disturbances
- Psychiatric/behavioral disturbances (depression or mood) were dose-related for the epilepsy population treated with topiramate.
- Somnolence/Fatigue
- Somnolence and fatigue were the adverse reactions most frequently reported during clinical trials of topiramate for adjunctive epilepsy. For the adjunctive epilepsy population, the incidence of somnolence did not differ substantially between 200 mg per day and 1,000 mg per day, but the incidence of fatigue was dose-related and increased at dosages above 400 mg per day. For the monotherapy epilepsy population in the 50 mg per day and 400 mg per day groups, the incidence of somnolence was dose-related (9% for the 50 mg per day group and 15% for the 400 mg per day group) and the incidence of fatigue was comparable in both treatment groups (14% each). For other uses not approved for QUDEXY XR, somnolence and fatigue were more common in the titration phase.
- Additional nonspecific CNS events commonly observed with topiramate in the adjunctive epilepsy population include dizziness or ataxia.
- Pediatric Patients
- In double-blind adjunctive therapy and monotherapy epilepsy clinical studies conducted with topiramate, the incidences of cognitive/neuropsychiatric adverse reactions in pediatric patients were generally lower than observed in adults. These reactions included psychomotor slowing, difficulty with concentration/attention, speech disorders/related speech problems and language problems. The most frequently reported neuropsychiatric reactions in pediatric patients during adjunctive therapy double-blind studies were somnolence and fatigue. The most frequently reported neuropsychiatric reactions in pediatric patients in the 50 mg per day and 400 mg per day groups during the monotherapy double-blind study were headache, dizziness, anorexia, and somnolence.
- No patients discontinued treatment due to any adverse events in the adjunctive epilepsy double-blind trials. In the monotherapy epilepsy double-blind trial conducted with immediate-release topiramate product, 1 pediatric patient (2%) in the 50 mg per day group and 7 pediatric patients (12%) in the 400 mg per day group discontinued treatment due to any adverse events. The most common adverse reaction associated with discontinuation of therapy was difficulty with concentration/attention; all occurred in the 400 mg per day group.
- Fetal Toxicity
- Topiramate can cause fetal harm when administered to a pregnant woman. Data from pregnancy registries indicate that infants exposed to topiramate in utero have an increased risk for cleft lip and/or cleft palate (oral clefts). When multiple species of pregnant animals received topiramate at clinically relevant doses, structural malformations, including craniofacial defects, and reduced fetal weights occurred in offspring.
- Consider the benefits and risks of topiramate when administering the drug in women of childbearing potential, particularly when topiramate is considered for a condition not usually associated with permanent injury or death. Topiramate should be used during pregnancy only if the potential benefit outweighs the potential risk. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be informed of the potential hazard to a fetus.
- Withdrawal of Antiepileptic Drugs
- In patients with or without a history of seizures or epilepsy, antiepileptic drugs including QUDEXY XR, should be gradually withdrawn to minimize the potential for seizures or increased seizure frequency. In situations where rapid withdrawal of QUDEXY XR is medically required, appropriate monitoring is recommended.
- Hyperammonemia and Encephalopathy
- Hyperammonemia/Encephalopathy Without Concomitant Valproic Acid (VPA)
- Topiramate treatment has produced hyperammonemia (in some instances dose-related) in clinical investigational programs in very young pediatric patients (1 month to 24 months) who were treated with adjunctive topiramate for partial onset epilepsy (8% for placebo, 10% for 5 mg/kg/day, 0% for 15 mg/kg/day, 9% for 25 mg/kg/day). QUDEXY XR is not approved as adjunctive treatment of partial onset seizures in pediatric patients less than 2 years old. In some patients, ammonia was markedly increased (greater than 50% above upper limit of normal). The hyperammonemia associated with topiramate treatment occurred with and without encephalopathy in placebo-controlled trials, and in an open-label, extension trial. Dose-related hyperammonemia was also observed in the extension trial in pediatric patients up to 2 years old. Clinical symptoms of hyperammonemic encephalopathy often include acute alterations in level of consciousness and/or cognitive function with lethargy or vomiting.
- Hyperammonemia with and without encephalopathy has also been observed in post-marketing reports in patients who were taking topiramate without concomitant valproic acid (VPA).
- Hyperammonemia/Encephalopathy With Concomitant Valproic Acid (VPA)
- Concomitant administration of topiramate and valproic acid (VPA) has been associated with hyperammonemia with or without encephalopathy in patients who have tolerated either drug alone based upon post-marketing reports. Although hyperammonemia may be asymptomatic, clinical symptoms of hyperammonemic encephalopathy often include acute alterations in level of consciousness and/or cognitive function with lethargy or vomiting. In most cases, symptoms and signs abated with discontinuation of either drug. This adverse reaction is not due to a pharmacokinetic interaction.
- Although QUDEXY XR is not indicated for use in infants/toddlers (1 month to 24 months), topiramate with concomitant VPA clearly produced a dose-related increase in the incidence of treatment-emergent hyperammonemia (above the upper limit of normal, 0% for placebo, 12% for 5 mg/kg/day, 7% for 15 mg/kg/day, 17% for 25 mg/kg/day) in an investigational program using topiramate. Markedly increased, dose-related hyperammonemia (0% for placebo and 5 mg/kg/day, 7% for 15 mg/kg/day, and 8% for 25 mg/kg/day) also occurred in these infants/toddlers. Dose-related hyperammonemia was similarly observed in a long-term, extension trial utilizing topiramate in these very young, pediatric patients [see Use in Specific Populations (8.4)].
- Hyperammonemia with and without encephalopathy has also been observed in post-marketing reports in patients taking topiramate with valproic acid (VPA).
- The hyperammonemia associated with topiramate treatment appears to be more common when used concomitantly with VPA.
- Monitoring for Hyperammonemia
- Patients with inborn errors of metabolism or reduced hepatic mitochondrial activity may be at an increased risk for hyperammonemia with or without encephalopathy. Although not studied, topiramate or QUDEXY XR treatment or an interaction of concomitant topiramate-based product and valproic acid treatment may exacerbate existing defects or unmask deficiencies in susceptible persons.
- In patients who develop unexplained lethargy, vomiting, or changes in mental status associated with any topiramate treatment, hyperammonemic encephalopathy should be considered and an ammonia level should be measured.
- Kidney Stones
- A total of 32/2086 (1.5%) of adults exposed to topiramate during its adjunctive epilepsy therapy development reported the occurrence of kidney stones, an incidence about 2 to 4 times greater than expected in a similar, untreated population. In the double-blind monotherapy epilepsy study, a total of 4/319 (1.3%) of adults exposed to topiramate reported the occurrence of kidney stones. As in the general population, the incidence of stone formation among topiramate-treated patients was higher in men. Kidney stones have also been reported in pediatric patients. During long-term (up to 1 year) topiramate treatment in an open-label extension study of 284 pediatric patients 1 month to 24 months old with epilepsy, 7% developed kidney or bladder stones that were diagnosed clinically or by sonogram. QUDEXY XR is not approved for pediatric patients less than 2 years old [see Use in Specific Populations (8.4)].
- QUDEXY XR would be expected to have the same effect as topiramate on the formation of kidney stones. An explanation for the association of topiramate and kidney stones may lay in the fact that topiramate is a carbonic anhydrase inhibitor. Carbonic anhydrase inhibitors (e.g., zonisamide, acetazolamide or dichlorphenamide) can promote stone formation by reducing urinary citrate excretion and by increasing urinary pH. The concomitant use of QUDEXY XR with any other drug producing metabolic acidosis, or potentially in patients on a ketogenic diet may create a physiological environment that increases the risk of kidney stone formation, and should therefore be avoided.
- Increased fluid intake increases the urinary output, lowering the concentration of substances involved in stone formation. Hydration is recommended to reduce new stone formation.
- Hypothermia with Concomitant Valproic Acid Use
- Hypothermia, defined as an unintentional drop in body core temperature to less than 35ºC (95ºF) has been reported in association with topiramate use with concomitant valproic acid (VPA) both in the presence and in the absence of hyperammonemia. This adverse reaction in patients using concomitant topiramate and valproate can occur after starting topiramate treatment or after increasing the daily dose of topiramate. Consideration should be given to stopping topiramate or valproate in patients who develop hypothermia, which may be manifested by a variety of clinical abnormalities including lethargy, confusion, coma, and significant alterations in other major organ systems such as the cardiovascular and respiratory systems. Clinical management and assessment should include examination of blood ammonia levels.
- Paresthesia
- Paresthesia (usually tingling of the extremities), an effect associated with the use of other carbonic anhydrase inhibitors, appears to be a common effect of topiramate. Paresthesia was more frequently reported in the monotherapy epilepsy trials conducted with immediate-release topiramate than in the adjunctive therapy epilepsy trials conducted with the same product. In the majority of instances, paresthesia did not lead to treatment discontinuation.
- Interaction with Other CNS Depressants
- Topiramate is a CNS depressant. Concomitant administration of topiramate with other CNS depressant drugs or alcohol can result in significant CNS depression. Patients should be watched carefully when QUDEXY XR is co-administered with other CNS depressant drugs.
Adverse Reactions
Clinical Trials Experience
- Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.
Adverse Reactions Observed in Monotherapy Trial
Adults 17 Years and Older
- The adverse reactions in the monotherapy controlled trial (Study 1) that occurred most commonly in adults in the 400 mg per day group (incidence greater than or equal to 5%) and at a rate higher than the 50 mg per day group were paresthesia, weight decrease, somnolence, anorexia, dizziness, and difficulty with memory [see Table 2] [see Clinical Studies (14.2)].
- Approximately 21% of the 159 adult patients in the 400 mg per day group who received topiramate as monotherapy in Study 1 discontinued therapy due to adverse reactions. The most common (greater than or equal to 2% more frequent than low-dose 50 mg per day topiramate) adverse reactions causing discontinuation in this trial were difficulty with memory, fatigue, asthenia, insomnia, somnolence and paresthesia.
Pediatric Patients 10 Years to 16 Years of Age
- The adverse reactions in the controlled trial (Study 1) that occurred most commonly in children (10 years up to 16 years of age) in the 400 mg per day topiramate group (incidence greater than or equal to 5%) and at a rate higher than in the 50 mg per day group were weight decrease, upper respiratory tract infection, paresthesia, anorexia, diarrhea, and mood problems [see Table 3] [see Clinical Studies (14.2)].
- Approximately 12% of the 57 pediatric patients in the 400 mg per day group who received topiramate as monotherapy in the controlled clinical trial discontinued therapy due to adverse reactions. The most common (greater than 5%) adverse reactions resulting in discontinuation in this trial were difficulty with concentration/attention.
T2
T3
Adverse Reactions Observed in Adjunctive Therapy Epilepsy Trials
- The most commonly observed adverse reactions associated with the use of topiramate at dosages of 200 to 400 mg per day in controlled trials in adults with partial onset seizures, primary generalized tonic-clonic seizures, or Lennox-Gastaut syndrome that were seen at greater frequency in topiramate-treated patients and did not appear to be dose-related were: somnolence, ataxia, speech disorders and related speech problems, psychomotor slowing, abnormal vision, difficulty with memory, paresthesia and diplopia [see Table 4] [see Clinical Studies (14.3, 14.4 and 14.5)]. The most common dose-related adverse reactions at dosages of 200 mg to 1,000 mg per day were: fatigue, nervousness, difficulty with concentration or attention, confusion, depression, anorexia, language problems, anxiety, mood problems, and weight decrease [see Table 6].
- Adverse reactions associated with the use of topiramate at dosages of 5 mg/kg/day to 9 mg/kg/day in controlled trials in pediatric patients with partial onset seizures, primary generalized tonic-clonic seizures, or Lennox-Gastaut syndrome that were seen at greater frequency in topiramate-treated patients were: fatigue, somnolence, anorexia, nervousness, difficulty with concentration/attention, difficulty with memory, aggressive reaction, and weight decrease [see Table 7].
- In controlled clinical trials in adults, 11% of patients receiving topiramate 200 to 400mg per day as adjunctive therapy discontinued due to adverse reactions. This rate appeared to increase at dosages above 400mg per day. Adverse events associated with discontinuing therapy included somnolence, dizziness, anxiety, difficulty with concentration or attention, fatigue, and paresthesia and increased at dosages above 400 mg per day. None of the pediatric patients who received topiramate adjunctive therapy at 5 mg/kg/day to 9 mg/kg/day in controlled clinical trials discontinued due to adverse reactions.
- Approximately 28% of the 1757 adults with epilepsy who received topiramate at dosages of 200 mg to 1,600 mg per day in clinical studies discontinued treatment because of adverse reactions; an individual patient could have reported more than one adverse reaction. These adverse reactions were: psychomotor slowing (4.0%), difficulty with memory (3.2%), fatigue (3.2%), confusion (3.1%), somnolence (3.2%), difficulty with concentration/attention (2.9%), anorexia (2.7%), depression (2.6%), dizziness (2.5%), weight decrease (2.5%), nervousness (2.3%), ataxia (2.1%), and paresthesia (2.0%). Approximately 11% of the 310 pediatric patients who received topiramate at dosages up to 30 mg/kg/day discontinued due to adverse reactions. Adverse reactions associated with discontinuing therapy included aggravated convulsions (2.3%), difficulty with concentration/attention (1.6%), language problems (1.3%), personality disorder (1.3%), and somnolence (1.3%).
Incidence in Epilepsy Controlled Clinical Trials – Adjunctive Therapy – Partial Onset Seizures, Primary Generalized Tonic-Clonic Seizures, and Lennox-Gastaut Syndrome
- Table 4 lists adverse reactions that occurred in at least 1% of adults treated with 200 to 400 mg per day topiramate in controlled trials that were numerically more common at this dose than in the patients treated with placebo. In general, most patients who experienced adverse reactions during the first eight weeks of these trials no longer experienced them by their last visit. Table 7 lists adverse reactions that occurred in at least 1% of pediatric patients treated with 5 mg/kg to 9 mg/kg topiramate in controlled trials that were numerically more common than in patients treated with placebo.
Other Adverse Reactions Observed During Double-Blind Epilepsy Adjunctive Therapy Trials
- Other adverse reactions that occurred in more than 1% of adults treated with 200 mg to 400 mg of topiramate in placebo-controlled epilepsy trials but with equal or greater frequency in the placebo group were headache, injury, anxiety, rash, pain, convulsions aggravated, coughing, fever, diarrhea, vomiting, muscle weakness, insomnia, personality disorder, dysmenorrhea, upper respiratory tract infection, and eye pain.
T4
Adverse Reactions Observed in Adjunctive Therapy Trial in Adults with Partial Onset Seizures (Study 7)
- Study 7 was a randomized, double-blind, adjunctive, placebo-controlled, parallel group study with 3 treatment arms: 1) placebo; 2) topiramate 200 mg per day with a 25 mg per day starting dose, increased by 25 mg per day each week for 8 weeks until the 200 mg per day maintenance dose was reached; and 3) topiramate 200 mg per day with a 50 mg per day starting dose, increased by 50 mg per day each week for 4 weeks until the 200 mg per day maintenance dose was reached. All patients were maintained on concomitant carbamazepine with or without another concomitant antiepileptic drug.
- The incidence of adverse reactions (Table 5) did not differ significantly between the 2 topiramate regimens. Because the frequencies of adverse reactions reported in this study were markedly lower than those reported in the previous epilepsy studies, they cannot be directly compared with data obtained in other studies.
T5
T6
T7
Laboratory Abnormalities
- Topiramate decreases serum bicarbonate [see Warnings and Precautions (5.4)].
- Immediate-release topiramate treatment was associated with changes in several clinical laboratory analytes in randomized, double-blind, placebo-controlled studies. Similar effects should be anticipated with use of QUDEXY XR.
- Controlled trials of adjunctive topiramate treatment of adults for partial onset seizures showed an increased incidence of markedly decreased serum phosphorus (6% topiramate, 2% placebo), markedly increased serum alkaline phosphatase (3% topiramate, 1% placebo), and decreased serum potassium (0.4 % topiramate, 0.1 % placebo). The clinical significance of these abnormalities has not been clearly established.
- Changes in several clinical laboratory results (increased creatinine, BUN, alkaline phosphatase, total protein, total eosinophil count and decreased potassium) have been observed in a clinical investigational program in very young (2 years and younger) pediatric patients who were treated with adjunctive topiramate for partial onset seizures [see Use in Specific Populations (8.4)].
- Topiramate treatment produced a dose-related increased shift in serum creatinine from normal at baseline to an increased value at the end of 4 months treatment in adolescent patients (ages 12 years to 16 years) in a double-blind, placebo-controlled study. The incidence of these abnormal shifts was 4% for placebo, 4% for 50 mg, and 18% for 100 mg.
- Topiramate treatment with or without concomitant valproic acid (VPA) can cause hyperammonemia with or without encephalopathy [see Warnings and Precautions (5.9)].
Clinical Trials Experience with QUDEXY XR
- Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice. In the QUDEXY XR study, a dose of 200 mg/day was administered to a limited number of patients; therefore, these results cannot be directly compared to immediate-release topiramate experience.
- The safety data presented below are from 249 patients with partial epilepsy on concomitant AEDs who participated in the QUDEXY XR study [see Clinical Studies (14.6)].
- Table 8 displays the incidence of treatment-emergent adverse reactions that occurred in ≥2% of patients and numerically greater than placebo.
T8
- In the controlled clinical study using QUDEXY XR, 8.9% of patients who received QUDEXY XR and 4.0% who received placebo discontinued as a result of treatment-emergent adverse reactions.
Postmarketing Experience
- The following adverse reactions have been identified during post-approval use of topiramate. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. The listing is alphabetized: bullous skin reactions (including erythema multiforme, Stevens-Johnson syndrome, toxic epidermal necrolysis), hepatic failure (including fatalities), hepatitis, maculopathy, pancreatitis, and pemphigus.
Drug Interactions
- Oral Contraceptives
- The possibility of decreased contraceptive efficacy and increased breakthrough bleeding should be considered in patients taking combination oral contraceptive products with QUDEXY XR. Patients taking estrogen-containing contraceptives should be asked to report any change in their bleeding patterns. Contraceptive efficacy can be decreased even in the absence of breakthrough bleeding [see Clinical Pharmacology (12.3)].
- Antiepileptic Drugs
- Concomitant administration of phenytoin or carbamazepine with topiramate decreased plasma concentrations of topiramate [see Clinical Pharmacology (12.3)].
- Concomitant administration of valproic acid and topiramate has been associated with hyperammonemia with and without encephalopathy. Concomitant administration of topiramate with valproic acid has also been associated with hypothermia (with and without hyperammonemia) in patients who have tolerated either drug alone. It may be prudent to examine blood ammonia levels in patients in whom the onset of hypothermia has been reported [see Warnings and Precautions (5.9) and Clinical Pharmacology (12.3)].
- Numerous AEDs are substrates of the CYP enzyme system. In vitro studies indicate that topiramate does not inhibit enzyme activity for CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2D6, CYP2E1, and CYP3A4/5 isozymes. In vitro studies indicate that immediate-release topiramate is a mild inhibitor of CYP2C19 and a mild inducer of CYP3A4. The same drug interactions can be expected with the use of QUDEXY XR.
- CNS Depressants and Alcohol
- Topiramate is a CNS depressant. Concomitant administration of topiramate with other CNS depressant drugs or alcohol can result in significant CNS depression. Concomitant use of alcohol should be avoided [see Warnings and Precautions (5.13) and Clinical Pharmacology (12.3)].
- Other Carbonic Anhydrase Inhibitors
- Concomitant use of topiramate, a carbonic anhydrase inhibitor, with any other carbonic anhydrase inhibitor (e.g., zonisamide, acetazolamide or dichlorphenamide), may increase the severity of metabolic acidosis and may also increase the risk of kidney stone formation. Patients should be monitored for the appearance or worsening of metabolic acidosis when QUDEXY XR is given concomitantly with another carbonic anhydrase inhibitor [see Clinical Pharmacology (12.3)].
- Metformin
- Topiramate treatment can frequently cause metabolic acidosis, a condition for which the use of metformin is contraindicated. The concomitant use of QUDEXY XR and metformin is contraindicated in patients with metabolic acidosis [see Contraindications (4), Warnings and Precautions (5.4) and Clinical Pharmacology (12.3)].
- Lithium
- In patients, there was an observed increase in systemic exposure of lithium following topiramate doses of up to 600 mg per day. Lithium levels should be monitored when co-administered with high-dose QUDEXY XR [see Clinical Pharmacology (12.3)].
Use in Specific Populations
Pregnancy
- Pregnancy Category D
- Topiramate can cause fetal harm when administered to a pregnant woman. Data from pregnancy registries indicate that infants exposed to topiramate in utero have increased risk for cleft lip and/or cleft palate (oral clefts). When multiple species of pregnant animals received topiramate at clinically relevant doses, structural malformations, including craniofacial defects, and reduced fetal weights occurred in offspring. Topiramate should be used during pregnancy only if the potential benefit outweighs the potential risk. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be informed of the potential hazard to the fetus [see Use in Specific Populations (8.9)].
- Pregnancy Registry
- Patients should be encouraged to enroll in the North American Antiepileptic Drug (NAAED) Pregnancy Registry if they become pregnant. This registry is collecting information about the safety of antiepileptic drugs during pregnancy. To enroll, patients can call the toll-free number 1-888-233-2334. Information about the North American Drug Pregnancy Registry can be found at http://www.massgeneral.org/aed/.
- Human Data
- Data from the NAAED Pregnancy Registry indicate an increased risk of oral clefts in infants exposed to topiramate monotherapy during the first trimester of pregnancy. The prevalence of oral clefts was 1.2% compared to a prevalence of 0.39% - 0.46% in infants exposed to other AEDs, and a prevalence of 0.12% in infants of mothers without epilepsy or treatment with other AEDs. For comparison, the Centers for Disease Control and Prevention (CDC) reviewed available data on oral clefts in the United States and found a similar background rate of 0.17%. The relative risk of oral clefts in topiramate-exposed pregnancies in the NAAED Pregnancy Registry was 9.6 (95% Confidence Interval=CI 3.6-25.7) as compared to the risk in a background population of untreated women. The UK Epilepsy and Pregnancy Register reported a similarly increased prevalence of oral clefts of 3.2% among infants exposed to topiramate monotherapy. The observed rate of oral clefts was 16 times higher than the background rate in the UK, which is approximately 0.2%.
- Topiramate treatment can cause metabolic acidosis [see Warnings and Precautions (5.4)]. The effect of topiramate-induced metabolic acidosis has not been studied in pregnancy; however, metabolic acidosis in pregnancy (due to other causes) can cause decreased fetal growth, decreased fetal oxygenation, and fetal death, and may affect the fetus' ability to tolerate labor. Pregnant patients should be monitored for metabolic acidosis and treated as in the nonpregnant state [see Warnings and Precautions (5.4)]. Newborns of mothers treated with topiramate should be monitored for metabolic acidosis because of transfer of topiramate to the fetus and possible occurrence of transient metabolic acidosis following birth.
- Animal Data
- Topiramate has demonstrated selective developmental toxicity, including teratogenicity, in multiple animal species at clinically relevant doses. When oral doses of 20 mg/kg, 100 mg/kg, or 500 mg/kg were administered to pregnant mice during the period of organogenesis, the incidence of fetal malformations (primarily craniofacial defects) was increased at all doses. The low dose is approximately 0.2 times the recommended human dose (RHD) 400 mg per day on a mg/m2 basis. Fetal body weights and skeletal ossification were reduced at 500 mg/kg in conjunction with decreased maternal body weight gain.
- In rat studies (oral doses of 20 mg/kg, 100 mg/kg, and 500 mg/kg or 0.2 mg/kg, 2.5 mg/kg, 30 mg/kg, and 400 mg/kg), the frequency of limb malformations (ectrodactyly, micromelia, and amelia) was increased among the offspring of dams treated with 400 mg/kg (10 times the RHD on a mg/m2 basis) or greater during the organogenesis period of pregnancy. Embryotoxicity (reduced fetal body weights, increased incidence of structural variations) was observed at doses as low as 20 mg/kg (0.5 times the RHD on a mg/m2 basis). Clinical signs of maternal toxicity were seen at 400 mg/kg and above, and maternal body weight gain was reduced during treatment with 100 mg/kg or greater.
- In rabbit studies (20 mg/kg, 60 mg/kg, and 180 mg/kg or 10 mg/kg, 35 mg/kg, and 120 mg/kg orally during organogenesis), embryo/fetal mortality was increased at 35 mg/kg (2 times the RHD on a mg/m2 basis) or greater, and teratogenic effects (primarily rib and vertebral malformations) were observed at 120 mg/kg (6 times the RHD on a mg/m2 basis). Evidence of maternal toxicity (decreased body weight gain, clinical signs, and/or mortality) was seen at 35 mg/kg and above.
- When female rats were treated during the latter part of gestation and throughout lactation (0.2 mg/kg, 4 mg/kg, 20 mg/kg, and 100 mg/kg or 2, 20, and 200 mg/kg), offspring exhibited decreased viability and delayed physical development at 200 mg/kg (5 times the RHD on a mg/m2 basis) and reductions in pre-and/or postweaning body weight gain at 2 mg/kg (0.05 times the RHD on a mg/m2 basis) and above. Maternal toxicity (decreased body weight gain, clinical signs) was evident at 100 mg/kg or greater.
- In a rat embryo/fetal development study with a postnatal component (0.2 mg/kg, 2.5 mg/kg, 30 mg/kg, or 400 mg/kg during organogenesis; noted above), pups exhibited delayed physical development at 400 mg/kg (10 times the RHD on a mg/m2 basis) and persistent reductions in body weight gain at 30 mg/kg (1 times the RHD on a mg/m2 basis) and higher.
- Australian Drug Evaluation Committee (ADEC) Pregnancy Category
There is no Australian Drug Evaluation Committee (ADEC) guidance on usage of Topiramate in women who are pregnant.
Labor and Delivery
- Although the effect of topiramate on labor and delivery in humans has not been established, the development of topiramate-induced metabolic acidosis in the mother and/or in the fetus might affect the fetus' ability to tolerate labor [see Use in Specific Populations (8.1)].
Nursing Mothers
- Limited data on 5 breastfeeding infants exposed to topiramate showed infant plasma topiramate levels equal to 10-20% of the maternal plasma level. The effects of this exposure on infants are unknown. Caution should be exercised when QUDEXY XR is administered to a nursing woman.
Pediatric Use
- Seizures in Pediatric Patients 2 Years of Age and Older
- The safety and effectiveness of QUDEXY XR in pediatric patients is based on controlled trials with immediate-release topiramate [see Clinical Studies (14.2, 14.3, 14.4 and 14.5)].
- The adverse reactions (both common and serious) in pediatric patients are similar to those seen in adults [see Warnings and Precautions (5) and Adverse Reactions (6)].
- These include, but are not limited to:
- Oligohydrosis and hyperthermia [see Warnings and Precautions (5.3)]
- Dose-related increased incidence of metabolic acidosis [see Warnings and Precautions (5.4)]
- Dose-related increased incidence of hyperammonemia [see Warnings and Precautions (5.9)]
- Adjunctive Treatment for Epilepsy with Partial Onset Seizures in Infants and Toddlers (1 to 24 months)
- The following pediatric use information is based on studies conducted with immediate-release topiramate.
- Safety and effectiveness in patients below the age of 2 years have not been established for the adjunctive therapy treatment of partial onset seizures, primary generalized tonic-clonic seizures, or seizures associated with Lennox-Gastaut syndrome. In a single randomized, double-blind, placebo-controlled investigational trial, the efficacy, safety, and tolerability of immediate-release topiramate oral liquid and sprinkle formulations as an adjunct to concurrent antiepileptic drug therapy in infants 1 to 24 months of age with refractory partial onset seizures, was assessed. After 20 days of double-blind treatment, immediate-release topiramate (at fixed doses of 5 mg/kg, 15 mg/kg, and 25 mg/kg per day) did not demonstrate efficacy compared with placebo in controlling seizures.
- In general, the adverse reaction profile in this population was similar to that of older pediatric patients, although results from the above controlled study, and an open-label, long-term extension study in these infants/toddlers (1 to 24 months old) suggested some adverse reactions not previously observed in older pediatric patients and adults; i.e., growth/length retardation, certain clinical laboratory abnormalities, and other adverse reactions that occurred with a greater frequency and/or greater severity than had been recognized previously from studies in older pediatric patients or adults for various indications.
- These very young pediatric patients appeared to experience an increased risk for infections (any topiramate dose 12%, placebo 0%) and of respiratory disorders (any topiramate dose 40%, placebo 16%). The following adverse reactions were observed in at least 3% of patients on immediate-release topiramate and were 3% to 7% more frequent than in patients on placebo: viral infection, bronchitis, pharyngitis, rhinitis, otitis media, upper respiratory infection, cough, and bronchospasm. A generally similar profile was observed in older children [see Adverse Reactions (6.1)].
- Immediate-release topiramate resulted in an increased incidence of patients with increased creatinine (any topiramate dose 5%, placebo 0%), BUN (any topiramate dose 3%, placebo 0%), and protein (any topiramate dose 34%, placebo 6%), and an increased incidence of decreased potassium (any topiramate dose 7%, placebo 0%). This increased frequency of abnormal values was not dose related. Creatinine was the only analyte showing a noteworthy increased incidence (topiramate 25 mg/kg/day 5%, placebo 0%) of a markedly abnormal increase [see Adverse Reactions (6.1)]. The significance of these findings is uncertain.
- Immediate-release topiramate treatment also produced a dose-related increase in the percentage of patients who had a shift from normal at baseline to high/increased (above the normal reference range) in total eosinophil count at the end of treatment. The incidence of these abnormal shifts was 6 % for placebo, 10% for 5 mg/kg/day, 9% for 15 mg/kg/day, 14% for 25 mg/kg/day, and 11% for any topiramate dose [see Adverse Reactions (6.1)]. There was a mean dose-related increase in alkaline phosphatase. The significance of these findings is uncertain.
- Treatment with immediate-release topiramate for up to 1 year was associated with reductions in Z SCORES for length, weight, and head circumference [see Warnings and Precautions (5.4)].
- In open-label, uncontrolled experience, increasing impairment of adaptive behavior was documented in behavioral testing over time in this population. There was a suggestion that this effect was dose-related. However, because of the absence of an appropriate control group, it is not known if this decrement in function was treatment related or reflects the patient's underlying disease (e.g., patients who received higher doses may have more severe underlying disease) [see Warnings and Precautions (5.6)].
- In this open-label, uncontrolled study, the mortality was 37 deaths/1000 patient years. It is not possible to know whether this mortality rate is related to immediate-release topiramate treatment, because the background mortality rate for a similar, significantly refractory, young pediatric population (1 month to 24 months) with partial epilepsy is not known.
- Other Pediatric Studies
- Topiramate treatment produced a dose-related increased shift in serum creatinine from normal at baseline to an increased value at the end of 4 months treatment in adolescent patients (ages 12 years to 16 years) in a double-blind, placebo-controlled study [see Adverse Reactions (6.1)].
- Juvenile Animal Studies
- When topiramate (30 mg/kg/day, 90 mg/kg/day or 300 mg/kg/day) was administered orally to rats during the juvenile period of development (postnatal days 12 to 50), bone growth plate thickness was reduced in males at the highest dose, which is approximately 5 to 8 times the maximum recommended pediatric dose (9 mg/kg/day) on a body surface area (mg/m2) basis.
Geriatic Use
- Clinical studies of immediate-release topiramate did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently than younger subjects. Dosage adjustment is necessary for elderly with creatinine clearance less than 70 mL/min/1.73 m2. Estimate CrCl prior to dosing [see Dosage and Administration (2.3), Use in Specific Populations (8.7) and Clinical Pharmacology (12.3)].
Gender
- Evaluation of effectiveness and safety of topiramate in clinical trials has shown no gender-related effects.
Race
- Evaluation of effectiveness and safety of topiramate in clinical trials has shown no race-related effects.
Renal Impairment
- The clearance of topiramate was reduced by 42% in moderately renally impaired (creatinine clearance 30 to 69 mL/min/1.73m2) and by 54% in severely renally impaired subjects (creatinine clearance less than 30 mL/min/1.73m2) compared to normal renal function subjects (creatinine clearance greater than 70 mL/min/1.73m2). One-half the usual starting and maintenance dose is recommended in patients with moderate or severe renal impairment [see Dosage and Administration (2.3) and Clinical Pharmacology (12.3)].
Hepatic Impairment
There is no FDA guidance on the use of Topiramate in patients with hepatic impairment.
Females of Reproductive Potential and Males
- Data from pregnancy registries indicate that infants exposed to topiramate in utero have an increased risk for cleft lip and/or cleft palate (oral clefts) [see Warnings and Precautions (5.7) and Use in Specific Populations (8.1)]. Consider the benefits and risks of topiramate when prescribing this drug to women of childbearing potential, particularly when topiramate is considered for a condition not usually associated with permanent injury or death. Because of the risk of oral clefts to the fetus, which occur in the first trimester of pregnancy before many women know they are pregnant, all women of childbearing potential should be apprised of the potential hazard to the fetus from exposure to topiramate. If the decision is made to use topiramate, women who are not planning a pregnancy should use effective contraception [see Drug Interactions (7.1)]. Women who are planning a pregnancy should be counseled regarding the relative risks and benefits of topiramate use during pregnancy, and alternative therapeutic options should be considered for these patients.
Immunocompromised Patients
There is no FDA guidance one the use of Topiramate in patients who are immunocompromised.
Administration and Monitoring
Administration
- Oral
Monitoring
There is limited information regarding Monitoring of Topiramate in the drug label.
IV Compatibility
There is limited information regarding IV Compatibility of Topiramate in the drug label.
Overdosage
Acute Overdose
Signs and Symptoms
- Overdoses of topiramate resulted in signs and symptoms which included convulsions, drowsiness, speech disturbance, blurred vision, diplopia, mentation impaired, lethargy, abnormal coordination, stupor, hypotension, abdominal pain, agitation, dizziness and depression. The clinical consequences were not severe in most cases, but deaths have been reported after polydrug overdoses involving topiramate.
- Topiramate overdose has resulted in severe metabolic acidosis [see Warnings and Precautions (5.4)].
- A patient who ingested a dose between 96 g and 110 g of topiramate was admitted to hospital with coma lasting 20 to 24 hours followed by full recovery after 3 to 4 days.
Management
- Similar signs, symptoms, and clinical consequences are expected to occur with overdosage of QUDEXY XR. Therefore, in acute QUDEXY XR overdose, if the ingestion is recent, the stomach should be emptied immediately by lavage or by induction of emesis. Activated charcoal has been shown to adsorb topiramate in vitro. Treatment should be appropriately supportive. Hemodialysis is an effective means of removing topiramate from the body.
Chronic Overdose
There is limited information regarding Chronic Overdose of Topiramate in the drug label.
Pharmacology
There is limited information regarding Topiramate Pharmacology in the drug label.
Mechanism of Action
- The precise mechanisms by which topiramate exerts its anticonvulsant effects are unknown; however, preclinical studies have revealed four properties that may contribute to topiramate's efficacy for epilepsy. Electrophysiological and biochemical evidence suggests that topiramate, at pharmacologically relevant concentrations, blocks voltage-dependent sodium channels, augments the activity of the neurotransmitter gamma-aminobutyrate at some subtypes of the GABA-A receptor, antagonizes the AMPA/kainate subtype of the glutamate receptor, and inhibits the carbonic anhydrase enzyme, particularly isozymes II and IV.
Structure
- Topiramate, USP, is a sulfamate-substituted monosaccharide. QUDEXY XR (topiramate) extended-release capsules are available as 25 mg, 50 mg, 100 mg, 150 mg, and 200 mg capsules for oral administration as whole capsules or opened and sprinkled onto a spoonful of soft food.
- Topiramate is a white to off-white powder. Topiramate is freely soluble in polar organic solvents such as acetonitrile and acetone; and very slightly soluble to practically insoluble in non-polar organic solvents such as hexanes. Topiramate has the molecular formula C12H21NO8S and a molecular weight of 339.4. Topiramate is designated chemically as 2,3:4,5-Di-O-isopropylidene-β-D-fructopyranose sulfamate and has the following structural formula:
- QUDEXY XR (topiramate) extended-release capsules contain beads of topiramate in a capsule. The inactive ingredients are microcrystalline cellulose, hypromellose 2910, ethylcellulose, diethyl phthalate.
- In addition, the capsule shells for all strengths contain hypromellose 2910, titanium dioxide, black iron oxide, red iron oxide and/or yellow iron oxide, black pharmaceutical ink, and white pharmaceutical ink (200 mg only).
Pharmacodynamics
- Topiramate has anticonvulsant activity in rat and mouse maximal electroshock seizure (MES) tests. Topiramate is only weakly effective in blocking clonic seizures induced by the GABA-A receptor antagonist, pentylenetetrazole. Topiramate is also effective in rodent models of epilepsy, which include tonic and absence-like seizures in the spontaneous epileptic rat (SER) and tonic and clonic seizures induced in rats by kindling of the amygdala or by global ischemia.
Pharmacokinetics
- Absorption and Distribution
- The pharmacokinetics of QUDEXY XR are linear with dose proportional increases in plasma concentration when administered as a single oral dose over the range of 50 mg to 1,400 mg. At 25 mg, the pharmacokinetics of QUDEXY XR are nonlinear, possibly due to the binding of topiramate to carbonic anhydrase in red blood cells.
- QUDEXY XR sprinkled on a spoonful of soft food is bioequivalent to the intact capsule formulation.
- Following a single 200 mg oral dose of QUDEXY XR, peak plasma concentrations (Tmax) occurred approximately 20 hours after dosing. Steady-state was reached in about 5 days following daily dosing of QUDEXY XR in subjects with normal renal function, with a Tmax of approximately 6 hours.
- At steady-state, the plasma exposure (AUC0-24hr, Cmax, and Cmin) of topiramate from QUDEXY XR administered once daily and the immediate-release topiramate tablets administered twice-daily were shown to be bioequivalent. Fluctuation of topiramate plasma concentrations at steady-state for QUDEXY XR administered once daily was approximately 40% in healthy subjects, compared to approximately 53% for immediate-release topiramate [see Clinical Pharmacology (12.6)].
- Compared to the fasted state, high-fat meal had no effect on bioavailability (AUC and Cmax) but delayed the Tmax by approximately 4 hours following a single dose of QUDEXY XR. QUDEXY XR can be taken without regard to meals.
- Topiramate is 15% to 41% bound to human plasma proteins over the blood concentration range of 0.5 mcg/mL to 250 mcg/mL. The fraction bound decreased as blood concentration increased.
- Carbamazepine and phenytoin do not alter the binding of immediate-release topiramate. Sodium valproate, at 500 mcg/mL (a concentration 5 to 10 times higher than considered therapeutic for valproate) decreased the protein binding of immediate-release topiramate from 23% to 13%. Immediate-release topiramate does not influence the binding of sodium valproate.
- Metabolism and Excretion
- Topiramate is not extensively metabolized and is primarily eliminated unchanged in the urine (approximately 70% of an administered dose). Six metabolites have been identified in humans, none of which constitutes more than 5% of an administered dose. The metabolites are formed via hydroxylation, hydrolysis, and glucuronidation. There is evidence of renal tubular reabsorption of topiramate. In rats, given probenecid to inhibit tubular reabsorption, along with topiramate, a significant increase in renal clearance of topiramate was observed. This interaction has not been evaluated in humans. Overall, oral plasma clearance (CL/F) is approximately 20 mL/min to 30 mL/min in adults following oral administration. The mean effective half-life of QUDEXY XR is approximately 56 hours. Steady-state is reached in about 5 days after QUDEXY XR dosing in subjects with normal renal function.
- Specific Populations
- Renal Impairment
- The clearance of topiramate was reduced by 42% in subjects with moderate renal impairment (creatinine clearance 30 to 69 mL/min/1.73 m2) and by 54% in subjects with severe renal impairment (creatinine clearance less than 30 mL/min/1.73 m2) compared to subjects with normal renal function (creatinine clearance greater than70 mL/min/1.73 m2). Since topiramate is presumed to undergo significant tubular reabsorption, it is uncertain whether this experience can be generalized to all situations of renal impairment. It is conceivable that some forms of renal disease could differentially affect glomerular filtration rate and tubular reabsorption resulting in a clearance of topiramate not predicted by creatinine clearance. In general, however, use of one-half the usual starting and maintenance dose is recommended in patients with creatinine clearance less than 70 mL/min/1.73 m2 [see Dosage and Administration (2.3) and Use in Specific Populations (8.7)].
- Hemodialysis
- Topiramate is cleared by hemodialysis. Using a high-efficiency, counterflow, single pass-dialysate hemodialysis procedure, topiramate dialysis clearance was 120 mL/min with blood flow through the dialyzer at 400 mL/min. This high clearance (compared to 20 mL/min to 30 mL/min total oral clearance in healthy adults) will remove a clinically significant amount of topiramate from the patient over the hemodialysis treatment period. Therefore, a supplemental dose may be required [see Dosage and Administration (2.4) and Use in Specific Populations (8.8)].
- Hepatic Impairment
- In subjects with hepatic impairment, the clearance of topiramate may be decreased; the mechanism underlying the decrease is not well understood.
- Age, Gender and Race
- The pharmacokinetics of topiramate in elderly subjects (65 to 85 years of age, N=16) were evaluated in a controlled clinical study. The elderly subject population had reduced renal function (creatinine clearance [-20%]) compared to young adults. Following a single oral 100 mg dose, maximum plasma concentration for elderly and young adults was achieved at approximately 1 to 2 hours. Reflecting the primary renal elimination of topiramate, topiramate plasma and renal clearance were reduced 21% and 19%, respectively, in elderly subjects, compared to young adults. Similarly, topiramate half-life was longer (13%) in the elderly. Reduced topiramate clearance resulted in slightly higher maximum plasma concentration (23%) and AUC (25%) in elderly subjects than observed in young adults. Topiramate clearance is decreased in the elderly only to the extent that renal function is reduced. Because of this, dosage adjustment may be necessary [see Dosage and Administration (2.3), Use in Specific Populations (8.5 and 8.7) and Clinical Pharmacology (12.3)].
- Clearance of topiramate in adults was not affected by gender or race.
- Pediatric Pharmacokinetics
- Pharmacokinetics of immediate-release topiramate were evaluated in patients ages 2 years to less than 16 years. Patients received either no or a combination of other antiepileptic drugs. A population pharmacokinetic model was developed on the basis of pharmacokinetic data from relevant topiramate clinical studies. This dataset contained data from 1217 subjects including 258 pediatric patients aged 2 years to less than 16 years (95 pediatric patients less than 10 years of age).
- Pediatric patients on adjunctive treatment exhibited a higher oral clearance (L/h) of topiramate compared to patients on monotherapy, presumably because of increased clearance from concomitant enzyme-inducing antiepileptic drugs. In comparison, topiramate clearance per kg is greater in pediatric patients than in adults and in young pediatric patients (down to 2 years) than in older pediatric patients. Consequently, the plasma drug concentration for the same mg/kg/day dose would be lower in pediatric patients compared to adults and also in younger pediatric patients compared to older pediatric patients. Clearance was independent of dose.
- As in adults, hepatic enzyme-inducing antiepileptic drugs decrease the steady state plasma concentrations of topiramate.
- Drug-Drug Interaction Studies
- Antiepileptic Drugs
- Potential interactions between immediate-release topiramate and standard AEDs were assessed in controlled clinical pharmacokinetic studies in patients with epilepsy. The effects of these interactions on mean plasma AUCs are summarized in Table 9. Interaction of QUDEXY XR and standard AEDs is not expected to differ from the experience with immediate-release topiramate products.
- In Table 9, the second column (AED concentration) describes what happened to the concentration of the AED listed in the first column when topiramate was added. The third column (topiramate concentration) describes how the co-administration of a drug listed in the first column modified the concentration of topiramate in experimental settings when topiramate was given alone.
Nonclinical Toxicology
There is limited information regarding Nonclinical Toxicology of Topiramate in the drug label.
Clinical Studies
There is limited information regarding Clinical Studies of Topiramate in the drug label.
How Supplied
Storage
There is limited information regarding Topiramate Storage in the drug label.
Images
Drug Images
{{#ask: Page Name::Topiramate |?Pill Name |?Drug Name |?Pill Ingred |?Pill Imprint |?Pill Dosage |?Pill Color |?Pill Shape |?Pill Size (mm) |?Pill Scoring |?NDC |?Drug Author |format=template |template=DrugPageImages |mainlabel=- |sort=Pill Name }}
Package and Label Display Panel
{{#ask: Label Page::Topiramate |?Label Name |format=template |template=DrugLabelImages |mainlabel=- |sort=Label Page }}
Patient Counseling Information
There is limited information regarding Patient Counseling Information of Topiramate in the drug label.
Precautions with Alcohol
- Alcohol-Topiramate interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.
Brand Names
- ®[1]
Look-Alike Drug Names
- A® — B®[2]
Drug Shortage Status
Price
References
The contents of this FDA label are provided by the National Library of Medicine.
- ↑ Empty citation (help)
- ↑ "http://www.ismp.org". External link in
|title=
(help)
{{#subobject:
|Page Name=Topiramate |Pill Name=No image.jpg |Drug Name= |Pill Ingred=|+sep=; |Pill Imprint= |Pill Dosage= |Pill Color=|+sep=; |Pill Shape= |Pill Size (mm)= |Pill Scoring= |Pill Image= |Drug Author= |NDC=
}}
{{#subobject:
|Label Page=Topiramate |Label Name=Topiramate11.png
}}
{{#subobject:
|Label Page=Topiramate |Label Name=Topiramate11.png
}}