Mercaptopurine: Difference between revisions
Rabin Bista (talk | contribs) No edit summary |
Rabin Bista (talk | contribs) No edit summary |
||
Line 59: | Line 59: | ||
=====TPMT Testing===== | =====TPMT Testing===== | ||
* Genotypic and phenotypic testing of TPMT status are available. Genotypic testing can determine the allelic pattern of a patient. Currently, 3 alleles—TPMT*2, TPMT*3A and TPMT*3C—account for about 95% of individuals with reduced levels of TPMT activity. Individuals homozygous for these alleles are TPMT deficient and those heterozygous for these alleles have variable TPMT (low or intermediate) activity. Phenotypic testing determines the level of thiopurine nucleotides or TPMT activity in erythrocytes and can also be informative. Caution must be used with phenotyping since some co-administered drugs can influence measurement of TPMT activity in blood, and recent blood transfusions will misrepresent a patient's actual TPMT activity. | * Genotypic and phenotypic testing of TPMT status are available. Genotypic testing can determine the allelic pattern of a patient. Currently, 3 alleles—TPMT*2, TPMT*3A and TPMT*3C—account for about 95% of individuals with reduced levels of TPMT activity. Individuals homozygous for these alleles are TPMT deficient and those heterozygous for these alleles have variable TPMT (low or intermediate) activity. Phenotypic testing determines the level of thiopurine nucleotides or TPMT activity in erythrocytes and can also be informative. Caution must be used with phenotyping since some co-administered drugs can influence measurement of TPMT activity in blood, and recent blood transfusions will misrepresent a patient's actual TPMT activity. | ||
|clinicalTrials=There is limited information regarding <i>Clinical Trial Experience</i> of {{PAGENAME}} in the drug label. | |clinicalTrials=There is limited information regarding <i>Clinical Trial Experience</i> of {{PAGENAME}} in the drug label. | ||
Line 182: | Line 181: | ||
<!--Drug Interactions--> | <!--Drug Interactions--> | ||
|drugInteractions=* | |drugInteractions=* Allopurinol | ||
:* | :* When allopurinol and mercaptopurine are administered concomitantly, the dose of mercaptopurine must be reduced to one third to one quarter of the usual dose to avoid severe toxicity. | ||
* thioguanine | |||
:* There is usually complete cross-resistance between mercaptopurine and thioguanine. | |||
* trimethoprim-sulfamethoxazole | |||
:*The dosage of mercaptopurine may need to be reduced when this agent is combined with other drugs whose primary or secondary toxicity is myelosuppression. Enhanced marrow suppression has been noted in some patients also receiving trimethoprim-sulfamethoxazole. | |||
* warfarin | |||
:* Inhibition of the anticoagulant effect of warfarin, when given with mercaptopurine, has been reported. | |||
* aminosalicylate derivatives (e.g., olsalazine, mesalazine, or sulphasalazine | |||
:* As there is in vitro evidence that aminosalicylate derivatives (e.g., olsalazine, mesalazine, or sulphasalazine) inhibit the TPMT enzyme, they should be administered with caution to patients receiving concurrent mercaptopurine therapy | |||
|useInPregnancyFDA=* '''Pregnancy Category''' | |useInPregnancyFDA=* '''Pregnancy Category''' | ||
|useInPregnancyAUS=* '''Australian Drug Evaluation Committee (ADEC) Pregnancy Category''' | |useInPregnancyAUS=* '''Australian Drug Evaluation Committee (ADEC) Pregnancy Category''' |
Revision as of 21:32, 14 January 2015
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Rabin Bista, M.B.B.S. [2]
Disclaimer
WikiDoc MAKES NO GUARANTEE OF VALIDITY. WikiDoc is not a professional health care provider, nor is it a suitable replacement for a licensed healthcare provider. WikiDoc is intended to be an educational tool, not a tool for any form of healthcare delivery. The educational content on WikiDoc drug pages is based upon the FDA package insert, National Library of Medicine content and practice guidelines / consensus statements. WikiDoc does not promote the administration of any medication or device that is not consistent with its labeling. Please read our full disclaimer here.
Overview
Mercaptopurine is a Antineoplastic, antimetabolite that is FDA approved for the treatment of maintenance therapy of acute lymphatic (lymphocytic, lymphoblastic) leukemia as part of a combination regimen. Common adverse reactions include Bone marrrow toxicity, Hepatotoxicity, skin rashes, Diarrhoea, nausea, vomiting and anorexia.
Adult Indications and Dosage
FDA-Labeled Indications and Dosage (Adult)
Indication
- maintenance therapy of acute lymphatic (lymphocytic, lymphoblastic) leukemia as part of a combination regimen.
- The response to this agent depends upon the particular subclassification of acute lymphatic leukemia and the age of the patient (pediatric or adult).
Dosage
Maintenance Therapy
- Once a complete hematologic remission is obtained, maintenance therapy is considered essential. Maintenance doses will vary from patient to patient. The usual daily maintenance dose of mercaptopurine is 1.5 to 2.5 mg/kg/day as a single dose. It is to be emphasized that in pediatric patients with acute lymphatic leukemia in remission, superior results have been obtained when mercaptopurine has been combined with other agents (most frequently with methotrexate) for remission maintenance. Mercaptopurine should rarely be relied upon as a single agent for the maintenance of remissions induced in acute leukemia.
Dosage with Concomitant Allopurinol
- When allopurinol and mercaptopurine are administered concomitantly, the dose of mercaptopurine must be reduced to one third to one quarter of the usual dose to avoid severe toxicity.
Dosage in TPMT-deficient Patients
- Patients with inherited little or no thiopurine-S-methyltransferase (TPMT) activity are at increased risk for severe mercaptopurine toxicity from conventional doses of mercaptopurine and generally require substantial dose reduction. The optimal starting dose for homozygous deficient patients has not been established
Dosage in Renal and Hepatic Impairment
- It is probably advisable to start with lower dosages in patients with impaired renal function, due to slower elimination of the drug and metabolites and a greater cumulative effect. Consideration should be given to reducing the dosage in patients with impaired hepatic function.
Off-Label Use and Dosage (Adult)
Guideline-Supported Use
There is limited information regarding Off-Label Guideline-Supported Use of Mercaptopurine in adult patients.
Non–Guideline-Supported Use
Indications
- Acute myeloid leukemia[1]
- Chronic myeloid leukemia
- Crohn's disease[2][3]
- Non-Hodgkin's lymphoma[4][5][6]
- Ulcerative colitis[2][3][7][8]
Pediatric Indications and Dosage
FDA-Labeled Indications and Dosage (Pediatric)
Indication
- maintenance therapy of acute lymphatic (lymphocytic, lymphoblastic) leukemia as part of a combination regimen
Dosage
- The usual daily maintenance dose of mercaptopurine is 1.5 to 2.5 mg/kg/day as a single dose.
- It is to be emphasized that in pediatric patients with acute lymphatic leukemia in remission, superior results have been obtained when mercaptopurine has been combined with other agents (most frequently with methotrexate) for remission maintenance.
Off-Label Use and Dosage (Pediatric)
Guideline-Supported Use
There is limited information regarding Off-Label Guideline-Supported Use of Mercaptopurine in pediatric patients.
Non–Guideline-Supported Use
There is limited information regarding Off-Label Non–Guideline-Supported Use of Mercaptopurine in pediatric patients.
Contraindications
- Mercaptopurine tablets should not be used in patients whose disease has demonstrated prior resistance to this drug. In animals and humans, there is usually complete cross-resistance between mercaptopurine and thioguanine.
- hypersensitivity to mercaptopurine
Warnings
- Mercaptopurine is mutagenic in animals and humans, carcinogenic in animals, and may increase the patient's risk of neoplasia. Cases of hepatosplenic T-cell lymphoma have been reported in patients treated with mercaptopurine for inflammatory bowel disease. The safety and efficacy of mercaptopurine in patients with inflammatory bowel disease have not been established.
Bone Marrow Toxicity
- The most consistent, dose-related toxicity is bone marrow suppression. This may be manifest by anemia, leukopenia, thrombocytopenia, or any combination of these. Any of these findings may also reflect progression of the underlying disease. In many patients with severe depression of the formed elements of the blood due to mercaptopurine, the bone marrow appears hypoplastic on aspiration or biopsy, whereas in other cases it may appear normocellular. The qualitative changes in the erythroid elements towards the megaloblastic series, characteristically seen with the folic acid antagonists and some other antimetabolites, are not seen with this drug. Life-threatening infections and bleeding have been observed as a consequence of mercaptopurine-induced granulocytopenia and thrombocytopenia. Since mercaptopurine may have a delayed effect, it is important to withdraw the medication temporarily at the first sign of an unexpected abnormally large fall in any of the formed elements of the blood, if not attributable to another drug or disease process.
- Individuals who are homozygous for an inherited defect in the TPMT (thiopurine-S-methyltransferase) gene are unusually sensitive to the myelosuppressive effects of mercaptopurine and prone to developing rapid bone marrow suppression following the initiation of treatment. Laboratory tests are available, both genotypic and phenotypic, to determine the TPMT status. Substantial dose reductions are generally required for homozygous-TPMT deficient patients (two non-functional alleles) to avoid the development of life threatening bone marrow suppression. Although heterozygous patients with intermediate TPMT activity may have increased mercaptopurine toxicity, this is variable, and the majority of patients tolerate normal doses of mercaptopurine. If a patient has clinical or laboratory evidence of severe toxicity, particularly myelosuppression, TPMT testing should be considered. In patients who exhibit excessive myelosuppression due to 6-mercaptopurine, it may be possible to adjust the mercaptopurine dose and administer the usual dosage of other myelosuppressive chemotherapy as required for treatment.
- Bone marrow toxicity may be more profound in patients treated with concomitant allopurinol. This problem could be exacerbated by coadministration with drugs that inhibit TPMT, such as olsalazine, mesalazine, or sulphasalazine.
Hepatotoxicity
- Mercaptopurine is hepatotoxic in animals and humans. A small number of deaths have been reported that may have been attributed to hepatic necrosis due to administration of mercaptopurine. Hepatic injury can occur with any dosage, but seems to occur with more frequency when doses of 2.5 mg/kg/day are exceeded. The histologic pattern of mercaptopurine hepatotoxicity includes features of both intrahepatic cholestasis and parenchymal cell necrosis, either of which may predominate. It is not clear how much of the hepatic damage is due to direct toxicity from the drug and how much may be due to a hypersensitivity reaction. In some patients jaundice has cleared following withdrawal of mercaptopurine and reappeared with its reintroduction.
- Published reports have cited widely varying incidences of overt hepatotoxicity. In a large series of patients with various neoplastic diseases, mercaptopurine was administered orally in doses ranging from 2.5 mg/kg to 5.0 mg/kg without evidence of hepatotoxicity. It was noted by the authors that no definite clinical evidence of liver damage could be ascribed to the drug, although an occasional case of serum hepatitis did occur in patients receiving 6-MP who previously had transfusions. In reports of smaller cohorts of adult and pediatric leukemic patients, the incidence of hepatotoxicity ranged from 0% to 6%. In an isolated report by Einhorn and Davidsohn, jaundice was observed more frequently (40%), especially when doses exceeded 2.5 mg/kg. Usually, clinically detectable jaundice appears early in the course of treatment (1 to 2 months). However, jaundice has been reported as early as 1 week and as late as 8 years after the start of treatment with mercaptopurine. The hepatotoxicity has been associated in some cases with anorexia, diarrhea, jaundice and ascites. Hepatic encephalopathy has occurred.
- Monitoring of serum transaminase levels, alkaline phosphatase, and bilirubin levels may allow early detection of hepatotoxicity. It is advisable to monitor these liver function tests at weekly intervals when first beginning therapy and at monthly intervals thereafter. Liver function tests may be advisable more frequently in patients who are receiving mercaptopurine with other hepatotoxic drugs or with known pre-existing liver disease. The onset of clinical jaundice, hepatomegaly, or anorexia with tenderness in the right hypochondrium are immediate indications for withholding mercaptopurine until the exact etiology can be identified. Likewise, any evidence of deterioration in liver function studies, toxic hepatitis, or biliary stasis should prompt discontinuation of the drug and a search for an etiology of the hepatotoxicity.
- The concomitant administration of mercaptopurine with other hepatotoxic agents requires especially careful clinical and biochemical monitoring of hepatic function. Combination therapy involving mercaptopurine with other drugs not felt to be hepatotoxic should nevertheless be approached with caution. The combination of mercaptopurine with doxorubicin was reported to be hepatotoxic in 19 of 20 patients undergoing remission-induction therapy for leukemia resistant to previous therapy.
Immunosuppression
- Mercaptopurine recipients may manifest decreased cellular hypersensitivities and decreased allograft rejection. Induction of immunity to infectious agents or vaccines will be subnormal in these patients; the degree of immunosuppression will depend on antigen dose and temporal relationship to drug. This immunosuppressive effect should be carefully considered with regard to intercurrent infections and risk of subsequent neoplasia.
Precautions
General
- The safe and effective use of mercaptopurine demands close monitoring of the CBC and patient clinical status. After selection of an initial dosage schedule, therapy will frequently need to be modified depending upon the patient's response and manifestations of toxicity. It is probably advisable to start with lower dosages in patients with impaired renal function, due to slower elimination of the drug and metabolites and a greater cumulative effects.
Laboratory Tests
- It is recommended that evaluation of the hemoglobin or hematocrit, total white blood cell count and differential count, and quantitative platelet count be obtained weekly while the patient is on therapy with mercaptopurine. Bone marrow examination may also be useful for the evaluation of marrow status. The decision to increase, decrease, continue, or discontinue a given dosage of mercaptopurine must be based upon the degree of severity and rapidity with which changes are occurring. In many instances, particularly during the induction phase of acute leukemia, complete blood counts will need to be done more frequently than once weekly in order to evaluate the effect of the therapy. If a patient has clinical or laboratory evidence of severe bone marrow toxicity, particularly myelosuppression, TPMT testing should be considered.
TPMT Testing
- Genotypic and phenotypic testing of TPMT status are available. Genotypic testing can determine the allelic pattern of a patient. Currently, 3 alleles—TPMT*2, TPMT*3A and TPMT*3C—account for about 95% of individuals with reduced levels of TPMT activity. Individuals homozygous for these alleles are TPMT deficient and those heterozygous for these alleles have variable TPMT (low or intermediate) activity. Phenotypic testing determines the level of thiopurine nucleotides or TPMT activity in erythrocytes and can also be informative. Caution must be used with phenotyping since some co-administered drugs can influence measurement of TPMT activity in blood, and recent blood transfusions will misrepresent a patient's actual TPMT activity.
Adverse Reactions
Clinical Trials Experience
There is limited information regarding Clinical Trial Experience of Mercaptopurine in the drug label.
Body as a Whole
Cardiovascular
Digestive
Endocrine
Hematologic and Lymphatic
Metabolic and Nutritional
Musculoskeletal
Neurologic
Respiratory
Skin and Hypersensitivy Reactions
Special Senses
Urogenital
Miscellaneous
Postmarketing Experience
There is limited information regarding Postmarketing Experience of Mercaptopurine in the drug label.
Body as a Whole
Cardiovascular
Digestive
Endocrine
Hematologic and Lymphatic
Metabolic and Nutritional
Musculoskeletal
Neurologic
Respiratory
Skin and Hypersensitivy Reactions
Special Senses
Urogenital
Miscellaneous
Drug Interactions
- Allopurinol
- When allopurinol and mercaptopurine are administered concomitantly, the dose of mercaptopurine must be reduced to one third to one quarter of the usual dose to avoid severe toxicity.
- thioguanine
- There is usually complete cross-resistance between mercaptopurine and thioguanine.
- trimethoprim-sulfamethoxazole
- The dosage of mercaptopurine may need to be reduced when this agent is combined with other drugs whose primary or secondary toxicity is myelosuppression. Enhanced marrow suppression has been noted in some patients also receiving trimethoprim-sulfamethoxazole.
- warfarin
- Inhibition of the anticoagulant effect of warfarin, when given with mercaptopurine, has been reported.
- aminosalicylate derivatives (e.g., olsalazine, mesalazine, or sulphasalazine
- As there is in vitro evidence that aminosalicylate derivatives (e.g., olsalazine, mesalazine, or sulphasalazine) inhibit the TPMT enzyme, they should be administered with caution to patients receiving concurrent mercaptopurine therapy
Use in Specific Populations
Pregnancy
- Pregnancy Category
- Australian Drug Evaluation Committee (ADEC) Pregnancy Category
There is no Australian Drug Evaluation Committee (ADEC) guidance on usage of Mercaptopurine in women who are pregnant.
Labor and Delivery
There is no FDA guidance on use of Mercaptopurine during labor and delivery.
Nursing Mothers
There is no FDA guidance on the use of Mercaptopurine with respect to nursing mothers.
Pediatric Use
There is no FDA guidance on the use of Mercaptopurine with respect to pediatric patients.
Geriatic Use
There is no FDA guidance on the use of Mercaptopurine with respect to geriatric patients.
Gender
There is no FDA guidance on the use of Mercaptopurine with respect to specific gender populations.
Race
There is no FDA guidance on the use of Mercaptopurine with respect to specific racial populations.
Renal Impairment
There is no FDA guidance on the use of Mercaptopurine in patients with renal impairment.
Hepatic Impairment
There is no FDA guidance on the use of Mercaptopurine in patients with hepatic impairment.
Females of Reproductive Potential and Males
There is no FDA guidance on the use of Mercaptopurine in women of reproductive potentials and males.
Immunocompromised Patients
There is no FDA guidance one the use of Mercaptopurine in patients who are immunocompromised.
Administration and Monitoring
Administration
- Oral
- Intravenous
Monitoring
There is limited information regarding Monitoring of Mercaptopurine in the drug label.
- Description
IV Compatibility
There is limited information regarding IV Compatibility of Mercaptopurine in the drug label.
Overdosage
Acute Overdose
Signs and Symptoms
- Description
Management
- Description
Chronic Overdose
There is limited information regarding Chronic Overdose of Mercaptopurine in the drug label.
Pharmacology
There is limited information regarding Mercaptopurine Pharmacology in the drug label.
Mechanism of Action
Structure
Pharmacodynamics
There is limited information regarding Pharmacodynamics of Mercaptopurine in the drug label.
Pharmacokinetics
There is limited information regarding Pharmacokinetics of Mercaptopurine in the drug label.
Nonclinical Toxicology
There is limited information regarding Nonclinical Toxicology of Mercaptopurine in the drug label.
Clinical Studies
There is limited information regarding Clinical Studies of Mercaptopurine in the drug label.
How Supplied
Storage
There is limited information regarding Mercaptopurine Storage in the drug label.
Images
Drug Images
{{#ask: Page Name::Mercaptopurine |?Pill Name |?Drug Name |?Pill Ingred |?Pill Imprint |?Pill Dosage |?Pill Color |?Pill Shape |?Pill Size (mm) |?Pill Scoring |?NDC |?Drug Author |format=template |template=DrugPageImages |mainlabel=- |sort=Pill Name }}
Package and Label Display Panel
{{#ask: Label Page::Mercaptopurine |?Label Name |format=template |template=DrugLabelImages |mainlabel=- |sort=Label Page }}
Patient Counseling Information
There is limited information regarding Patient Counseling Information of Mercaptopurine in the drug label.
Precautions with Alcohol
- Alcohol-Mercaptopurine interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.
Brand Names
- ®[9]
Look-Alike Drug Names
- A® — B®[10]
Drug Shortage Status
Price
References
The contents of this FDA label are provided by the National Library of Medicine.
- ↑ Canpolat C, Jeha S, Lockhart S, Ramirez I, Zipf T, Pinkel D (1997). "High-dose mercaptopurine and intermediate-dose cytarabine during first remission of acute myeloid leukemia". Cancer Invest. 15 (2): 121–6. PMID 9095207.
- ↑ 2.0 2.1 Nagy F, Molnar T, Szepes Z, Farkas K, Nyari T, Lonovics J (2008). "Efficacy of 6-mercaptopurine treatment after azathioprine hypersensitivity in inflammatory bowel disease". World J Gastroenterol. 14 (27): 4342–6. PMC 2731186. PMID 18666323.
- ↑ 3.0 3.1 Kim PS, Zlatanic J, Korelitz BI, Gleim GW (1999). "Optimum duration of treatment with 6-mercaptopurine for Crohn's disease". Am J Gastroenterol. 94 (11): 3254–7. doi:10.1111/j.1572-0241.1999.01532.x. PMID 10566725.
- ↑ Reiter A, Schrappe M, Parwaresch R, Henze G, Müller-Weihrich S, Sauter S; et al. (1995). "Non-Hodgkin's lymphomas of childhood and adolescence: results of a treatment stratified for biologic subtypes and stage--a report of the Berlin-Frankfurt-Münster Group". J Clin Oncol. 13 (2): 359–72. PMID 7844597.
- ↑ Hvizdala EV, Berard C, Callihan T, Falletta J, Sabio H, Shuster JJ; et al. (1988). "Lymphoblastic lymphoma in children--a randomized trial comparing LSA2-L2 with the A-COP+ therapeutic regimen: a Pediatric Oncology Group Study". J Clin Oncol. 6 (1): 26–33. PMID 3275750.
- ↑ Wollner N, Burchenal JH, Lieberman PH, Exelby P, D'Angio G, Murphy ML (1976). "Non-Hodgkin's lymphoma in children. A comparative study of two modalities of therapy". Cancer. 37 (1): 123–34. PMID 1247950.
- ↑ George J, Present DH, Pou R, Bodian C, Rubin PH (1996). "The long-term outcome of ulcerative colitis treated with 6-mercaptopurine". Am J Gastroenterol. 91 (9): 1711–4. PMID 8792685.
- ↑ Adler DJ, Korelitz BI (1990). "The therapeutic efficacy of 6-mercaptopurine in refractory ulcerative colitis". Am J Gastroenterol. 85 (6): 717–22. PMID 1972315.
- ↑ Empty citation (help)
- ↑ "http://www.ismp.org". External link in
|title=
(help)
{{#subobject:
|Page Name=Mercaptopurine |Pill Name=No image.jpg |Drug Name= |Pill Ingred=|+sep=; |Pill Imprint= |Pill Dosage={{{dosageValue}}} {{{dosageUnit}}} |Pill Color=|+sep=; |Pill Shape= |Pill Size (mm)= |Pill Scoring= |Pill Image= |Drug Author= |NDC=
}}
{{#subobject:
|Label Page=Mercaptopurine |Label Name=Mercaptopurine11.png
}}
{{#subobject:
|Label Page=Mercaptopurine |Label Name=Mercaptopurine11.png
}}