Diffuse large B cell lymphoma pathophysiology: Difference between revisions

Jump to navigation Jump to search
Line 36: Line 36:
{| align="right"
{| align="right"
|-valign="top"
|-valign="top"
| [[file:215px-diffuse large B cell lymphoma - cytology low mag.jpg|thumb|350px|Micrograph of a diffuse large B cell lymphoma]]
| [[image:215px-diffuse large B cell lymphoma - cytology low mag.jpg|thumb|350px|Micrograph of a diffuse large B cell lymphoma]]
|}
|}
<br clear="left"/>
<br clear="left"/>

Revision as of 21:16, 24 August 2015

Diffuse large B cell lymphoma Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Diagnosis

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Biopsy

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Diffuse large B cell lymphoma pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Diffuse large B cell lymphoma pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Diffuse large B cell lymphoma pathophysiology

CDC on Diffuse large B cell lymphoma pathophysiology

Diffuse large B cell lymphoma pathophysiology in the news

Blogs on Diffuse large B cell lymphoma pathophysiology

Directions to Hospitals Treating Diffuse large B cell lymphoma

Risk calculators and risk factors for Diffuse large B cell lymphoma pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Diffuse large B cell lymphoma,not otherwise specified can be separated into two groups on the basis of their gene expression profiles; Germinal centre B-cell-like (GCB) and Activated B-cell-like (ABC). Recently, it was described that short non-coding RNAs named microRNAs (miRNAs) have important functions in lymphoma biology. Immunohistochemical staining technique uses highly specific antibody-based stains to detect proteins on a microscope slide, and since microarrays are not widely available for routine clinical use,this is a desirable alternative. On microscopic histopathological analysis, diffuse large B cell lymphoma can be divided into three variants: centroblastic, immunoblastic, and anaplastic.

Genetics

  • Gene expression profiling studies have also attempted to distinguish heterogeneous groups of diffuse large B cell lymphoma from each other.
  • These studies examine thousands of genes simultaneously using a DNA microarray, looking for patterns which may help in grouping cases of diffuse large B cell lymphoma.
  • Many studies now suggest that cases of diffuse large B cell lymphoma,not otherwise specified can be separated into two groups on the basis of their gene expression profiles
  • Germinal centre B-cell-like (GCB)
  • Activated B-cell-like (ABC).[1][2][3]
  • Tumor cells in the Germinal centre B-cell-like subgroup resemble normal B cells in the germinal centre closely, and are generally associated with a favourable prognosis.[4][5]
  • Activated B-cell-like tumor cells are associated with a poorer prognosis,[5] and derive their name from studies which show the continuous activation of certain pathways normally activated when B cells interact with an antigen.
  • The NF-κB pathway, which is normally involved in transforming B cells into plasma cells, is an important example of one such pathway.[6]

MicroRNA expression

  • Recent gene expression studies is the importance of the cells and microscopic structures interspersed between the malignant B cells within the diffuse large B cell lymphoma tumor, an area commonly known as the tumor microenvironment.
  • The presence of gene expression signatures commonly associated with macrophages, T cells, and remodelling of the extracellular matrix seems to be associated with an improved prognosis and better overall survival.[5][7]
  • Alternatively, expression of genes coding for pro-angiogenic factors is correlated with poorer survival.[5]

Recently, it was described that short non-coding RNAs named microRNAs (miRNAs) have important functions in lymphoma biology. In malignant B cells miRNAs participate in pathways fundamental to B cell development like

  • B cell receptor (BCR) signalling
  • B cell migration/adhesion
  • Cell-cell interactions in immune niches
  • Production and class-switching of immunoglobulins.[8]

MiRNAs influence B cell maturation, generation of pre-, marginal zone, follicular, B1, plasma and memory B cells.[8]

Immunohistochemistry

  • With the apparent success of gene expression profiling in separating biologically distinct cases of diffuse large B cell lymphoma, not otherwise specified, some researchers examined whether a similar distinction could be made using immunohistochemical staining, a widely used method for characterizing tissue samples.
  • This technique uses highly specific antibody-based stains to detect proteins on a microscope slide, and since microarrays are not widely available for routine clinical use, immunohistochemical staining is a desirable alternative.[9][10]
  • Many of these studies focused on stains against the products of prognostically significant genes which had been implicated in diffuse large B cell lymphoma gene expression studies. Examples of such genes include BCL2, BCL6, MUM1, LMO2, MYC, and p21. Several algorithms for separating diffuse large B cell lymphoma cases by immunohistochemical staining arose out of this research, categorizing tissue samples into groups most commonly known as Germinal centre B-cell-like subgroup and Non-Germinal centre B-cell-like subgroup.[10][11][12][13]
  • The correlation between these Germinal centre B-cell-like/Non-Germinal centre B-cell-like immunohistochemical groupings and the Germinal centre B-cell/Activated B-cell-like groupings used in gene expression profiling studies is uncertain,[4][12] as is their prognostic value.[4]
  • This uncertainty may arise in part due to poor inter-rater reliability in performing common immunohistochemical stains.[9]

Microscopic Pathology

File:215px-diffuse large B cell lymphoma - cytology low mag.jpg
Micrograph of a diffuse large B cell lymphoma


  • Three variants are most commonly seen: centroblastic, immunoblastic, and anaplastic.

Centroblastic

  • Most cases of are diffuse large B cell lymphoma centroblastic, having the appearance of medium-to-large-sized lymphocytes with scanty cytoplasm.
  • Oval or round nuclei containing fine chromatin are prominently visible, having two to four nucleoli within each nucleus.
  • Sometimes the tumour may be monomorphic, composed almost entirely of centroblasts.
  • However, most cases are polymorphic, with a mixture of centroblastic and immunoblastic cells.

Immunoblastic

  • Immunoblasts have significant basophilic cytoplasm and a central nucleolus.
  • A tumour can be classified as immunoblastic if greater than 90% of its cells are immunoblasts. This distinction can be problematic, however, because hematopathologists reviewing the microscope slides may often disagree on whether a collection of cells is best characterized as centroblasts or immunoblasts.[14] Such disagreement indicates poor inter-rater reliability.

Anaplastic

  • The third morphologic variant, anaplastic, consists of tumour cells which appear very differently from their normal B cell counterparts.
  • The cells are generally very large with a round, oval, or polygonal shape and pleomorphic nuclei, and may resemble Hodgkin cells or Reed-Sternberg cells.

References

  1. Shipp, Margaret A.; Ross, Ken N.; Tamayo, Pablo; Weng, Andrew P.; Kutok, Jeffery L.; Aguiar, Ricardo C.T.; Gaasenbeek, Michelle; Angelo, Michael; Reich, Michael; Pinkus, Geraldine S.; Ray, Tane S.; Koval, Margaret A.; Last, Kim W.; Norton, Andrew; Lister, T. Andrew; Mesirov, Jill; Neuberg, Donna S.; Lander, Eric S.; Aster, Jon C.; Golub, Todd R. (2002). "Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning". Nature Medicine. 8 (1): 68–74. doi:10.1038/nm0102-68. PMID 11786909.
  2. Rosenwald, Andreas; Wright, George; Chan, Wing C.; Connors, Joseph M.; Campo, Elias; Fisher, Richard I.; Gascoyne, Randy D.; Muller-Hermelink, H. Konrad; Smeland, Erlend B.; Giltnane, Jena M.; Hurt, Elaine M.; Zhao, Hong; Averett, Lauren; Yang, Liming; Wilson, Wyndham H.; Jaffe, Elaine S.; Simon, Richard; Klausner, Richard D.; Powell, John; Duffey, Patricia L.; Longo, Dan L.; Greiner, Timothy C.; Weisenburger, Dennis D.; Sanger, Warren G.; Dave, Bhavana J.; Lynch, James C.; Vose, Julie; Armitage, James O.; Montserrat, Emilio; et al. (2002). "The Use of Molecular Profiling to Predict Survival after Chemotherapy for Diffuse Large-B-Cell Lymphoma". New England Journal of Medicine. 346 (25): 1937–47. doi:10.1056/NEJMoa012914. PMID 12075054.
  3. Wright, G.; Tan, B.; Rosenwald, A.; Hurt, E. H.; Wiestner, A.; Staudt, L. M. (2003). "A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma". Proceedings of the National Academy of Sciences. 100 (17): 9991–6. Bibcode:2003PNAS..100.9991W. doi:10.1073/pnas.1732008100. JSTOR 3147650. PMC 187912. PMID 12900505.
  4. 4.0 4.1 4.2 Gutierrez-Garcia, G.; Cardesa-Salzmann, T.; Climent, F.; Gonzalez-Barca, E.; Mercadal, S.; Mate, J. L.; Sancho, J. M.; Arenillas, L.; Serrano, S.; Escoda, L.; Martinez, S.; Valera, A.; Martinez, A.; Jares, P.; Pinyol, M.; Garcia-Herrera, A.; Martinez-Trillos, A.; Gine, E.; Villamor, N.; Campo, E.; Colomo, L.; Lopez-Guillermo, A.; Grup per l'Estudi dels Limfomes de Catalunya I Balears (GELCAB) (2011). "Gene-expression profiling and not immunophenotypic algorithms predicts prognosis in patients with diffuse large B-cell lymphoma treated with immunochemotherapy". Blood. 117 (18): 4836–43. doi:10.1182/blood-2010-12-322362. PMID 21441466.
  5. 5.0 5.1 5.2 5.3 Lenz, G.; Wright, G.; Dave, S.S.; Xiao, W.; Powell, J.; Zhao, H.; Xu, W.; Tan, B.; Goldschmidt, N.; Iqbal, J.; Vose, J.; Bast, M.; Fu, K.; Weisenburger, D.D.; Greiner, T.C.; Armitage, J.O.; Kyle, A.; May, L.; Gascoyne, R.D.; Connors, J.M.; Troen, G.; Holte, H.; Kvaloy, S.; Dierickx, D.; Verhoef, G.; Delabie, J.; Smeland, E.B.; Jares, P.; Martinez, A.; et al. (2008). "Stromal Gene Signatures in Large-B-Cell Lymphomas". New England Journal of Medicine. 359 (22): 2313–23. doi:10.1056/NEJMoa0802885. PMID 19038878.
  6. Schwartz, Robert S.; Lenz, Georg; Staudt, Louis M. (2010). "Aggressive Lymphomas". New England Journal of Medicine. 362 (15): 1417–29. doi:10.1056/NEJMra0807082. PMID 20393178.
  7. Linderoth, Johan; Edén, Patrik; Ehinger, Mats; Valcich, Jeanette; Jerkeman, Mats; Bendahl, Pär-Ola; Berglund, Mattias; Enblad, Gunilla; Erlanson, Martin; Roos, Göran; Cavallin-Ståhl, Eva (2008). "Genes associated with the tumour microenvironment are differentially expressed in cured versus primary chemotherapy-refractory diffuse large B-cell lymphoma". British Journal of Haematology. 141 (4): 423–32. doi:10.1111/j.1365-2141.2008.07037.x. PMID 18419622.
  8. 8.0 8.1 Musilova, K; Mraz, M (2015). "MicroRNAs in B-cell lymphomas: How a complex biology gets more complex". Leukemia. doi:10.1038/leu.2014.351.
  9. 9.0 9.1 De Jong, D.; Xie, W.; Rosenwald, A.; Chhanabhai, M.; Gaulard, P.; Klapper, W.; Lee, A.; Sander, B.; Thorns, C.; Campo, E.; Molina, T.; Hagenbeek, A.; Horning, S.; Lister, A.; Raemaekers, J.; Salles, G.; Gascoyne, R. D.; Weller, E. (2008). "Retracted: Immunohistochemical prognostic markers in diffuse large B-cell lymphoma: Validation of tissue microarray as a prerequisite for broad clinical applications (a study from the Lunenburg Lymphoma Biomarker Consortium)". Journal of Clinical Pathology. 62 (2): 128–38. doi:10.1136/jcp.2008.057257. PMID 18794197.
  10. 10.0 10.1 Choi, W. W.L.; Weisenburger, D. D.; Greiner, T. C.; Piris, M. A.; Banham, A. H.; Delabie, J.; Braziel, R. M.; Geng, H.; Iqbal, J.; Lenz, G.; Vose, J. M.; Hans, C. P.; Fu, K.; Smith, L. M.; Li, M.; Liu, Z.; Gascoyne, R. D.; Rosenwald, A.; Ott, G.; Rimsza, L. M.; Campo, E.; Jaffe, E. S.; Jaye, D. L.; Staudt, L. M.; Chan, W. C. (2009). "A New Immunostain Algorithm Classifies Diffuse Large B-Cell Lymphoma into Molecular Subtypes with High Accuracy". Clinical Cancer Research. 15 (17): 5494–502. doi:10.1158/1078-0432.CCR-09-0113. PMID 19706817.
  11. Colomo, L.; López-Guillermo, A; Perales, M; Rives, S; Martínez, A; Bosch, F; Colomer, D; Falini, B; Montserrat, E; Campo, E (2002). "Clinical impact of the differentiation profile assessed by immunophenotyping in patients with diffuse large B-cell lymphoma". Blood. 101 (1): 78–84. doi:10.1182/blood-2002-04-1286. PMID 12393466.
  12. 12.0 12.1 Hans, C. P.; Weisenburger, D. D.; Greiner, T. C.; Gascoyne, R. D.; Delabie, J; Ott, G; Müller-Hermelink, H. K.; Campo, E; Braziel, R. M.; Jaffe, E. S.; Pan, Z; Farinha, P; Smith, L. M.; Falini, B; Banham, A. H.; Rosenwald, A; Staudt, L. M.; Connors, J. M.; Armitage, J. O.; Chan, W. C. (2004). "Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray". Blood. 103 (1): 275–82. doi:10.1182/blood-2003-05-1545. PMID 14504078.
  13. Muris, JJF; Meijer, Cjlm; Vos, W; Van Krieken, Jhjm; Jiwa, NM; Ossenkoppele, GJ; Oudejans, JJ (2006). "Immunohistochemical profiling based on Bcl-2, CD10 and MUM1 expression improves risk stratification in patients with primary nodal diffuse large B cell lymphoma". The Journal of Pathology. 208 (5): 714–23. doi:10.1002/path.1924. PMID 16400625.
  14. Harris, N. L.; Jaffe, E. S.; Stein, H; Banks, P. M.; Chan, J. K.; Cleary, M. L.; Delsol, G; De Wolf-Peeters, C; Falini, B; Gatter, K. C. (1994). "A revised European-American classification of lymphoid neoplasms: A proposal from the International Lymphoma Study Group". Blood. 84 (5): 1361–92. PMID 8068936.


Template:WikiDoc Sources