Superior vena cava syndrome overview: Difference between revisions
Line 46: | Line 46: | ||
===Medical Therapy=== | ===Medical Therapy=== | ||
The treatment of [[SVC]] syndrome depends on the etiology of the obstruction, the severity of the symptoms, the prognosis of the patient, and patient preferences and goals for therapy. | The treatment of [[SVC]] syndrome depends on the etiology of the obstruction, the severity of the symptoms, the prognosis of the patient, and patient preferences and goals for therapy. | ||
===Surgery=== | ===Surgery=== | ||
Surgical options include stent placement and surgical bypass. | Surgical options include stent placement and surgical bypass. |
Revision as of 18:16, 11 January 2016
Superior Vena Cava Syndrome Microchapters |
Differentiating Superior Vena Cava Syndrome from Other Diseases |
---|
Diagnosis |
Treatment |
Case Studies |
Superior vena cava syndrome overview On the Web |
American Roentgen Ray Society Images of Superior vena cava syndrome overview |
Directions to Hospitals Treating Superior vena cava syndrome |
Risk calculators and risk factors for Superior vena cava syndrome overview |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Associate Editor(s)-in-Chief: Maria Fernanda Villarreal, M.D. [2]
Overview
Superior vena cava syndrome (SVCS) is an array of symptoms caused by the impairment of blood flow through the superior vena cava (SVC) to the right atrium. Symptoms that prompt suspicion of this syndrome include dyspnea, coughing, and swelling of the face, neck, upper trunk, and extremities. In rare instances, patients may complain of hoarseness, chest pain, dysphagia, and hemoptysis. Physical signs that may be noted on presentation are neck vein distention, thoracic vein distention, edema of the face or upper extremities, plethora, and tachypnea. Rarely, cyanosis, Horner syndrome, and a paralyzed vocal cord may also be present.
Historical Perspective
Superior vena cava syndrome was first discovered by William Hunter (1718-1783), a Scottish obstetrician, in 1757 following as a complication of a syphilitic aortic aneurysm. [1]
Pathophysiology
The superior vena cava (SVC) is the major blood vessel for drainage of venous blood from the head, neck, upper extremities, and upper thorax to the heart. Obstruction of the superior vena cava (SVC) may be caused by neoplastic invasion of the venous wall associated with intravascular thrombosis, enlarged nodes, enlarged ascending aorta, or more simply, by extrinsic pressure of a tumor mass against the thin-walled superior vena cava (SVC) which leads to the development of SVC syndrome.
Causes
Superior vena cava syndrome may be caused by obstruction of the superior vena cava (SVC) by neoplastic invasion of the venous wall associated with intravascular thrombosis, enlarged nodes, enlarged ascending aorta, or more simply, by extrinsic pressure of a tumor mass against the thin-walled superior vena cava (SVC).
Differentiating Superior Vena Cava Syndrome from other Diseases
Superior vena cava syndrome should be differentiated from other causes of dyspnea and jugular venous distention, such as, cardiac tamponade, chronic obstructive pulmonary disease, mediastinitis, pneumonia, acute respiratory distress syndrome, syphilis, and tuberculosis.
Epidemiology and Demographics
Most SVC syndromes in the present day are related to malignancy. An underlying malignancy is found in approximately 90% of patients.
Natural History, Complications and Prognosis
Complications of superior vena cava syndrome include airway obstruction and increased ICP. The prognosis will vary depending on the cause of the syndrome, and the amount of blockage that has already occurred.
Diagnosis
History and Symptoms
SVC syndrome usually presents more gradually with an increase in symptoms over time as malignancies increase in size or invasiveness.[2] Symptoms occur when something blocks the blood flowing back to the heart. They may begin suddenly or gradually, and may worsen when you bend over or lie down. The most common symptoms are shortness of breath (dyspnea) and swelling of the face, neck, trunk, and arms.
Physical Examination
Physical examination findings include swelling and redness of the face, bluish coloration to the skin over time, visibly distended veins, drooping of the eyelid, and swelling around the eye.
Chest X Ray
Blockage of the SVC may be visible on chest x ray and it is also useful to detect lung cancer.
CT
Blockage of the SVC may be visible precisely on CT scan of the chest and it is also useful in evaluating source and extent of a neoplasm.
MRI
Blockage of the SVC may be visible precisely on MRI of the chest and it is also useful in evaluating source and extent of a neoplasm.
Ultrasound
Doppler ultrasound may be valuable in assessing the site and nature of the obstruction in SVC syndrome. Venous patency and the presence of thrombi can also be assessed by using contrast and rapid scanning techniques.
Other Imaging Findings
SVC syndrome may also affect the findings of radionuclide ventriculography and liver scan.
Treatment
Medical Therapy
The treatment of SVC syndrome depends on the etiology of the obstruction, the severity of the symptoms, the prognosis of the patient, and patient preferences and goals for therapy.
Surgery
Surgical options include stent placement and surgical bypass.
Radiation Therapy
If the obstruction of the SVC is caused by a tumor that is not sensitive to chemotherapy, radiation therapy should be given. Treatment with larger fractions of radiation is thought to be beneficial in developing a rapid response. One study shows, however, that there is no obvious need for large radiation fraction sizes for the first few radiation treatments as was previously believed. Many fractionation schemes have been used, with doses ranging from 30 Gy in 10 fractions to 50 Gy in 25 fractions. Relief of symptoms in small cell lung cancer is reported to be 62% to 80%, whereas in non-small cell lung cancer, approximately 46% of the patients experienced symptomatic relief. In one study, more than 90% of the patients achieved a partial or complete response with a 3-week regimen of 8 Gy given once a week for a total dose of 24 Gy.
Primary Prevention
Prompt treatment of other medical disorders may reduce the risk of developing SVC obstruction.
References
- ↑ William Hunter. https://en.wikipedia.org/wiki/William_Hunter_%28anatomist%29 Accessed on December 11, 2016
- ↑ Beeson, Michael S. "Superior Vena Cava Syndrome". Retrieved 2008-03-24.
[