Parotitis pathophysiology: Difference between revisions

Jump to navigation Jump to search
Luke Rusowicz-Orazem (talk | contribs)
Luke Rusowicz-Orazem (talk | contribs)
Line 11: Line 11:
**[[Mumps]] [[virus]] is a member of the [[paramyoxoviridae]] family with a single-strand, negative-sense [[RNA]] [[molecule]].  
**[[Mumps]] [[virus]] is a member of the [[paramyoxoviridae]] family with a single-strand, negative-sense [[RNA]] [[molecule]].  
**The [[mumps]] HN and F [[glycoproteins]] reach the surface of the infected host [[cell]] through the [[Endoplasmic reticulum|endoplasmic reticulum]] and [[Golgi complex]].<ref name="pmid25229387">{{cite journal |vauthors=Rubin S, Eckhaus M, Rennick LJ, Bamford CG, Duprex WP |title=Molecular biology, pathogenesis and pathology of mumps virus |journal=J. Pathol. |volume=235 |issue=2 |pages=242–52 |year=2015 |pmid=25229387 |pmc=4268314 |doi=10.1002/path.4445 |url=}}</ref>
**The [[mumps]] HN and F [[glycoproteins]] reach the surface of the infected host [[cell]] through the [[Endoplasmic reticulum|endoplasmic reticulum]] and [[Golgi complex]].<ref name="pmid25229387">{{cite journal |vauthors=Rubin S, Eckhaus M, Rennick LJ, Bamford CG, Duprex WP |title=Molecular biology, pathogenesis and pathology of mumps virus |journal=J. Pathol. |volume=235 |issue=2 |pages=242–52 |year=2015 |pmid=25229387 |pmc=4268314 |doi=10.1002/path.4445 |url=}}</ref>
**[[Virions]] emerge from the infected [[cells]] due to the [[M protein]] facilitating the localization of the [[viral]] [[RNP]] onto the host [[cell]] [[membrane]].<ref name="pmid25229387">{{cite journal |vauthors=Rubin S, Eckhaus M, Rennick LJ, Bamford CG, Duprex WP |title=Molecular biology, pathogenesis and pathology of mumps virus |journal=J. Pathol. |volume=235 |issue=2 |pages=242–52 |year=2015 |pmid=25229387 |pmc=4268314 |doi=10.1002/path.4445 |url=}}</ref>
**[[Virions]] emerge from the infected [[cells]] due to the [[M protein]] facilitating the localization of the [[viral]] ribonucleic proteins onto the host [[cell]] [[membrane]].<ref name="pmid25229387">{{cite journal |vauthors=Rubin S, Eckhaus M, Rennick LJ, Bamford CG, Duprex WP |title=Molecular biology, pathogenesis and pathology of mumps virus |journal=J. Pathol. |volume=235 |issue=2 |pages=242–52 |year=2015 |pmid=25229387 |pmc=4268314 |doi=10.1002/path.4445 |url=}}</ref>
**The [[virus]] binds with the neighboring host [[cell|cells]] via [[Sialic acids|sialic acid]] through HN [[glycoprotein]].<ref name="pmid25229387">{{cite journal |vauthors=Rubin S, Eckhaus M, Rennick LJ, Bamford CG, Duprex WP |title=Molecular biology, pathogenesis and pathology of mumps virus |journal=J. Pathol. |volume=235 |issue=2 |pages=242–52 |year=2015 |pmid=25229387 |pmc=4268314 |doi=10.1002/path.4445 |url=}}</ref>
**The [[virus]] binds with the neighboring host [[cell|cells]] via [[Sialic acids|sialic acid]] through HN [[glycoprotein]].<ref name="pmid25229387">{{cite journal |vauthors=Rubin S, Eckhaus M, Rennick LJ, Bamford CG, Duprex WP |title=Molecular biology, pathogenesis and pathology of mumps virus |journal=J. Pathol. |volume=235 |issue=2 |pages=242–52 |year=2015 |pmid=25229387 |pmc=4268314 |doi=10.1002/path.4445 |url=}}</ref>
**Both HN and F [[glycoproteins]] mediate the fusion of virus and host [[cell]], as well as [[cell]] and [[cell]]-[[membrane]] fusion, to perpetuate the spread of the [[virus]] throughout the host.<ref name="pmid25229387">{{cite journal |vauthors=Rubin S, Eckhaus M, Rennick LJ, Bamford CG, Duprex WP |title=Molecular biology, pathogenesis and pathology of mumps virus |journal=J. Pathol. |volume=235 |issue=2 |pages=242–52 |year=2015 |pmid=25229387 |pmc=4268314 |doi=10.1002/path.4445 |url=}}</ref>
**Both HN and F [[glycoproteins]] mediate the fusion of virus and host [[cell]], as well as [[cell]] and [[cell]]-[[membrane]] fusion, to perpetuate the spread of the [[virus]] throughout the host.<ref name="pmid25229387">{{cite journal |vauthors=Rubin S, Eckhaus M, Rennick LJ, Bamford CG, Duprex WP |title=Molecular biology, pathogenesis and pathology of mumps virus |journal=J. Pathol. |volume=235 |issue=2 |pages=242–52 |year=2015 |pmid=25229387 |pmc=4268314 |doi=10.1002/path.4445 |url=}}</ref>

Revision as of 20:27, 1 March 2016

Parotitis Microchapters

Home

Patient Information

Overview

Historical Perspective

Pathophysiology

Causes

Differentiating Parotitis from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

CT or MRI

Treatment

Medical Therapy

Surgery

Primary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Parotitis pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Parotitis pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Parotitis pathophysiology

CDC on Parotitis pathophysiology

Parotitis pathophysiology in the news

Blogs on Parotitis pathophysiology

Directions to Hospitals Treating Parotitis

Risk calculators and risk factors for Parotitis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Luke Rusowicz-Orazem, B.S.

Overview

Acute infection can occur in any salivary gland but the most commonly affected one is the parotid. This is thought to be due to a combination of anatomic and physiologic factors. The saliva from the parotid is less mucoid than that from the other salivary glands. IgA, lysozyme and sialic acid are all found in smaller amounts in the more viscous parotid secretions. These substances are thought to help fight off ascending bacterial infection. Bacterial parotitis is generally unilateral in adults (75-90%), while viral is generally bilateral. Though 80-90% of salivary calculi occur in the Wharton’s duct of the submandibular gland, the parotid remains the most common site of acute suppurative salivary infection. The secretions from the submandibular gland are more alkaline, thought to result in a higher concentration of insoluble calcium phosphate.

Pathogenesis

Viral Parotitis

References

  1. Conly J, Johnston B (2007). "Is mumps making a comeback?". Can J Infect Dis Med Microbiol. 18 (1): 7–9. PMC 2542890. PMID 18923686.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 Rubin S, Eckhaus M, Rennick LJ, Bamford CG, Duprex WP (2015). "Molecular biology, pathogenesis and pathology of mumps virus". J. Pathol. 235 (2): 242–52. doi:10.1002/path.4445. PMC 4268314. PMID 25229387.

Template:WikiDoc Sources