22q11.2 deletion syndrome causes: Difference between revisions

Jump to navigation Jump to search
Anthony Gallo (talk | contribs)
m Categories
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{22q11.2 deletion syndrome}}
{{22q11.2 deletion syndrome}}
{{CMG}} {{AE}}
{{CMG}} {{AE}}  
 
Please help WikiDoc by adding more content here.  It's easy!  Click  [[Help:How_to_Edit_a_Page|here]]  to learn about editing.


==Overview==
==Overview==
Most cases are linked to microdeletion of chromosome 22, at the long arm (q) at the 11.2 locus.


==Causes==
==Causes==
About 90% of DGS cases are a result of a deletion in chromosome 22, more specifically on the long arm (q) at the 11.2 locus (22q11.2). Most of these mutations arise de novo with no genetic abnormalities noted in the genome of the parents of children with DGS.[1] Researchers have identified over 90 different genes at this locus, some of which they have studied in mouse models. The most studied of these genes is T-box transcription factor 1 (TBX1), which correlates with severe defects in the development of the heart, thymus, and parathyroid glands of mouse models. TBX1 also correlates with neuromicrovascular anomalies, which may be responsible for the behavioral and developmental abnormalities seen in DGS.<ref>Cioffi S, Martucciello S, Fulcoli FG, Bilio M, Ferrentino R, Nusco E, Illingworth E. Tbx1 regulates brain vascularization. Hum. Mol. Genet. 2014 Jan 01;23(1):78-89. </ref><ref>Paylor R, Glaser B, Mupo A, Ataliotis P, Spencer C, Sobotka A, Sparks C, Choi CH, Oghalai J, Curran S, Murphy KC, Monks S, Williams N, O'Donovan MC, Owen MJ, Scambler PJ, Lindsay E. Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc. Natl. Acad. Sci. U.S.A. 2006 May 16;103(20):7729-34.</ref>


==References==
==References==

Revision as of 18:24, 10 July 2020

22q11.2 deletion syndrome Microchapters

Home

Overview

Historical Perspective

Classification

Pathophysiology

Differentiating 22q11.2 deletion syndrome from other Diseases

Causes

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

22q11.2 deletion syndrome causes On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of 22q11.2 deletion syndrome causes

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on 22q11.2 deletion syndrome causes

CDC on 22q11.2 deletion syndrome causes

22q11.2 deletion syndrome causes in the news

Blogs on 22q11.2 deletion syndrome causes

Directions to Hospitals Treating 22q11.2 deletion syndrome

Risk calculators and risk factors for 22q11.2 deletion syndrome causes

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief:

Overview

Most cases are linked to microdeletion of chromosome 22, at the long arm (q) at the 11.2 locus.

Causes

About 90% of DGS cases are a result of a deletion in chromosome 22, more specifically on the long arm (q) at the 11.2 locus (22q11.2). Most of these mutations arise de novo with no genetic abnormalities noted in the genome of the parents of children with DGS.[1] Researchers have identified over 90 different genes at this locus, some of which they have studied in mouse models. The most studied of these genes is T-box transcription factor 1 (TBX1), which correlates with severe defects in the development of the heart, thymus, and parathyroid glands of mouse models. TBX1 also correlates with neuromicrovascular anomalies, which may be responsible for the behavioral and developmental abnormalities seen in DGS.[1][2]

References

  1. Cioffi S, Martucciello S, Fulcoli FG, Bilio M, Ferrentino R, Nusco E, Illingworth E. Tbx1 regulates brain vascularization. Hum. Mol. Genet. 2014 Jan 01;23(1):78-89.
  2. Paylor R, Glaser B, Mupo A, Ataliotis P, Spencer C, Sobotka A, Sparks C, Choi CH, Oghalai J, Curran S, Murphy KC, Monks S, Williams N, O'Donovan MC, Owen MJ, Scambler PJ, Lindsay E. Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc. Natl. Acad. Sci. U.S.A. 2006 May 16;103(20):7729-34.

Template:WS Template:WH