Hepatitis B overview: Difference between revisions
Line 36: | Line 36: | ||
==Treatment== | ==Treatment== | ||
===Medical therapy=== | |||
The majority of adults are able to eliminate the virus without treatment. Currently, there is no treatment available for acute hepatitis B infection. Symptomatic treatment may be indicated. Early antiviral treatment may only be required in fewer than 1% of patients, whose hepatitis B takes a very aggressive course, such as in cases of fulminant hepatitis. Treatment of chronic infection may be necessary to reduce the risk of [[cirrhosis]] and [[liver cancer]]. Chronically infected patients with persistently elevated [[alanine transaminase|serum alanine aminotransferase]] and HBV DNA levels are candidates for therapy. Treatment lasts from six months to a year, depending on the medication and [[genotype]]. Although none of the available drugs can clear the infection, they can stop the virus from replicating, thus minimizing liver damage. These include antiviral drugs [[Lamivudine]], [[Adefovir]], [[Tenofovir]], [[Telbivudine]] and [[Entecavir]], and [[immune system]] modulators, such as [[Interferon|interferon alpha-2a]] and [[pegylated interferon-alpha-2a]].<ref name="pmid11799479">{{cite journal| author=Vargas HE, Dodson FS, Rakela J| title=A concise update on the status of liver transplantation for hepatitis B virus: the challenges in 2002. | journal=Liver Transpl | year= 2002 | volume= 8 | issue= 1 | pages= 2-9 | pmid=11799479 | doi=10.1053/jlts.2002.29765 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11799479 }} </ref><ref name="pmid2202639">{{cite journal| author=Omata M| title=Significance of extrahepatic replication of hepatitis B virus. | journal=Hepatology | year= 1990 | volume= 12 | issue= 2 | pages= 364-6 | pmid=2202639 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2202639 }} </ref><ref name="pmid8629297">{{cite journal| author=McGory RW, Ishitani MB, Oliveira WM, Stevenson WC, McCullough CS, Dickson RC et al.| title=Improved outcome of orthotopic liver transplantation for chronic hepatitis B cirrhosis with aggressive passive immunization. | journal=Transplantation | year= 1996 | volume= 61 | issue= 9 | pages= 1358-64 | pmid=8629297 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8629297 }} </ref><ref name="pmid15776431">{{cite journal| author=Marzano A, Gaia S, Ghisetti V, Carenzi S, Premoli A, Debernardi-Venon W et al.| title=Viral load at the time of liver transplantation and risk of hepatitis B virus recurrence. | journal=Liver Transpl | year= 2005 | volume= 11 | issue= 4 | pages= 402-9 | pmid=15776431 | doi=10.1002/lt.20402 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15776431 }} </ref> | |||
===Surgery=== | ===Surgery=== | ||
The treatment of hepatitis B usually involves no surgical procedures. However, among patients with advanced liver damage secondary to HBV infection or [[liver failure]] in fulminant hepatitis, [[liver transplantation]] may be beneficial. | The treatment of hepatitis B usually involves no surgical procedures. However, among patients with advanced liver damage secondary to HBV infection or [[liver failure]] in fulminant hepatitis, [[liver transplantation]] may be beneficial. |
Revision as of 00:41, 11 October 2016
Hepatitis B |
Diagnosis |
Treatment |
Case Studies |
Hepatitis B overview On the Web |
American Roentgen Ray Society Images of Hepatitis B overview |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Jolanta Marszalek, M.D. [2]; João André Alves Silva, M.D. [3]; Sara Mehrsefat, M.D. [4]
Overview
Hepatitis B virus(HBV) is a double stranded DNA virus belonging to the family Hepadnaviridae. It is responsible for hepatitis B virus infection in humans that attacks the liver and causes both acute and chronic disease.
Historical Perspective
In the 5th century BCE, the first descriptions of hepatitis (epidemic jaundice) are generally attributed to Hippocrates.[1]In 1885, the earliest identifiable occurrence of hepatitis B virus was documented by Lurman.[2]In 1947, the current nomenclature of hepatitis A (so-called infectious hepatitis) and hepatitis B (so-called serum hepatitis) was proposed by MacCallum and Bauer. By this time, it was already known that in comparison with hepatitis A, hepatitis B. Throughout the 20th century, advancements in the recognition, isolation, classification, and prevention of hepatitis B were achieved. Today, the focus around HBV remains on the spread of awareness and prevention across the world, especially in endemic areas that would benefit greatly from immunization programs.[3][4]
Pathophysiology
The intracellular hepatitis B virus is a non-cytopathic virus that causes little or no damage to the cell.[5] During HBV infection, the host immune response causes both hepatocellular damage and viral clearance. The HBV virion binds to a receptor at the surface of the hepatocyte and enters the cell, where it uses the host's cell mechanisms to replicate its genome and proteins. Different viral antigens and antibodies are detected in serum throughout the course of the disease, such as: HBsAg, HBcAg, HBeAg, anti-HBs, anti-HBC and anti-HBe. Transmission occurs from exposure to infectious blood or body fluids. Hepatitis B is often associated with hepatocellular carcinoma. Immune complexes, such as surface antigen-antibody, are important in the pathogenesis of hepatitis B.[6][7]
Causes
The hepatitis B virus is responsible for causing hepatitis B. HBV is a double stranded DNA virus belonging to the family Hepadnaviridae. The viral particle consists of an outer lipid envelope and an icosahedral nucleocapsid core composed of protein. The nucleocapsid encloses the viral DNA. HBV DNA polymerase has reverse transcriptase activity. It shows tropism for hepatocytes. Humans are the only natural reservoir.[8] The virus is divided into four major serotypes (adr, adw, ayr, ayw) based on antigenic epitopes presented on its envelope proteins and ten genotypes (A-J) according to overall nucleotide sequence variation of the genome.[9][10]
Differentiating Hepatitis B from other Diseases
Hepatitis B must be differentiated from other diseases that cause fever, nausea, vomiting, jaundice, hepatomegaly, icteric sclera, elevated ALT, AST, such as other viral hepatitis, alcoholic hepatitis, and autoimmune hepatitis.[11][12][13]
Epidemiology and Demographics
Chronic Hepatitis B (HBV) is a major global health problem. According to the World Health Organization (WHO), more than 2 billion people have been infected with HBV. It is a major cause of chronic liver disease worldwide, affecting an estimated 1.25 million persons in the U.S., and more than 240 million people world wide.[14] [15]
Risk Factors
Generally, the highest risk for HBV infection is associated with lifestyles, occupations, or environments in which contact with blood from infected persons is frequent. High-risk populations include immigrants/refugees from areas of high HBV endemicity, clients in mental health institutions, injection drug users, and homosexually active men, patients of hemodialysis, and household contacts of HBV carriers. Perinatal transmission from mother to infant at birth is very efficient. If the mother is positive for both HBsAg and HBeAg, 70%–90% of infants will become infected in the absence of postexposure prophylaxis.[16]
Screening
High risk groups should be tested for HBV infection. These include immigrants/refugees from areas of intermediate or high endemicity, persons with chronically elevated aminotransferases, immunocompromised individuals, and persons with a history of injection drug use(IDU).
Screening for hepatocellular carcinoma should extend to Asian men over 40 years and Asian women over 50 years of age, persons with cirrhosis, persons with a family history of HCC, Africans over 20 years of age, and any HBV carrier over 40 years with persistent or intermittent ALT elevation and/or high HBV DNA level >2,000 IU/mL.
Natural History, Complications and Prognosis
The course of hepatitis B may be extremely variable. Hepatitis B has different clinical manifestations depending on the patient’s age at infection, immune status, and the stage at which the disease is recognized.[14] During the incubation period patients may experience flu-like symptoms, such as nausea, vomiting, and headaches. A person infected with hepatitis B virus may recover completely, become an asymptomatic carrier of the virus, develop chronic disease, or develop fulminant hepatitis. In acute hepatitis B, the incubation period may range from 45 to 120 days, depending on the amount of virus in the inoculum, host factors, and mode of transmission. These patients may experience the following symptoms: fatigue, nausea, vomiting, anorexia, abdominal discomfort, and jaundice. In most cases, no special diet or treatment are necessary. The risk of developing chronic hepatitis decreases with age, with infants having the highest risk. Chronic hepatitis may progress to: cirrhosis, liver failure, or hepatocellular carcinoma. In most cases the prognosis of acute hepatitis is good, with symptoms lasting 2 to 3 weeks. However, in infants and immunocompromised persons, the risk of developing chronic disease is increased.
Treatment
Medical therapy
The majority of adults are able to eliminate the virus without treatment. Currently, there is no treatment available for acute hepatitis B infection. Symptomatic treatment may be indicated. Early antiviral treatment may only be required in fewer than 1% of patients, whose hepatitis B takes a very aggressive course, such as in cases of fulminant hepatitis. Treatment of chronic infection may be necessary to reduce the risk of cirrhosis and liver cancer. Chronically infected patients with persistently elevated serum alanine aminotransferase and HBV DNA levels are candidates for therapy. Treatment lasts from six months to a year, depending on the medication and genotype. Although none of the available drugs can clear the infection, they can stop the virus from replicating, thus minimizing liver damage. These include antiviral drugs Lamivudine, Adefovir, Tenofovir, Telbivudine and Entecavir, and immune system modulators, such as interferon alpha-2a and pegylated interferon-alpha-2a.[17][18][19][20]
Surgery
The treatment of hepatitis B usually involves no surgical procedures. However, among patients with advanced liver damage secondary to HBV infection or liver failure in fulminant hepatitis, liver transplantation may be beneficial.
Primary Prevention
The risk of transmission of hepatitis B may be diminished by following certain measures proposed by the WHO. These include: vaccination of all infants within 24 hours of birth; vaccination of certain risk groups, such as travelers to endemic areas and healthcare workers (if these have not been vaccinated yet); avoidance of sexual contact with a person who has acute or chronic hepatitis B; and avoiding to share personal items, such as razors or toothbrushes. HBV vaccine is effective in preventing HBV infections when it is given either before exposure or shortly after exposure.[5][21][22]
Vaccination
Hepatitis B vaccine is the most effective tool in preventing the transmission of HBV and HDV. Vaccines are composed of the surface antigen of HBV (HBsAg), and are produced by two different methods include plasma derived and recombinant DNA. The primary hepatitis B immunization series conventionally consists of three doses of vaccine. Vaccination of infants and, in particular, delivery of hepatitis B vaccine within 24 hours of birth is 90–95% effective in preventing infection with HBV as well as decreasing HBV transmission if followed by at least two other doses. WHO recommends universal hepatitis B vaccination for all infants, and that the first dose should be given as soon as possible after birth.[5][23]This strategy has resulted in a dramatic decrease in the prevalence of CHB among young children in regions of the world where universal infant vaccination programs have been implemented. A proportion of vaccinated children (5–10%) have a poor response to vaccination, and will remain susceptible as adults to acquisition of HBV infection.[5][24]
Vertical transmission
Hepatitis B virus (HBV) infection in a pregnant woman poses a serious risk to her infant at birth. Without postexposure immunoprophylaxis, approximately 40% of infants born to HBV-infected mothers in the United States will develop chronic HBV infection, approximately one-fourth of whom will eventually die from chronic liver disease.[25]
Secondary Prevention
Hepatitis B Immunoglobulin (HBIG) is a form of passive immunization when given shortly before, or soon after exposure to hepatitis B virus. It is also administered in combination with HBV vaccines to newborns of HBsAg positive mothers.[5][22]
References
- ↑ Center for Disease Control and Prevention.Epidemiology and Prevention of Vaccine Preventable Diseases 2012. http://www.cdc.gov/vaccines/pubs/pinkbook/hepa.html
- ↑ Hussey, Hugh H. (1981). "The Hepatitis B Saga". JAMA: The Journal of the American Medical Association. 245 (13): 1317. doi:10.1001/jama.1981.03310380021018. ISSN 0098-7484.
- ↑ Mahoney FJ (1999). "Update on diagnosis, management, and prevention of hepatitis B virus infection". Clin Microbiol Rev. 12 (2): 351–66. PMC 88921. PMID 10194463.
- ↑ Neefe, John R., Sydney S. Gellis, and Joseph Stokes. "Homologous serum hepatitis and infectious (epidemic) hepatitis: Studies in volunteers bearing on immunological and other characteristics of the etiological agents." The American journal of medicine 1.1 (1946): 3-22.
- ↑ 5.0 5.1 5.2 5.3 5.4 World Health Organization, Guidelines for the Prevention, Care, and Treatment of persons with chronic Hepatitis B Infection. (March 2015). http://apps.who.int/iris/bitstream/10665/154590/1/9789241549059_eng.pdf Accessed on October 4th, 2016
- ↑ Zhang YY, Hu KQ (2015). "Rethinking the pathogenesis of hepatitis B virus (HBV) infection". J Med Virol. 87 (12): 1989–99. doi:10.1002/jmv.24270. PMID 25989114.
- ↑ Chang KM, Liu M (2016). "Chronic hepatitis B: immune pathogenesis and emerging immunotherapeutics". Curr Opin Pharmacol. 30: 93–105. doi:10.1016/j.coph.2016.07.013. PMID 27570126.
- ↑ Zuckerman AJ (1996). "Hepatitis Viruses". In Baron S; et al. Baron's Medical Microbiology (4th ed.). University of Texas Medical Branch. ISBN 0-9631172-1-1.
- ↑ Magnius LO, Norder H (1995). "Subtypes, genotypes and molecular epidemiology of the hepatitis B virus as reflected by sequence variability of the S-gene". Intervirology. 38 (1–2): 24–34. PMID 8666521.
|access-date=
requires|url=
(help) - ↑ Lin CL, Kao JH (2011). "The clinical implications of hepatitis B virus genotype: Recent advances". J Gastroenterol Hepatol. 26 Suppl 1: 123–30. doi:10.1111/j.1440-1746.2010.06541.x. PMID 21199523.
- ↑ Centers for Disease Control and Prevention. Viral Hepatitis http://www.cdc.gov/hepatitis/ Accessed on October 4th, 2016
- ↑ Cohen JA, Kaplan MM (1979). "The SGOT/SGPT ratio--an indicator of alcoholic liver disease". Dig Dis Sci. 24 (11): 835–8. PMID 520102.
- ↑ Williams AL, Hoofnagle JH (1988). "Ratio of serum aspartate to alanine aminotransferase in chronic hepatitis. Relationship to cirrhosis". Gastroenterology. 95 (3): 734–9. PMID 3135226.
- ↑ 14.0 14.1 World Health Organization. 2014 Fact Sheet. Hepatitis B. http://www.who.int/mediacentre/factsheets/fs204/en/
- ↑ Center for Disease Control and Prevention. Guidelines for Hepatitis Sureveillance and Case Management 2009.http://www.cdc.gov/hepatitis/Statistics/SurveillanceGuidelines.htm
- ↑ Center for Disease Control and Prevention. Epidemiology and Prevention of Vaccine-Preventable Diseases. Hepatitis B 2012.http://www.cdc.gov/vaccines/pubs/pinkbook/hepb.html
- ↑ Vargas HE, Dodson FS, Rakela J (2002). "A concise update on the status of liver transplantation for hepatitis B virus: the challenges in 2002". Liver Transpl. 8 (1): 2–9. doi:10.1053/jlts.2002.29765. PMID 11799479.
- ↑ Omata M (1990). "Significance of extrahepatic replication of hepatitis B virus". Hepatology. 12 (2): 364–6. PMID 2202639.
- ↑ McGory RW, Ishitani MB, Oliveira WM, Stevenson WC, McCullough CS, Dickson RC; et al. (1996). "Improved outcome of orthotopic liver transplantation for chronic hepatitis B cirrhosis with aggressive passive immunization". Transplantation. 61 (9): 1358–64. PMID 8629297.
- ↑ Marzano A, Gaia S, Ghisetti V, Carenzi S, Premoli A, Debernardi-Venon W; et al. (2005). "Viral load at the time of liver transplantation and risk of hepatitis B virus recurrence". Liver Transpl. 11 (4): 402–9. doi:10.1002/lt.20402. PMID 15776431.
- ↑ Morbidity and Mortality Weekly Report. A Comprehensive Immunization Strategy to Eliminate Transmission of Hepatitis B Virus Infection in the United States. (2006). http://www.cdc.gov/mmwr/PDF/rr/rr5516.pdf Accessed on October 4th, 2016
- ↑ 22.0 22.1 Centers for Disease Control and Prevention. Prevention and Control of Infections with Hepatitis Viruses in Correctional Settings http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5201a1.htm Accessed on October 4th 2016
- ↑ Ni JD, Xiong YZ, Wang XJ, Xiu LC. Does increased hepatitis B vaccination dose lead to a better immune response in HIV- infected patients than standard dose vaccination: a meta-analysis? Int J STD AIDS. 2013;24(2):117–22.
- ↑ Liu CJ, Liou JM, Chen DS, Chen P J.Natural course and treatment of dual hepatitis B virus and hepatitis C virus infections. J Formos Med Assoc Taiwan. 2005;104(11):783–91.
- ↑ Centers for Disease Control and Prevention. Viral Hepatitis - Hepatitis B Information. Perinatal Transmission (2016) http://www.cdc.gov/hepatitis/hbv/perinatalxmtn.htm Accessed on October 5th, 2016