Osteoporosis overview: Difference between revisions
Line 43: | Line 43: | ||
===Laboratory findings=== | ===Laboratory findings=== | ||
Laboratory tests for the diagnosis of [[osteoporosis]] include some baseline tests | There is a limited role for [[Laboratory techniques|laboratory tests]] in diagnosis of [[osteoporosis]]; however, they may be used for differentiating primary versus secondary causes of the disease. [[Laboratory techniques|Lab tests]] for the [[diagnosis]] of [[osteoporosis]] include some baseline tests like [[complete blood count]] (CBC), [[Calcium|serum calcium]], [[phosphate]], [[alkaline phosphatase]], and [[Vitamin D|25-(OH)-vitamin D]]. There are also tests for diagnosing secondary [[osteoporosis]], which include 24 hr [[Calcium|serum calcium]], serum [[protein electrophoresis]], and serum [[Thyroid hormone|thyroid hormones]]. | ||
===Electrocardiogram=== | ===Electrocardiogram=== |
Revision as of 17:12, 7 August 2017
Osteoporosis Microchapters |
Diagnosis |
---|
Treatment |
Medical Therapy |
Case Studies |
Osteoporosis overview On the Web |
American Roentgen Ray Society Images of Osteoporosis overview |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Cafer Zorkun, M.D., Ph.D. [2], Raviteja Guddeti, M.B.B.S.[3]
Overview
Osteoporosis is a bone disease, characterized by lowered bone mineral density; leads to increased risk of fracture. The pathology is negative balance between old bone resorption and new bone formation. Aging, female gender, thin and small stature, Asian or Caucasian races, alcoholism, hypogonadism, and steroid abuse are among the primary risk factors associated with osteoporosis. It can be prevented with lifestyle modification, or calcium and vitamin D supplementation. Preventing falls in people with known or suspected osteoporosis is an established way to prevent fractures. Bisphosphonates, calcium, and vitamin D supplementation form the main stay of treatment.
Historical Perspective
Bone with holes, osteoporosis, is seen in over 4000 years old Egyptian mummies; showed the revealing sign of osteoporosis called "Dowager's Hump". Jean Lobstein, a French pathologist of 1830's, found that there are normal holes in every bones; but some people bones from specific age and diseases may have larger holes than normal ones. He eventually named theses kinds of bones as porous; thus the disease became osteoporosis.
Classification
There are many classification systems for osteoporosis disease. The most reliable two classification systems are based on the disease origin and severity. Based on origin, the disease classified to primary and secondary osteoporosis. There are three different severity for bone mass loss, include; osteopenia, osteoporosis, and severe osteoporosis.
Pathophysiology
The pathophysiology of osteoporosis basically involves an imbalance between bone resorption and bone formation. Major factors that contribute to the development of osteoporosis include: estrogen deficit, and aging. The main pathway, through which these factors might lead to osteoporosis is reactive oxygen species (ROS) damage to osteocytes. Decreasing the capability of autophagy in osteocytes is another important issue; which make them vulnerable to oxidative stresses.
Causes
Any condition, which could lead to disturb the balance between bone formation and bone resorption, may be the cause of Osteoporosis. The most common causes of osteoporosis include but not limited to: aging, menopause, nutritional deficiency of calcium and/or vitamin D, chronic renal failure, immobility, hyperparathyroidism, and chronic glucocorticoid abuse.
Differentiating Osteoporosis from other Diseases
Osteoporosis must be differentiated from other diseases include: idiopathic transient osteoporosis of hip, osteomalacia, scurvy, osteogenesis imperfecta, multiple myeloma, homocystinuria, and hypermetabolic resorptive osteoporosis; which can all present with some similar features, too.
Epidemiology and Demographics
Osteoporosis is a major health problem involving 43.9% (43.4 million) of male and female population in the United States. The disease rate increased as people's age raised. The most prevalent age group of patients is 80 years and older. White females and African-American males have the highest frequency among the other races.
Risk Factors
Risk factors for osteoporosis disease are of two types, include:
- Non-modifiable: age, sex, menopause, and family history
- Modifiable (potentially): smoking, alcohol, immobility, glucocorticoid abuse, and proton pump inhibitor (PPI)
Screening
Today, risk of fracture due to osteoporosis is threatening one out of two postmenopausal women and also one out of five older men. The 10-year risk for any osteoporosis-related fractures in 65-year-old white woman with no other risk factor is 9.3%. Upon the guidelines of USPSTF, all women ≥ 65 years old along with women < 65 years old with high risk of fracture are target of screening for osteoporosis; but there is not any recommendation to screen men for the disease. There are two major methods, that is suggested to use for screening osteoporosis: dual energy x-ray absorptiometry (DXA) of both hip and lumbar spine bones, and quantitative ultrasonography of the calcaneus.
Natural History, Complications and Prognosis
With appropriate and timely usage of medications along with calcium and/or vitamin D supplementation, the outcome of osteoporosis is usually good. The only way, through which Osteoporosis can become complicated, is by the development of fractures. Apart from risk of death and other complications, osteoporotic fractures are associated with a reduced quality of life due to immobility; emotional problems may also raised as a consequence. As studies suggested, the impact of osteoporosis and also osteoporotic fractures on public life would be worse than lots of life threatening diseases; especially with aging.
Diagnosis
History and symptoms
Osteoporosis, actually has not any acute symptoms, especially in early stages. Gradually, when bone mineral density loss is intensified (i.e., postmenopausal or elderly), the main symptoms could be seen; which are usually consisted of bone pain and weakness. After a while, when osteoporosis become severed, the fractures happen. Then, the major signs of fractures appeared; which include bone pain and tenderness, shortness of height, and stooped posture.
Physical examination
Osteoporosis is generally asymptomatic during initial years; until the bone mass loss rich to the point that fractures occur. These fractures could be divided to acute and chronic ones; mostly involve femoral neck and vertebral bones, respectively. The main feature of femoral fracture is immobilization and the main feature of vertebral fracture is Dowager's hump appearance. Any other secondary causes of the disease (e.g., chronic corticosteroid use or hyperthyroidism) may have their own symptoms; signifying a risk factor for osteoporosis.
Laboratory findings
There is a limited role for laboratory tests in diagnosis of osteoporosis; however, they may be used for differentiating primary versus secondary causes of the disease. Lab tests for the diagnosis of osteoporosis include some baseline tests like complete blood count (CBC), serum calcium, phosphate, alkaline phosphatase, and 25-(OH)-vitamin D. There are also tests for diagnosing secondary osteoporosis, which include 24 hr serum calcium, serum protein electrophoresis, and serum thyroid hormones.
Electrocardiogram
X-ray
X-ray may be helpful in the diagnosis of osteoporosis. The main finding on x-ray suggestive of osteoporosis is bone mass loss, identified with decreased bony trabecula in primary stages and then decreased cortical thickness. The most common bones monitored for osteoporosis evidences are femoral neck, lumbar vertebrae, and calcaneus. Plain radiography needs at least 30-50% of bone loss to demonstrate decreased bone density; therefore, it is not a very sensitive modality.
CT
MRI
Echocardiography or Ultrasound
Other Imaging Findings
Other Diagnostic Studies
Treatment
Medical therapy
Drugs, especially bisphosphonates are the main medications in the treatment of osteoporosis. However, lifestyle changes are also emphasized. No treatment can completely reverse established osteoporosis. Medical management can only halt the progression of the disease process.
Surgery
Surgical therapy is employed for fractures caused by osteoporosis. Vertebroplasty and kyphoplasty are used to treat patients with vertebral compression fractures. For fractures of the hip open reduction and internal fixation is done.