Osteoporosis primary prevention: Difference between revisions
No edit summary |
No edit summary |
||
Line 59: | Line 59: | ||
=== Diet === | === Diet === | ||
Sufficient [[protein]] intakes are necessary to maintain the function of the [[musculoskeletal]] system and they also decrease the complications that occur after an osteoporotic [[fracture]]. Correction of poor [[protein]] [[nutrition]] in patients with a recent [[hip fracture]] has been shown to improve the subsequent clinical course by significantly lowering the rate of complications, such as [[bedsores]], severe [[anaemia]], and intercurrent [[lung]] or [[renal]] infection. The duration of hospital stay of elderly patients with [[hip fracture]] can thus be shortened.<ref name=" | Sufficient [[protein]] intakes are necessary to maintain the function of the [[musculoskeletal]] system and they also decrease the complications that occur after an osteoporotic [[fracture]]. Correction of poor [[protein]] [[nutrition]] in patients with a recent [[hip fracture]] has been shown to improve the subsequent clinical course by significantly lowering the rate of complications, such as [[bedsores]], severe [[anaemia]], and intercurrent [[lung]] or [[renal]] infection. The duration of hospital stay of elderly patients with [[hip fracture]] can thus be shortened.<ref name="pmid284250853">{{cite journal| author=Compston J, Cooper A, Cooper C, Gittoes N, Gregson C, Harvey N et al.| title=UK clinical guideline for the prevention and treatment of osteoporosis. | journal=Arch Osteoporos | year= 2017 | volume= 12 | issue= 1 | pages= 43 | pmid=28425085 | doi=10.1007/s11657-017-0324-5 | pmc=5397452 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28425085 }}</ref> | ||
===Exercise=== | ===Exercise=== |
Revision as of 20:00, 17 August 2017
Osteoporosis Microchapters |
Diagnosis |
---|
Treatment |
Medical Therapy |
Case Studies |
Osteoporosis primary prevention On the Web |
American Roentgen Ray Society Images of Osteoporosis primary prevention |
Risk calculators and risk factors for Osteoporosis primary prevention |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Cafer Zorkun, M.D., Ph.D. [2], Raviteja Guddeti, M.B.B.S.[3], Charmaine Patel, M.D. [4]
Overview
In osteoporosis, some of life style modification strategies would be beneficial for both primary prevention and also initial treatment; because osteoporosis is majorly depends on lifestyle, in every stages of the disease. Lifestyle modification, as well as calcium supplementation, are the best early and long-term measures for the prevention of osteoporosis. There are also medications available that can be used to prevent worsening of osteoporosis. The primary prevention of osteoporosis is particularly important because the micro-architectural changes that occur in osteoporosis are largely irreversible.
Primary prevention
In osteoporosis, some of life style modification strategies would be beneficial for both primary prevention and also initial treatment; because osteoporosis is majorly depends on life style, in every stages of the disease.
Fall prevention
Major risk factors for falling are shown below:
- Environmental risk factors
- Lack of assistive devices in bathrooms
- Obstacles in the walking path
- Loose throw rugs
- Slippery conditions
- Low level lighting
- Medical risk factors
- Age
- Medications causing sedation (narcotic analgesics, anticonvulsants, and psychotropics)
- Anxiety and agitation
- Orthostatic hypotension
- Arrhythmias
- Poor vision
- Dehydration
- Previous falls or fear of falling
- Depression
- Reduced problem solving or mental acuity and diminished cognitive skills
- Vitamin D insufficiency [serum 25-hydroxyvitamin D (25(OH)D)<30 ng/ml (75 nmol/L)]
- Urgent urinary incontinence
- Malnutrition
- Neurological and musculoskeletal risk factors
- Kyphosis
- Reduced proprioception
- Poor balance
- Weak muscles/sarcopenia
- Impaired transfer and mobility
- Deconditioning
In addition to maintaining adequate vitamin D levels and physical activity, as described above, several strategies have been demonstrated to reduce falls. These include, but are not limited to, multifactorial interventions such as individual risk assessment, Tai Chi and other exercise programs, home safety assessment, and modification especially when done by an occupational therapist, and gradual withdrawal of psychotropic medication if possible. Appropriate correction of visual impairment may improve mobility and reduce risk of falls. There is a lack of evidence that the use of hip protectors by community-dwelling adults provides statistically significant reduction in the risk of hip or pelvis fractures. Also, there is no evidence that the use of hip protectors reduces the rate of falls. In long-term care or residential care settings, some studies have shown a marginally significant reduction in hip fracture risk. There are no serious adverse effects of hip protectors; however, adherence to long-term use is poor. There is additional uncertainty as to which hip protector to use, as most of the marketed products have not been tested in randomized clinical trials.[1][2]
Smoking quit and alcohol consumption modification
Advise patients to stop smoking. The use of tobacco products is detrimental to the skeleton as well as to overall health. National osteoporosis foundation (NOF) strongly encourages a smoking cessation program as an osteoporosis intervention. Recognize and treat patients with excessive alcohol intake. Moderate alcohol intake has no known negative effect on bone and may even be associated with slightly higher bone density and lower risk of fracture in postmenopausal women. However, alcohol intake of more than two drinks per day for women or three drinks a day for men may be detrimental to bone health, increases the risk of falling, and requires further evaluation for possible alcoholism.[3]
Calcium and vitamin D
Calcium: The patient should consume 1200 to 1500 mg of calcium daily, either via dietary means (e.g., 8 oz glass of milk contains approximately 300 mg of calcium) or via supplementation. The body absorbs only about 500 mg of calcium at one time and so intake should be spread throughout the day. However, the benefit of supplementation of calcium alone remains controversial, to a degree, since several nations with high calcium intakes through milk-products (e.g., the USA and Sweden) have some of the highest rates of osteoporosis worldwide; though this may be linked to such countries' excess consumption of protein. A few studies even suggested an adverse effect of calcium excess on bone density and blamed the milk industry for misleading customers. Some nutritionists assert that excess consumption of dairy products causes acidification, which leaches calcium from the system, and argue that vegetables and nuts are a better source of calcium and that in fact, milk products should be avoided. This theory has no proof from scientific clinical studies. Similarly, nutritionists believe that excess caffeine consumption can also contribute to leaching calcium from the bones.[4]
- A meta-analysis of randomized controlled trials concluded "evidence supports the use of calcium, or calcium in combination with vitamin D supplementation, in the preventive treatment of osteoporosis in people aged 50 years or older. For best therapeutic effect, recommended minimum dose calcium is 1200 mg, and of vitamin D is 800 IU (for combined calcium plus vitamin D supplementation)". A study that examined the relationship between calcium supplementation and clinical fracture risk in an elderly population, there was a significant decrease in fracture risk in patients that received calcium supplements versus those that received placebo. However, this benefit only applied to patients who were compliant with their treatment regimen.[5][6]
Estimating daily dietary calcium intake
- First step: Estimate calcium intake from calcium-rich foods based on these measures:
- Second step: Add the summation 250 mg for other non-diary foods[1]
Vitamin: Increasing vitamin D intake has been shown to reduce fractures up to twenty-five percent in older people, according to recent studies.[7][5] The very large Women's Health Initiative study, however, did not find any fracture benefit from calcium and vitamin D supplementation, but these women were already taking (on average) 1200 mg/day of calcium. Muscle weakness can contribute to falls so it is beneficial for people living with osteoporosis to improve muscle function. Vitamin D deficiency causes muscle weakness.[8] A meta-analysis of five clinical trials showed 800 IU of vitamin D per day (plus calcium) reduced the risk of falls by 22%.[9] A different randomized, controlled study showed nursing home residents who took 800 IU of vitamin D per day (plus calcium) having a 72% reduction in the risk of falls.[10] New vitamin D intake recommendations (National Osteoporosis Foundation, July 2014) are adults up to age 50, 400-800 IU daily and those over 50, 800 - 1,000 IU daily.
- Excess protein: There are three elements relating to a person's levels of calcium, including consumption, absorption, and excretion. High protein intake is known to encourage urinary calcium losses and has been shown to increase risk of fracture in research studies.[11][12]
- Others: There is some evidence to suggest bone density benefits from taking the following supplements (in addition to calcium and vitamin D), including magnesium, zinc, copper, manganese, silicon, strontium, folic acid, and vitamins B6, C, and K.[13][14] This is weak evidence and quite controversial.
Diet
Sufficient protein intakes are necessary to maintain the function of the musculoskeletal system and they also decrease the complications that occur after an osteoporotic fracture. Correction of poor protein nutrition in patients with a recent hip fracture has been shown to improve the subsequent clinical course by significantly lowering the rate of complications, such as bedsores, severe anaemia, and intercurrent lung or renal infection. The duration of hospital stay of elderly patients with hip fracture can thus be shortened.[15]
Exercise
Multiple studies have shown that aerobics, weight lifting, and resistance exercises can all maintain or increase BMD in postmenopausal women.[16]
Many researchers have attempted to pinpoint which types of exercise are most effective at improving BMD and other metrics of bone quality, however results have varied. One year of regular jumping exercises appears to increase the BMD and moment of inertia of the proximal tibia in normal postmenopausal women.[17]
Treadmill walking, gymnastic training, stepping, jumping, endurance, and strength exercises all resulted in significant increases of L2-L4 BMD in osteopenic postmenopausal women.[18][19][20]
Strength training elicited improvements specifically in distal radius and hip BMD.[21]
References
- ↑ 1.0 1.1 Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S; et al. (2014). "Clinician's Guide to Prevention and Treatment of Osteoporosis". Osteoporos Int. 25 (10): 2359–81. doi:10.1007/s00198-014-2794-2. PMC 4176573. PMID 25182228.
- ↑ Gillespie WJ, Gillespie LD, Parker MJ (2010). "Hip protectors for preventing hip fractures in older people". Cochrane Database Syst Rev (10): CD001255. doi:10.1002/14651858.CD001255.pub4. PMID 20927724.
- ↑ Maurel DB, Boisseau N, Benhamou CL, Jaffre C (2012). "Alcohol and bone: review of dose effects and mechanisms". Osteoporos Int. 23 (1): 1–16. doi:10.1007/s00198-011-1787-7. PMID 21927919.
- ↑ Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK; et al. (2011). "The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know". J Clin Endocrinol Metab. 96 (1): 53–8. doi:10.1210/jc.2010-2704. PMC 3046611. PMID 21118827.
- ↑ 5.0 5.1 Tang BMP; et al. (2007). "Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis". Lancet. 370: 657–666. doi:10.1016/S0140-6736(07)61342-7.
- ↑ Prince RL, Devine A, Dhaliwal SS, Dick IM (2006). "Effects of calcium supplementation on clinical fracture and bone structure: results of a 5-year, double-blind, placebo-controlled trial in elderly women". Arch. Intern. Med. 166 (8): 869–75. doi:10.1001/archinte.166.8.869. PMID 16636212.
- ↑ Bischoff-Ferrari HA, Willett WC, Wong JB, Giovannucci E, Dietrich T, Dawson-Hughes B (2005). "Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials". JAMA. 293 (18): 2257–64. doi:10.1001/jama.293.18.2257. PMID 15886381.
- ↑ Holick MF (2006). "Resurrection of vitamin D deficiency and rickets". J. Clin. Invest. 116 (8): 2062–72. doi:10.1172/JCI29449. PMID 16886050.
- ↑ Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B (2006). "Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes". Am. J. Clin. Nutr. 84 (1): 18–28. PMID 16825677.
- ↑ Broe KE, Chen TC, Weinberg J, Bischoff-Ferrari HA, Holick MF, Kiel DP (2007). "A higher dose of vitamin d reduces the risk of falls in nursing home residents: a randomized, multiple-dose study". Journal of the American Geriatrics Society. 55 (2): 234–9. doi:10.1111/j.1532-5415.2007.01048.x. PMID 17302660.
- ↑ Feskanich D, Willett WC, Stampfer MJ, Colditz GA (1996). "Protein consumption and bone fractures in women". Am. J. Epidemiol. 143 (5): 472–9. PMID 8610662.
- ↑ Abelow BJ, Holford TR, Insogna KL (1992). "Cross-cultural association between dietary animal protein and hip fracture: a hypothesis". Calcif. Tissue Int. 50 (1): 14–8. PMID 1739864.
- ↑ Gaby, Alan R.,Preventing and Reversing Osteoporosis, 1994. ISBN 0-7615-0022-7
- ↑ Kessler, George J., The Bone Density Diet,2000. ISBN 0-345-43284-3
- ↑ Compston J, Cooper A, Cooper C, Gittoes N, Gregson C, Harvey N; et al. (2017). "UK clinical guideline for the prevention and treatment of osteoporosis". Arch Osteoporos. 12 (1): 43. doi:10.1007/s11657-017-0324-5. PMC 5397452. PMID 28425085.
- ↑ Bonaiuti D, Shea B, Iovine R; et al. (2002). "Exercise for preventing and treating osteoporosis in postmenopausal women". Cochrane database of systematic reviews (Online) (3): CD000333. PMID 12137611.
- ↑ Cheng S, Sipilä S, Taaffe DR, Puolakka J, Suominen H (2002). "Change in bone mass distribution induced by hormone replacement therapy and high-impact physical exercise in post-menopausal women". Bone. 31 (1): 126–35. PMID 12110425.
- ↑ Chien MY, Wu YT, Hsu AT, Yang RS, Lai JS (2000). "Efficacy of a 24-week aerobic exercise program for osteopenic postmenopausal women". Calcif. Tissue Int. 67 (6): 443–8. PMID 11289692.
- ↑ Iwamoto J, Takeda T, Ichimura S (2001). "Effect of exercise training and detraining on bone mineral density in postmenopausal women with osteoporosis". Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association. 6 (2): 128–32. doi:10.1007/s0077610060128. PMID 11484097.
- ↑ Kemmler W, Engelke K, Weineck J, Hensen J, Kalender WA (2003). "The Erlangen Fitness Osteoporosis Prevention Study: a controlled exercise trial in early postmenopausal women with low bone density-first-year results". Archives of physical medicine and rehabilitation. 84 (5): 673–82. PMID 12736880.
- ↑ Kerr D, Morton A, Dick I, Prince R (1996). "Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent". J. Bone Miner. Res. 11 (2): 218–25. PMID 8822346.