Pharyngitis differential diagnosis: Difference between revisions

Jump to navigation Jump to search
(Category)
Line 205: Line 205:
==References==
==References==
{{Reflist|2}}
{{Reflist|2}}
[[Category:Emergency mdicine]]
[[Category:Disease]]
[[Category:Primary care]]
[[Category:Up-To-Date]]
[[Category:Infectious disease]]
[[Category:Otolaryngology]]
[[Category:Pediatrics]]
[[Category:Immunology]]
[[Category:Gastroenterology]]
[[Category:Pediatrics]]

Revision as of 19:46, 21 September 2017

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Venkata Sivakrishna Kumar Pulivarthi M.B.B.S [2]

Pharyngitis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Pharyngitis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic study of choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

Ultrasound

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Pharyngitis differential diagnosis On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Pharyngitis differential diagnosis

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Pharyngitis differential diagnosis

CDC on Pharyngitis differential diagnosis

Pharyngitis differential diagnosis in the news

Blogs on Pharyngitis differential diagnosis

Directions to Hospitals Treating Type page name here

Risk calculators and risk factors for Pharyngitis differential diagnosis

Overview

Pharyngitis should be differentiated from other infectious causes which mimic sore throat that includes oral thrush, infectious mononucleosis, epiglottitis and retropharyngeal abscess.[1]

Differentiating Pharyngitis from other Diseases

The major goal of the differentiating patients with sore throat or acute pharyngitis is to exclude potentially dangerous causes (e.g. Group A streptococcus), to identify any treatable causes, and to improve symptoms. Identifying the treatable causes is important because timely treatment with antibiotics helps prevent complications such as acute rheumatic fever, post-streptococcal glomerulonephritis.[2]

Disease/Variable Presentation Causes Physical exams findings Age commonly affected Imaging finding Treatment
Peritonsillar abscess Severe sore throat, otalgia fever, a "hot potato" or muffled voice, drooling, and trismus[3] Aerobic and anaerobic

bacteria most common is

Streptococcus

pyogenes.[4][5][6][7]

Contralateral deflection of the uvula,

the tonsil is displaced inferiorly and medially, tender submandibular and anterior cervical lymph nodes, tonsillar hypertrophy with likely peritonsillar edema.

The highest occurrence is in adults between 20 to 40 years of age.[3] On ultrasound peritonsillar abscess appears as focal irregularly marginated hypoechoic area.[8][9][10][11][8][9] Ampicillin-sulbactam, Clindamycin, Vancomycin or Linezolid
Croup Has cough and stridor but no drooling. Others are Hoarseness, Difficulty breathing, symptoms of the common cold, Runny nose, Fever Parainfluenza virus Suprasternal and intercostal indrawing,[12] Inspiratory stridor, expiratory wheezing, Sternal wall retractions[13] Mainly 6 months and 3 years old

rarely, adolescents and adults[14]

Steeple sign on neck X-ray Dexamethasone and nebulised epinephrine
Epiglottitis Stridor and drooling but no cough. Other symptoms include difficulty breathing, fever, chills, difficulty swallowing, hoarseness of voice H. influenza type b,

beta-hemolytic streptococci, Staphylococcus aureus,

fungi and viruses.

Cyanosis, Cervical lymphadenopathy, Inflamed epiglottis Used to be mostly found in

pediatric age group between 3 to 5 years,

however, recent trend favors adults

as most commonly affected individuals

with a mean age of 44.94 years

Thumbprint sign on neck x-ray Airway maintenance, parenteral Cefotaxime or Ceftriaxone in combination with Vancomycin. Adjuvant therapy includes corticosteroids and racemic Epinephrine.[15][16]
Pharyngitis Sore throat, pain on swallowing, fever, headache, abdominal pain, nausea and vomiting Group A beta-hemolytic

streptococcus.

Inflamed pharynx with or without exudate Mostly in children and young adults,

with 50% of cases identified

between the ages of 5 to 24 years

_ Antimicrobial therapy mainly penicillin-based and analgesics.
Tonsilitis Sore throat, pain on swallowing, fever, headache, and cough Most common cause is

viral including adenovirus,

rhinovirus, influenza,

coronavirus, and

respiratory syncytial virus.

Second most common

causes are bacterial;

Group A streptococcal

bacteria[17]

Fever, especially 100°F or higher. Erythema, edema and exudate of the tonsils,[18] cervical lymphadenopathy, and Dysphonia.[19][20] Primarily affects children

between 5 and 15 years old.

Intraoral or transcutaneous USG may show an abscess making CT scan unnecessary.[21][19][20] Antimicrobial therapy mainly penicillin-based and analgesics with tonsilectomy in selected cases.
Retropharyngeal abscess Neck pain, stiff neck, torticollis, fever, malaise, stridor, and barking cough Polymicrobial infection.

Mostly; Streptococcus

pyogenes, Staphylococcus aureus and respiratory anaerobes (example; Fusobacteria, Prevotella,

and Veillonella species)[22][23][24][4][25][26]

Child may be unable to open the mouth widely. May have enlarged cervical lymph nodes and neck mass. Mostly between 2-4 years, but can occur in other age groups.[27][28] On CT scan, a mass impinging on the posterior pharyngeal wall with rim enhancement is seen[29][30] Immediate surgical drainage and antimicrobial therapy. emperic therapy involves; ampicillin-sulbactam or clindamycin.

The table below summarizes the findings that differentiate pharyngitis from other conditions that cause fever, fatigue, abdominal pain and diarrhea:[31]

Disease Findings
Ebola Presents with fever, chills vomiting, diarrhea, generalized pain or malaise, and sometimes internal and external bleeding, that follow an incubation period of 2-21 days.
Typhoid fever Presents with fever, headache, rash, gastrointestinal symptoms, with lymphadenopathy, relative bradycardia, cough and leucopenia and sometimes sore throat. Blood and stool culture can confirm the presence of the causative bacteria.
Malaria Presents with acute fever, headache and sometimes diarrhea (children). A blood smears must be examined for malaria parasites. The presence of parasites does not exclude a concurrent viral infection. An antimalarial should be prescribed as an empiric therapy.
Lassa fever Disease onset is usually gradual, with fever, sore throat, cough, pharyngitis, and facial edema in the later stages. Inflammation and exudation of the pharynx and conjunctiva are common.
Yellow fever and other Flaviviridae Present with hemorrhagic complications. Epidemiological investigation may reveal a pattern of disease transmission by an insect vector. Virus isolation and serological investigation serves to distinguish these viruses. Confirmed history of previous yellow fever vaccination will rule out yellow fever.
Shigellosis & other bacterial enteric infections Presents with diarrhea, possibly bloody, accompanied by fever, nausea, and sometimes toxemia, vomiting, cramps, and tenesmus. Stools contain blood and mucous in a typical case. A search for possible sites of bacterial infection, together with cultures and blood smears, should be made. Presence of leucocytosis distinguishes bacterial infections from viral infections.
Leukemia Cancer of the blood or bone marrow and is characterized by an abnormal proliferation (production by multiplication) of blood cells, usually white blood cells (leukocytes). It is part of the broad group of diseases called hematological neoplasms.
Tonsillitis Tonsillitis is characterized by signs of red, swollen tonsils which may have a purulent exudative coating of white patches (i.e. pus). In addition, there may be enlarged and tender neck cervical lymph nodes.
Pharyngitis Typically characterized by sore throat, but commonly accompanied by fever, headache, joint pain and muscle aches, skin rashes, swollen lymph nodes in the neck, diphtheria and common cold.
Adenovirus infections Commonly presents by a cold syndrome, pneumonia, croup and bronchitis.
Influenza Symptoms of influenza can start quite suddenly one to two days after infection. Usually the first symptoms are chills or a chilly sensation but fever is also common early in the infection, with body temperatures as high as 39 °C (approximately 103 °F). Many people are so ill that they are confined to bed for several days, with aches and pains throughout their bodies, which are worst in their backs and legs. Common symptoms of the flu such as fever, headaches, and fatigue come from the huge amounts of proinflammatory cytokines and chemokines (such as interferon or tumor necrosis factor) produced from influenza-infected cells.[32] In contrast to the rhinovirus that causes the common cold, influenza does cause tissue damage, so symptoms are not entirely due to the inflammatory response.[33]
Others Leptospirosis, rheumatic fever, typhus, and mononucleosis can produce signs and symptoms that may be confused with Ebola in the early stages of infection.

The table below summarizes the findings that differentiate influenza from other conditions that cause fever, fatigue, abdominal pain and diarrhea:[34]

Disease Findings
Ebola Presents with fever, chills vomiting, diarrhea, generalized pain or malaise, and sometimes internal and external bleeding, that follow an incubation period of 2-21 days.
Typhoid fever Presents with fever, headache, rash, gastrointestinal symptoms, with lymphadenopathy, relative bradycardia, cough and leucopenia and sometimes sore throat. Blood and stool culture can confirm the presence of the causative bacteria.
Malaria Presents with acute fever, headache and sometimes diarrhea (children). A blood smears must be examined for malaria parasites. The presence of parasites does not exclude a concurrent viral infection. An antimalarial should be prescribed as an empiric therapy.
Lassa fever Disease onset is usually gradual, with fever, sore throat, cough, pharyngitis, and facial edema in the later stages. Inflammation and exudation of the pharynx and conjunctiva are common.
Yellow fever and other Flaviviridae Present with hemorrhagic complications. Epidemiological investigation may reveal a pattern of disease transmission by an insect vector. Virus isolation and serological investigation serves to distinguish these viruses. Confirmed history of previous yellow fever vaccination will rule out yellow fever.
Shigellosis & other bacterial enteric infections Presents with diarrhea, possibly bloody, accompanied by fever, nausea, and sometimes toxemia, vomiting, cramps, and tenesmus. Stools contain blood and mucous in a typical case. A search for possible sites of bacterial infection, together with cultures and blood smears, should be made. Presence of leucocytosis distinguishes bacterial infections from viral infections.
Leukemia Cancer of the blood or bone marrow and is characterized by an abnormal proliferation (production by multiplication) of blood cells, usually white blood cells (leukocytes). It is part of the broad group of diseases called hematological neoplasms.
Tonsillitis Tonsillitis is characterized by signs of red, swollen tonsils which may have a purulent exudative coating of white patches (i.e. pus). In addition, there may be enlarged and tender neck cervical lymph nodes.
Pharyngitis Typically characterized by sore throat, but commonly accompanied by fever, headache, joint pain and muscle aches, skin rashes, swollen lymph nodes in the neck, diphtheria and common cold.
Adenovirus infections Commonly presents by a cold syndrome, pneumonia, croup and bronchitis.
Influenza Symptoms of influenza can start quite suddenly one to two days after infection. Usually the first symptoms are chills or a chilly sensation but fever is also common early in the infection, with body temperatures as high as 39 °C (approximately 103 °F). Many people are so ill that they are confined to bed for several days, with aches and pains throughout their bodies, which are worst in their backs and legs. Common symptoms of the flu such as fever, headaches, and fatigue come from the huge amounts of proinflammatory cytokines and chemokines (such as interferon or tumor necrosis factor) produced from influenza-infected cells.[32] In contrast to the rhinovirus that causes the common cold, influenza does cause tissue damage, so symptoms are not entirely due to the inflammatory response.[35]
Others Leptospirosis, rheumatic fever, typhus, and mononucleosis can produce signs and symptoms that may be confused with Ebola in the early stages of infection.

References

  1. Vincent MT, Celestin N, Hussain AN (2004) Pharyngitis. Am Fam Physician 69 (6):1465-70. PMID: 15053411
  2. Del Mar CB, Glasziou PP, Spinks AB (2006) Antibiotics for sore throat. Cochrane Database Syst Rev (4):CD000023. DOI:10.1002/14651858.CD000023.pub3 PMID: 17054126
  3. 3.0 3.1 Galioto NJ (2008). "Peritonsillar abscess". Am Fam Physician. 77 (2): 199–202. PMID 18246890.
  4. 4.0 4.1 Brook I (2004). "Microbiology and management of peritonsillar, retropharyngeal, and parapharyngeal abscesses". J Oral Maxillofac Surg. 62 (12): 1545–50. PMID 15573356.
  5. Megalamani SB, Suria G, Manickam U, Balasubramanian D, Jothimahalingam S (2008). "Changing trends in bacteriology of peritonsillar abscess". J Laryngol Otol. 122 (9): 928–30. doi:10.1017/S0022215107001144. PMID 18039418.
  6. Snow DG, Campbell JB, Morgan DW (1991). "The microbiology of peritonsillar sepsis". J Laryngol Otol. 105 (7): 553–5. PMID 1875138.
  7. Matsuda A, Tanaka H, Kanaya T, Kamata K, Hasegawa M (2002). "Peritonsillar abscess: a study of 724 cases in Japan". Ear Nose Throat J. 81 (6): 384–9. PMID 12092281.
  8. 8.0 8.1 Lyon M, Blaivas M (2005). "Intraoral ultrasound in the diagnosis and treatment of suspected peritonsillar abscess in the emergency department". Acad Emerg Med. 12 (1): 85–8. doi:10.1197/j.aem.2004.08.045. PMID 15635144.
  9. 9.0 9.1 Boesen T, Jensen F (1992). "Preoperative ultrasonographic verification of peritonsillar abscesses in patients with severe tonsillitis". Eur Arch Otorhinolaryngol. 249 (3): 131–3. PMID 1642863.
  10. Bandarkar AN, Adeyiga AO, Fordham MT, Preciado D, Reilly BK (2016). "Tonsil ultrasound: technical approach and spectrum of pediatric peritonsillar infections". Pediatr Radiol. 46 (7): 1059–67. doi:10.1007/s00247-015-3505-7. PMID 26637999.
  11. Scott PM, Loftus WK, Kew J, Ahuja A, Yue V, van Hasselt CA (1999). "Diagnosis of peritonsillar infections: a prospective study of ultrasound, computerized tomography and clinical diagnosis". J Laryngol Otol. 113 (3): 229–32. PMID 10435129.
  12. Johnson D (2009). "Croup". BMJ Clin Evid. 2009. PMC 2907784. PMID 19445760.
  13. Giordano S, Adamo P, Monaci F, Pittao E, Tretiach M, Bargagli R (2009). "Bags with oven-dried moss for the active monitoring of airborne trace elements in urban areas". Environ Pollut. 157 (10): 2798–805. doi:10.1016/j.envpol.2009.04.020. PMID 19457602.
  14. Tong MC, Chu MC, Leighton SE, van Hasselt CA (1996). "Adult croup". Chest. 109 (6): 1659–62. PMID 8769531.
  15. Nickas BJ (2005). "A 60-year-old man with stridor, drooling, and "tripoding" following a nasal polypectomy". J Emerg Nurs. 31 (3): 234–5, quiz 321. doi:10.1016/j.jen.2004.10.015. PMID 15983574.
  16. Wick F, Ballmer PE, Haller A (2002). "Acute epiglottis in adults". Swiss Med Wkly. 132 (37–38): 541–7. PMID 12557859.
  17. Putto A (1987). "Febrile exudative tonsillitis: viral or streptococcal?". Pediatrics. 80 (1): 6–12. PMID 3601520.
  18. Stelter K (2014). "Tonsillitis and sore throat in children". GMS Curr Top Otorhinolaryngol Head Neck Surg. 13: Doc07. doi:10.3205/cto000110. PMC 4273168. PMID 25587367.
  19. 19.0 19.1 Nogan S, Jandali D, Cipolla M, DeSilva B (2015). "The use of ultrasound imaging in evaluation of peritonsillar infections". Laryngoscope. 125 (11): 2604–7. doi:10.1002/lary.25313. PMID 25946659.
  20. 20.0 20.1 Fordham MT, Rock AN, Bandarkar A, Preciado D, Levy M, Cohen J; et al. (2015). "Transcervical ultrasonography in the diagnosis of pediatric peritonsillar abscess". Laryngoscope. 125 (12): 2799–804. doi:10.1002/lary.25354. PMID 25945805.
  21. Kawabata M, Umakoshi M, Makise T, Miyashita K, Harada M, Nagano H; et al. (2016). "Clinical classification of peritonsillar abscess based on CT and indications for immediate abscess tonsillectomy". Auris Nasus Larynx. 43 (2): 182–6. doi:10.1016/j.anl.2015.09.014. PMID 26527518.
  22. Cheng J, Elden L (2013). "Children with deep space neck infections: our experience with 178 children". Otolaryngol Head Neck Surg. 148 (6): 1037–42. doi:10.1177/0194599813482292. PMID 23520072.
  23. Abdel-Haq N, Quezada M, Asmar BI (2012). "Retropharyngeal abscess in children: the rising incidence of methicillin-resistant Staphylococcus aureus". Pediatr Infect Dis J. 31 (7): 696–9. doi:10.1097/INF.0b013e318256fff0. PMID 22481424.
  24. Inman JC, Rowe M, Ghostine M, Fleck T (2008). "Pediatric neck abscesses: changing organisms and empiric therapies". Laryngoscope. 118 (12): 2111–4. doi:10.1097/MLG.0b013e318182a4fb. PMID 18948832.
  25. Wright CT, Stocks RM, Armstrong DL, Arnold SR, Gould HJ (2008). "Pediatric mediastinitis as a complication of methicillin-resistant Staphylococcus aureus retropharyngeal abscess". Arch Otolaryngol Head Neck Surg. 134 (4): 408–13. doi:10.1001/archotol.134.4.408. PMID 18427007.
  26. Asmar BI (1990). "Bacteriology of retropharyngeal abscess in children". Pediatr Infect Dis J. 9 (8): 595–7. PMID 2235179.
  27. Craig FW, Schunk JE (2003). "Retropharyngeal abscess in children: clinical presentation, utility of imaging, and current management". Pediatrics. 111 (6 Pt 1): 1394–8. PMID 12777558.
  28. Coulthard M, Isaacs D (1991). "Neonatal retropharyngeal abscess". Pediatr Infect Dis J. 10 (7): 547–9. PMID 1876473.
  29. Philpott CM, Selvadurai D, Banerjee AR (2004). "Paediatric retropharyngeal abscess". J Laryngol Otol. 118 (12): 919–26. PMID 15667676.
  30. Vural C, Gungor A, Comerci S (2003). "Accuracy of computerized tomography in deep neck infections in the pediatric population". Am J Otolaryngol. 24 (3): 143–8. PMID 12761699.
  31. "WHO Infection Control for Viral Haemorrhagic Fevers in the African Health Care Setting" (PDF).
  32. 32.0 32.1 Schmitz N, Kurrer M, Bachmann MF, Kopf M (2005). "Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection". J Virol. 79 (10): 6441–8. doi:10.1128/JVI.79.10.6441-6448.2005. PMC 1091664. PMID 15858027.
  33. Winther B, Gwaltney J, Mygind N, Hendley J. "Viral-induced rhinitis". Am J Rhinol. 12 (1): 17–20. PMID 9513654.
  34. "WHO Infection Control for Viral Haemorrhagic Fevers in the African Health Care Setting" (PDF).
  35. Winther B, Gwaltney J, Mygind N, Hendley J. "Viral-induced rhinitis". Am J Rhinol. 12 (1): 17–20. PMID 9513654.