Cirrhosis pathophysiology: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 14: Line 14:
==Pathophysiology==
==Pathophysiology==
The pathogenesis of cirrhosis is as follows: <ref name="pmid7932316">{{cite journal |vauthors=Arthur MJ, Iredale JP |title=Hepatic lipocytes, TIMP-1 and liver fibrosis |journal=J R Coll Physicians Lond |volume=28 |issue=3 |pages=200–8 |year=1994 |pmid=7932316 |doi= |url=}}</ref><ref name="pmid8502273">{{cite journal |vauthors=Friedman SL |title=Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies |journal=N. Engl. J. Med. |volume=328 |issue=25 |pages=1828–35 |year=1993 |pmid=8502273 |doi=10.1056/NEJM199306243282508 |url=}}</ref><ref name="pmid8682489">{{cite journal |vauthors=Iredale JP |title=Matrix turnover in fibrogenesis |journal=Hepatogastroenterology |volume=43 |issue=7 |pages=56–71 |year=1996 |pmid=8682489 |doi= |url=}}</ref><ref name="pmid7959178">{{cite journal |vauthors=Gressner AM |title=Perisinusoidal lipocytes and fibrogenesis |journal=Gut |volume=35 |issue=10 |pages=1331–3 |year=1994 |pmid=7959178 |pmc=1374996 |doi= |url=}}</ref><ref name="pmid17332881">{{cite journal |vauthors=Iredale JP |title=Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ |journal=J. Clin. Invest. |volume=117 |issue=3 |pages=539–48 |year=2007 |pmid=17332881 |pmc=1804370 |doi=10.1172/JCI30542 |url=}}</ref><ref name="pmid11984538">{{cite journal |vauthors=Arthur MJ |title=Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C |journal=Gastroenterology |volume=122 |issue=5 |pages=1525–8 |year=2002 |pmid=11984538 |doi= |url=}}</ref>
The pathogenesis of cirrhosis is as follows: <ref name="pmid7932316">{{cite journal |vauthors=Arthur MJ, Iredale JP |title=Hepatic lipocytes, TIMP-1 and liver fibrosis |journal=J R Coll Physicians Lond |volume=28 |issue=3 |pages=200–8 |year=1994 |pmid=7932316 |doi= |url=}}</ref><ref name="pmid8502273">{{cite journal |vauthors=Friedman SL |title=Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies |journal=N. Engl. J. Med. |volume=328 |issue=25 |pages=1828–35 |year=1993 |pmid=8502273 |doi=10.1056/NEJM199306243282508 |url=}}</ref><ref name="pmid8682489">{{cite journal |vauthors=Iredale JP |title=Matrix turnover in fibrogenesis |journal=Hepatogastroenterology |volume=43 |issue=7 |pages=56–71 |year=1996 |pmid=8682489 |doi= |url=}}</ref><ref name="pmid7959178">{{cite journal |vauthors=Gressner AM |title=Perisinusoidal lipocytes and fibrogenesis |journal=Gut |volume=35 |issue=10 |pages=1331–3 |year=1994 |pmid=7959178 |pmc=1374996 |doi= |url=}}</ref><ref name="pmid17332881">{{cite journal |vauthors=Iredale JP |title=Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ |journal=J. Clin. Invest. |volume=117 |issue=3 |pages=539–48 |year=2007 |pmid=17332881 |pmc=1804370 |doi=10.1172/JCI30542 |url=}}</ref><ref name="pmid11984538">{{cite journal |vauthors=Arthur MJ |title=Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C |journal=Gastroenterology |volume=122 |issue=5 |pages=1525–8 |year=2002 |pmid=11984538 |doi= |url=}}</ref>
* When an injured [[Tissue (biology)|tissue]] is replaced by a [[Collagen|collagenous]] [[scar]], it is termed as [[fibrosis]]. The development of [[fibrosis]] requires several months, or even years, of ongoing injury.
* When an injured [[Tissue (biology)|tissue]] is replaced by a [[Collagen|collagenous]] [[scar]], it is termed as [[fibrosis]]. The development of [[fibrosis]] requires several months, or even years, of ongoing [[injury]].
* The pathological hallmark of cirrhosis is the development of scar tissue that replaces normal [[parenchyma]], leading to blockade of portal blood flow and disturbance of normal liver function.
* The pathological hallmark of cirrhosis is the development of [[scar tissue]] that leads to replacement of normal liver [[parenchyma]], leading to blockade of [[Portal vein|portal blood flow]] and disturbance of normal [[liver]] function.
* When fibrosis of the liver reaches an advanced stage where distortion of the hepatic vasculature also occurs, it is termed as cirrhosis of the liver. If the damage progresses, panlobular cirrhosis may result.  
* When [[fibrosis]] of the [[liver]] reaches an advanced stage where distortion of the [[Liver|hepatic]] [[Circulatory system|vasculature]] also occurs, it is termed as cirrhosis of the [[liver]]. If the damage progresses, panlobular cirrhosis may result.  
* The cellular mechanisms responsible for cirrhosis are similar regardless of the type of initial insult and site of injury within the liver lobule.
* The cellular mechanisms responsible for cirrhosis are similar regardless of the type of initial insult and site of injury within the [[Hepatic lobule|liver lobule]].
* Viral hepatitis involves the periportal region, whereas involvement in alcoholic liver disease is largely pericentral.  
* [[Hepatitis|Viral hepatitis]] involves the periportal region, whereas involvement in alcoholic liver disease is largely pericentral.  
* Cirrhosis involves the following steps: <ref name="pmid7737629">{{cite journal |vauthors=Wanless IR, Wong F, Blendis LM, Greig P, Heathcote EJ, Levy G |title=Hepatic and portal vein thrombosis in cirrhosis: possible role in development of parenchymal extinction and portal hypertension |journal=Hepatology |volume=21 |issue=5 |pages=1238–47 |year=1995 |pmid=7737629 |doi= |url=}}</ref>
* Cirrhosis involves the following steps: <ref name="pmid7737629">{{cite journal |vauthors=Wanless IR, Wong F, Blendis LM, Greig P, Heathcote EJ, Levy G |title=Hepatic and portal vein thrombosis in cirrhosis: possible role in development of parenchymal extinction and portal hypertension |journal=Hepatology |volume=21 |issue=5 |pages=1238–47 |year=1995 |pmid=7737629 |doi= |url=}}</ref>
** Inflammation  
** [[Inflammation]]
** Hepatic stellate cell activation  
** [[Ito cell|Hepatic stellate cell]] activation  
** Angiogenesis  
** [[Angiogenesis]]
** Fibrogenesis
** [[Fibrosis|Fibrogenesis]]
* Kupffer cells are hepatic macrophages responsible for Hepatic Stellate cell activation during injury.
* [[Kupffer cell|Kupffer cells]] are [[Liver|hepatic]] [[Macrophage|macrophages]] responsible for [[Ito cell|hepatic stellate cell]] activation during injury.
* The [[Ito cell|stellate cell]], (also known as the perisinusoidal cell or Ito cell) is a cell type that normally stores [[vitamin A]] and plays a pivotal role in the development of cirrhosis.
* The [[Ito cell|stellate cell]], (also known as the [[Ito cell|perisinusoidal cell]] or [[Ito cell]]) is a cell type that normally stores [[vitamin A]] and plays a pivotal role in the development of cirrhosis.
* Hepatic stellate cells (HSC) are usually located in the subendothelial space of Disse and become activated to a myofibroblast-like phenotype in areas of liver injury. This contractile cell (known as a [[myofibroblast]]) obstructs blood flow in the circulation.  
* [[Ito cell|Hepatic stellate cells (HSC)]] are usually located in the subendothelial space of Disse and become activated to a [[myofibroblast]]-like phenotype in areas of [[liver]] injury. This contractile cell (known as a [[myofibroblast]]) obstructs [[blood flow]] in the [[Circulatory system|circulation]].  
* The [[stellate cell]] secretes [[TGF beta 1|TGF-β<sub>1</sub>]], which leads to a fibrotic response and proliferation of [[connective tissue]].
* The [[stellate cell]] secretes [[TGF beta 1|TGF-β<sub>1</sub>]], which leads to a [[Fibrosis|fibrotic]] response and proliferation of [[connective tissue]].
* Connective tissue proliferation leads to the formation of [[extracellular matrix]] around [[hepatocytes]] and is composed of [[collagen]]s (especially type I, III, IV), [[glycoprotein]] and [[proteoglycan]]s.  
* [[Connective tissue]] proliferation leads to the formation of [[extracellular matrix]] around [[hepatocytes]] and is composed of [[collagen]]s (especially type I, III, IV), [[glycoprotein]] and [[proteoglycan]]s.  
* Collagen and non collagenous matrix proteins responsible for fibrosis are produced by the activated Hepatic Stellate Cells (HSC).  
* [[Collagen]] and non collagenous [[matrix]] [[Protein|proteins]] responsible for [[fibrosis]] are produced by the activated [[Ito cell|Hepatic Stellate Cells]] ([[Ito cell|HSC]]).  
* Hepatocyte damage causes the release of lipid peroxidases from injured cell membranes leading to necrosis of parenchymal cells.  
* [[Hepatocyte]] damage causes the release of [[lipid]] [[Peroxidase|peroxidases]] from injured [[Cell membrane|cell membranes]] leading to [[necrosis]] of [[Parenchyma|parenchymal cells]].  
* Activated HSC produce numerous cytokines and their receptors, such as PDGF and TGF-f31 which are responsible for fibrogenesis.  
* Activated [[Ito cell|HSC]] produce numerous [[Cytokine|cytokines]] and their receptors, such as [[Platelet-derived growth factor|PDGF]] and [[Transforming growth factor|TGF-f31]] which are responsible for [[Fibrosis|fibrogenesis]].  
* The matrix formed due to HSC activation is deposited in the space of Disse and leads to loss of fenestrations of endothelial cells, which is a process called capillarization.
* The matrix formed due to [[Ito cell|HSC]] activation is deposited in the space of Disse and leads to loss of fenestrations of [[Endothelium|endothelial cells]], which is a process called capillarization.
* Stellate cell activation leads to disturbance of the balance between [[matrix metalloproteinase]]s and the naturally occurring inhibitors (TIMP 1 and 2). This is followed by [[matrix (biology)|matrix]] breakdown and replacement by connective tissue-secreted matrix.<ref>Iredale JP. Cirrhosis: new research provides a basis for rational and targeted treatments. [[British Medical Journal|BMJ]] 2003;327:143-7.[http://bmj.bmjjournals.com/cgi/content/full/327/7407/143 Fulltext.] PMID 12869458.</ref>
* [[Stellate cell]] activation leads to disturbance of the balance between [[matrix metalloproteinase]]s and the naturally occurring inhibitors (TIMP 1 and 2). This is followed by [[matrix (biology)|matrix]] breakdown and replacement by connective tissue-secreted matrix.<ref>Iredale JP. Cirrhosis: new research provides a basis for rational and targeted treatments. [[British Medical Journal|BMJ]] 2003;327:143-7.[http://bmj.bmjjournals.com/cgi/content/full/327/7407/143 Fulltext.] PMID 12869458.</ref>
* [[Matrix metalloproteinase]] (MMP) are calcium dependent enzymes that specifically degrade [[collagen]] and non collagenous substrate.
* [[Matrix metalloproteinase]] (MMP) are calcium dependent enzymes that specifically degrade [[collagen]] and non collagenous substrate.
* MMP-2 and stromyelysin-1 are produced by stellate cells.  
* MMP-2 and stromyelysin-1 are produced by stellate cells.  

Revision as of 20:28, 20 December 2017

https://https://www.youtube.com/watch?v=5szNmKtyBW4%7C350}}

Cirrhosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Cirrhosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Tertiary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case studies

Case #1

Cirrhosis pathophysiology On the Web

Most recent articles

cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Cirrhosis pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Cirrhosis pathophysiology

CDC on Cirrhosis pathophysiology

Cirrhosis pathophysiology in the news

Blogs on Cirrhosis pathophysiology

Directions to Hospitals Treating Cirrhosis

Risk calculators and risk factors for Cirrhosis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief:

Overview

Cirrhosis occurs due to long term liver injury which causes an imbalance between matrix production and degradation. Early disruption of the normal hepatic matrix results in its replacement by scar tissue, which in turn has deleterious effects on cell function.

Pathophysiology

The pathogenesis of cirrhosis is as follows: [1][2][3][4][5][6]

Cirrhosis

  • Portal HTN results from the combination of the following:
    • Structural disturbances associated with advanced liver disease account for 70% of total hepatic vascular resistance.
    •  Functional abnormalities such as endothelial dysfunction and increased hepatic vascular tone account for 30% of total hepatic vascular resistance.

Pathogenesis of Cirrhosis due to Alcohol:

  • More than 66 percent of all American adults consume alcohol.
  • Cirrhosis due to alcohol accounts for approximately forty percent of mortality rates due to cirrhosis.
  • Mechanisms of alcohol-induced damage include:
    • Impaired protein synthesis, secretion, glycosylation
  • Ethanol intake leads to elevated accumulation of intracellular triglycerides by:
    • Lipoprotein secretion
    • Decreased fatty acid oxidation
    • Increased fatty acid uptake
  • Alcohol is converted by Alcohol dehydrogenase to acetaldehyde.
  • Due to the high reactivity of acetaldehyde, it forms acetaldehyde-protein adducts which cause damage to cells by:
    • Trafficking of hepatic proteins
    • Interrupting microtubule formation
    • Interfering with enzyme activities
  • Damage of hepatocytes leads to the formation of reactive oxygen species that activate Kupffer cells.[6]
  • Kupffer cell activation leads to the production of profibrogenic cytokines that stimulates stellate cells.
  • Stellate cell activation leads to the production of extracellular matrix and collagen.
  • Portal triads develop connections with central veins due to connective tissue formation in pericentral and periportal zones, leading to the formation of regenerative nodules.
  • Shrinkage of the liver occurs over years due to repeated insults that lead to:
    • Loss of hepatocytes
    • Increased production and deposition of collagen


Pathology

  • There are four stages of Cirrhosis as it progresses:
    • Chronic nonsuppurative destructive cholangitis - inflammation and necrosis of portal tracts with lymphocyte infiltration leading to the destruction of the bile ducts.
    • Development of biliary stasis and fibrosis
  • Periportal fibrosis progresses to bridging fibrosis
  • Increased proliferation of smaller bile ductules leading to regenerative nodule formation.
  1. Arthur MJ, Iredale JP (1994). "Hepatic lipocytes, TIMP-1 and liver fibrosis". J R Coll Physicians Lond. 28 (3): 200–8. PMID 7932316.
  2. Friedman SL (1993). "Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies". N. Engl. J. Med. 328 (25): 1828–35. doi:10.1056/NEJM199306243282508. PMID 8502273.
  3. Iredale JP (1996). "Matrix turnover in fibrogenesis". Hepatogastroenterology. 43 (7): 56–71. PMID 8682489.
  4. Gressner AM (1994). "Perisinusoidal lipocytes and fibrogenesis". Gut. 35 (10): 1331–3. PMC 1374996. PMID 7959178.
  5. Iredale JP (2007). "Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ". J. Clin. Invest. 117 (3): 539–48. doi:10.1172/JCI30542. PMC 1804370. PMID 17332881.
  6. 6.0 6.1 Arthur MJ (2002). "Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C". Gastroenterology. 122 (5): 1525–8. PMID 11984538.
  7. Wanless IR, Wong F, Blendis LM, Greig P, Heathcote EJ, Levy G (1995). "Hepatic and portal vein thrombosis in cirrhosis: possible role in development of parenchymal extinction and portal hypertension". Hepatology. 21 (5): 1238–47. PMID 7737629.
  8. Iredale JP. Cirrhosis: new research provides a basis for rational and targeted treatments. BMJ 2003;327:143-7.Fulltext. PMID 12869458.
  9. Fernández M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J (2009). "Angiogenesis in liver disease". J. Hepatol. 50 (3): 604–20. doi:10.1016/j.jhep.2008.12.011. PMID 19157625.
  10. Maher JJ, McGuire RF (1990). "Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo". J. Clin. Invest. 86 (5): 1641–8. doi:10.1172/JCI114886. PMC 296914. PMID 2243137. Unknown parameter |month= ignored (help)
  11. Herbst H, Frey A, Heinrichs O; et al. (1997). "Heterogeneity of liver cells expressing procollagen types I and IV in vivo". Histochem. Cell Biol. 107 (5): 399–409. PMID 9208331. Unknown parameter |month= ignored (help)
  12. García-Pagán JC, Gracia-Sancho J, Bosch J (2012). "Functional aspects on the pathophysiology of portal hypertension in cirrhosis". J. Hepatol. 57 (2): 458–61. doi:10.1016/j.jhep.2012.03.007. PMID 22504334.
  13. Lee JS, Semela D, Iredale J, Shah VH (2007). "Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte?". Hepatology. 45 (3): 817–25. doi:10.1002/hep.21564. PMID 17326208. Unknown parameter |month= ignored (help)
  14. Rosmorduc O, Housset C (2010). "Hypoxia: a link between fibrogenesis, angiogenesis, and carcinogenesis in liver disease". Semin. Liver Dis. 30 (3): 258–70. doi:10.1055/s-0030-1255355. PMID 20665378. Unknown parameter |month= ignored (help)
  15. Schuppan D, Afdhal NH (2008). "Liver cirrhosis". Lancet. 371 (9615): 838–51. doi:10.1016/S0140-6736(08)60383-9. PMC 2271178. PMID 18328931.
  16. Desmet VJ, Roskams T (2004). "Cirrhosis reversal: a duel between dogma and myth". J. Hepatol. 40 (5): 860–7. doi:10.1016/j.jhep.2004.03.007. PMID 15094237.
  17. Wanless IR, Nakashima E, Sherman M (2000). "Regression of human cirrhosis. Morphologic features and the genesis of incomplete septal cirrhosis". Arch. Pathol. Lab. Med. 124 (11): 1599–607. doi:10.1043/0003-9985(2000)124<1599:ROHC>2.0.CO;2. PMID 11079009.