Neonatal jaundice medical therapy: Difference between revisions
Jump to navigation
Jump to search
Line 17: | Line 17: | ||
==== Mechanism of phototherapy ==== | ==== Mechanism of phototherapy ==== | ||
* Phototherapy can lower the level of bilirubin in neonatal jaundice via the following mechanisms:<ref name="pmid3584465">{{cite journal| author=Ennever JF, Costarino AT, Polin RA, Speck WT| title=Rapid clearance of a structural isomer of bilirubin during phototherapy. | journal=J Clin Invest | year= 1987 | volume= 79 | issue= 6 | pages= 1674-8 | pmid=3584465 | doi=10.1172/JCI113006 | pmc=424499 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3584465 }}</ref> | * Phototherapy can lower the level of bilirubin in neonatal jaundice via the following mechanisms:<ref name="pmid3584465">{{cite journal| author=Ennever JF, Costarino AT, Polin RA, Speck WT| title=Rapid clearance of a structural isomer of bilirubin during phototherapy. | journal=J Clin Invest | year= 1987 | volume= 79 | issue= 6 | pages= 1674-8 | pmid=3584465 | doi=10.1172/JCI113006 | pmc=424499 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3584465 }}</ref><ref>{{cite journal |author=Leung C, Soong WJ, Chen SJ |title=[Effect of light on total micro-bilirubin values in vitro] |language=Chinese |journal=Zhonghua Yi Xue Za Zhi (Taipei) |volume=50 |issue=1 |pages=41–5 |year=1992|month=July |pmid=1326385 |doi= |url=}}</ref> | ||
** Isomerization of bilirubin to lumirubin which is more soluble | ** Isomerization of bilirubin to lumirubin which is more soluble<ref>{{cite journal |author=Stokowski LA |title=Fundamentals of phototherapy for neonatal jaundice |journal=Adv Neonatal Care |volume=6 |issue=6|pages=303–12 |year=2006 |month=December |pmid=17208161 |doi=10.1016/j.adnc.2006.08.004 |url=}}</ref> | ||
** Isomerization of bilirubin isomers to less toxic isomers (ex. 4Z and 15E) | ** Isomerization of bilirubin isomers to less toxic isomers (ex. 4Z and 15E) | ||
** Phototherapy converts bilirubin into soluble polar compounds by oxidation | ** Phototherapy converts bilirubin into soluble polar compounds by oxidation | ||
Line 28: | Line 28: | ||
** Halogen white light | ** Halogen white light | ||
** Blue LEDs | ** Blue LEDs | ||
===Exchange transfusions=== | ===Exchange transfusions=== | ||
Much like with phototherapy the level at which exchange transfusions should occur depends on the health status and age of the newborn. It should however be used for any newborn with a total serum bilirubin of greater than 428 umol/l ( 25 mg/dL ).<ref name="AAP2004" /> | Much like with phototherapy the level at which exchange transfusions should occur depends on the health status and age of the newborn. It should however be used for any newborn with a total serum bilirubin of greater than 428 umol/l ( 25 mg/dL ).<ref name="AAP2004" /> |
Revision as of 14:28, 5 February 2018
Neonatal jaundice Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Neonatal jaundice medical therapy On the Web |
American Roentgen Ray Society Images of Neonatal jaundice medical therapy |
Risk calculators and risk factors for Neonatal jaundice medical therapy |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief:
Overview
The mainstay of treatment of patients with neonatal jaundice is phototherapy, intravenous immunoglobulins and blood exchange.
Medical Therapy
- Phototherapy or blood transfusion are recommended by the American Academy of Pediatrics (AAP) for the treatment of neonatal jaundice.[1]
- It is recommended to treat the newborns with phototherapy or blood transfusion in order to decrease the risk of severe hyperbilirubinemia and kernicterus development.
Phototherapy
- Phototherapy is considered as the safest intervention approach used in treatment of neonatal jaundice.
- Phototherapy showed its efficacy in lowering the level of the total serum bilirubin in all patients with neonatal jaundice regardless the underlying cause.[2][3]
- Phototherapy also acts on preventing the rise of the bilirubin to the level of exchange transfusion threshold.[4]
- The total bilirubin level should be assessed every three hours after starting the phototherapy. The efficacy of phototherapy is assessed by the drop of the bilirubin level which is the best indicator of the neonatal response to the phototherpay.[5]
- If the level of the bilirubin still high after initiating the phototherapy, blood transfusion is indicated and to be initiated.
Mechanism of phototherapy
- Phototherapy can lower the level of bilirubin in neonatal jaundice via the following mechanisms:[6][7]
- Isomerization of bilirubin to lumirubin which is more soluble[8]
- Isomerization of bilirubin isomers to less toxic isomers (ex. 4Z and 15E)
- Phototherapy converts bilirubin into soluble polar compounds by oxidation
- Different sources of the light required for phototherapy: [9]
- Home phototherapy
- Sunlight exposure
- Filtered sunlight
- Fluorescent tubes
- Halogen white light
- Blue LEDs
Exchange transfusions
Much like with phototherapy the level at which exchange transfusions should occur depends on the health status and age of the newborn. It should however be used for any newborn with a total serum bilirubin of greater than 428 umol/l ( 25 mg/dL ).[1]
References
- ↑ 1.0 1.1 American Academy of Pediatrics Subcommittee on Hyperbilirubinemia (2004). "Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation". Pediatrics. 114 (1): 297–316. doi:10.1542/peds.114.1.297. PMID 15231951. Unknown parameter
|month=
ignored (help) - ↑ Amato M, Inaebnit D (1991). "Clinical usefulness of high intensity green light phototherapy in the treatment of neonatal jaundice". Eur. J. Pediatr. 150 (4): 274–6. doi:10.1007/BF01955530. PMID 2029920. Unknown parameter
|month=
ignored (help) - ↑ Ip S, Chung M, Kulig J, O'Brien R, Sege R, Glicken S; et al. (2004). "An evidence-based review of important issues concerning neonatal hyperbilirubinemia". Pediatrics. 114 (1): e130–53. PMID 15231986.
- ↑ Newman TB, Kuzniewicz MW, Liljestrand P, Wi S, McCulloch C, Escobar GJ (2009). "Numbers needed to treat with phototherapy according to American Academy of Pediatrics guidelines". Pediatrics. 123 (5): 1352–9. doi:10.1542/peds.2008-1635. PMC 2843697. PMID 19403502.
- ↑ Bhutani VK, Johnson L, Sivieri EM (1999). "Predictive ability of a predischarge hour-specific serum bilirubin for subsequent significant hyperbilirubinemia in healthy term and near-term newborns". Pediatrics. 103 (1): 6–14. PMID 9917432.
- ↑ Ennever JF, Costarino AT, Polin RA, Speck WT (1987). "Rapid clearance of a structural isomer of bilirubin during phototherapy". J Clin Invest. 79 (6): 1674–8. doi:10.1172/JCI113006. PMC 424499. PMID 3584465.
- ↑ Leung C, Soong WJ, Chen SJ (1992). "[Effect of light on total micro-bilirubin values in vitro]". Zhonghua Yi Xue Za Zhi (Taipei) (in Chinese). 50 (1): 41–5. PMID 1326385. Unknown parameter
|month=
ignored (help) - ↑ Stokowski LA (2006). "Fundamentals of phototherapy for neonatal jaundice". Adv Neonatal Care. 6 (6): 303–12. doi:10.1016/j.adnc.2006.08.004. PMID 17208161. Unknown parameter
|month=
ignored (help) - ↑ Vreman HJ, Wong RJ, Stevenson DK (2004). "Phototherapy: current methods and future directions". Semin Perinatol. 28 (5): 326–33. PMID 15686263.