Kawasaki disease: Difference between revisions
Line 399: | Line 399: | ||
| | | | ||
*Symptomatic treatment | *Symptomatic treatment | ||
|<figure-inline><figure-inline><figure-inline><figure-inline><figure-inline>[[File:Hand foot mouth disease 07a.jpg|473x473px]]</figure-inline></figure-inline></figure-inline></figure-inline></figure-inline> | |<figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline>[[File:Hand foot mouth disease 07a.jpg|473x473px]]</figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline> | ||
|- | |- | ||
|[[Chickenpox|Chicken pox]] | |[[Chickenpox|Chicken pox]] | ||
Line 422: | Line 422: | ||
*[[Paracetamol]] ([[acetaminophen]]) for [[fever]] | *[[Paracetamol]] ([[acetaminophen]]) for [[fever]] | ||
*[[Prednisolone]] is [[contraindicated]] | *[[Prednisolone]] is [[contraindicated]] | ||
|<figure-inline><figure-inline><figure-inline><figure-inline><figure-inline>[[File:Chickenpox18a.jpg|700x700px]]</figure-inline></figure-inline></figure-inline></figure-inline></figure-inline> | |<figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline>[[File:Chickenpox18a.jpg|700x700px]]</figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline> | ||
|- | |- | ||
|[[Measles]] | |[[Measles]] | ||
Line 455: | Line 455: | ||
*Primary site of infection is the [[respiratory epithelium]] of the [[nasopharynx]] | *Primary site of infection is the [[respiratory epithelium]] of the [[nasopharynx]] | ||
*Transmitted in [[respiratory secretions]], via [[aerosol droplets]] containing [[virus particles]] | *Transmitted in [[respiratory secretions]], via [[aerosol droplets]] containing [[virus particles]] | ||
|<figure-inline><figure-inline><figure-inline><figure-inline><figure-inline>[[File:Koplikspot1a.jpg|700x700px]]</figure-inline></figure-inline></figure-inline></figure-inline></figure-inline> | |<figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline>[[File:Koplikspot1a.jpg|700x700px]]</figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline> | ||
|- | |- | ||
|[[Herpangina]] | |[[Herpangina]] | ||
Line 506: | Line 506: | ||
*Treatment is with antiviral agents such as [[Valacyclovir]] and [[Famciclovir]] | *Treatment is with antiviral agents such as [[Valacyclovir]] and [[Famciclovir]] | ||
| | | | ||
<figure-inline><figure-inline><figure-inline><figure-inline><figure-inline>[[File:Herpes labialis - opryszczka wargowa.jpg|1600x1600px]]</figure-inline></figure-inline></figure-inline></figure-inline></figure-inline> | <figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline>[[File:Herpes labialis - opryszczka wargowa.jpg|1600x1600px]]</figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline> | ||
|} | |} | ||
Line 996: | Line 996: | ||
==Risk Factors== | ==Risk Factors== | ||
*Common risk factors in the development of Kawasaki disease are believed to be environmental, genetic, and viral.<ref name="Sánchez-ManubensBou2014">{{cite journal|last1=Sánchez-Manubens|first1=Judith|last2=Bou|first2=Rosa|last3=Anton|first3=Jordi|title=Diagnosis and classification of Kawasaki disease|journal=Journal of Autoimmunity|volume=48-49|year=2014|pages=113–117|issn=08968411|doi=10.1016/j.jaut.2014.01.010}}</ref><ref name="pmid25822554">{{cite journal |vauthors=Saguil A, Fargo M, Grogan S |title=Diagnosis and management of kawasaki disease |journal=Am Fam Physician |volume=91 |issue=6 |pages=365–71 |date=March 2015 |pmid=25822554 |doi= |url=}}</ref> | *Common risk factors in the development of Kawasaki disease are believed to be environmental, genetic, and viral.<ref name="Sánchez-ManubensBou2014">{{cite journal|last1=Sánchez-Manubens|first1=Judith|last2=Bou|first2=Rosa|last3=Anton|first3=Jordi|title=Diagnosis and classification of Kawasaki disease|journal=Journal of Autoimmunity|volume=48-49|year=2014|pages=113–117|issn=08968411|doi=10.1016/j.jaut.2014.01.010}}</ref> | ||
*Kawasaki disease affects children of all races and ages and both genders.<ref name="pmid25822554">{{cite journal |vauthors=Saguil A, Fargo M, Grogan S |title=Diagnosis and management of kawasaki disease |journal=Am Fam Physician |volume=91 |issue=6 |pages=365–71 |date=March 2015 |pmid=25822554 |doi= |url=}}</ref> | |||
*Kawasaki disease occurs most often in children of Asian and Pacific Island descent. | *Kawasaki disease occurs most often in children of Asian and Pacific Island descent. | ||
*Kawasaki disease is more likely to affect boys than girls. | *Kawasaki disease is more likely to affect boys than girls. |
Revision as of 19:39, 28 March 2018
https://https://www.youtube.com/watch?v=sTyDHTUCw48%7C350}} |
Template:DiseaseDisorder infobox
WikiDoc Resources for Kawasaki disease |
Articles |
---|
Most recent articles on Kawasaki disease Most cited articles on Kawasaki disease |
Media |
Powerpoint slides on Kawasaki disease |
Evidence Based Medicine |
Clinical Trials |
Ongoing Trials on Kawasaki disease at Clinical Trials.gov Trial results on Kawasaki disease Clinical Trials on Kawasaki disease at Google
|
Guidelines / Policies / Govt |
US National Guidelines Clearinghouse on Kawasaki disease NICE Guidance on Kawasaki disease
|
Books |
News |
Commentary |
Definitions |
Patient Resources / Community |
Patient resources on Kawasaki disease Discussion groups on Kawasaki disease Patient Handouts on Kawasaki disease Directions to Hospitals Treating Kawasaki disease Risk calculators and risk factors for Kawasaki disease
|
Healthcare Provider Resources |
Causes & Risk Factors for Kawasaki disease |
Continuing Medical Education (CME) |
International |
|
Business |
Experimental / Informatics |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Cafer Zorkun, M.D., Ph.D. [2] Arzu Kalayci, M.D. [3]
For the heart in Kawasaki disease click here
Overview
Kawasaki disease, also known as lymph node syndrome, mucocutaneous node disease, infantile polyarteritis and Kawasaki syndrome, is a poorly understood self-limited vasculitis that affects many organs, including the skin and mucous membranes, lymph nodes, blood vessel walls, and the heart. It does not seem to be contagious. It was first described in 1967 by Dr. Tomisaku Kawasaki in Japan.. Kawasaki disease is predominantly a disease of young children, with 80% of patients younger than 5 years of age. Additional risk factors in the United States include Asian race and male sex. Kawasaki disease can cause vasculitic changes (inflammation of blood vessels) in the coronary arteries and subsequent coronary artery aneurysms. Common symptoms of kawasaki disease include high grade fever, red eyes, bright red and cracked lips, red mucous membranes in the mouth, strawberry tongue, white coating on the tongue or prominent red bumps (papillae) on the back of the tongue, red palms of the hands and the soles of the feet, swollen hands and feet, and rash. Intravenous Immunoglobulin (IVIG) and aspirin are indicated in kawasaki disease.
Historical Perspective
The Historical data on Kawasaki is described below:[1][2][3][4][5][6]
- In 1961, Dr. Tomisaku Kawasaki saw his first case of Kawasaki disease.
- In 1967, Kawasaki published his first report of Kawasaki disease in Japanese.
- In 1960s, pathologist Noboru Tanaka and pediatrician Takajiro Yamamoto disputed the early assertion of Kawasaki that Kawasaki disease was a self-limited illness with no sequelae.
- In 1970, first Japanese nationwide survey of Kawasaki disease was conducted and 10 autopsy cases of sudden cardiac death after Kawasaki disease were documented.
- In 1973, at the University of Hawaii hospital, pathologist Eunice Larson, in collaboration with Benjamin Landing at the Los Angeles Children's Hospital, retrospectively established a diagnosis of Kawasaki disease in a 1971 autopsy case.
- In 1974, Tomisaku Kawasaki published the first English-language report of 50 patients with Kawasaki disease.
- By 1974, the link between Kawasaki disease and coronary artery vasuclitis was well established.
- In 1976, he first cases of Kawasaki disease outside of Japan were reported in Hawaii.
- In 1988, the Committee on infectious diseases of the American Academy of Pediatrics declared IVIG treatment as the recommended therapy for Kawasaki disease.
- In 2006 march, Kawasaki disease was mentioned in the television programs Nip/Tuck and Without a Trace In the episode All In of the TV series House, it was inexplicably mentioned as a possible diagnosis for a 6 year old boy that was admitted with bloody diarrhea and coordination problems, as well as an elderly woman with unexplained respiratory, cardiovascular and neural deficiencies. Maxie Jones, a fictional character on General Hospital suffers from it. According to John Travolta and Kelly Preston, their son Jett Travolta also suffers from the disease.
Classification
- Patients whose illness does not meet the diagnostic criteria of Kawasaki disease case definition, but who have fever and coronary artery abnormalities are classified as:
- Atypical or incomplete Kawasaki disease
Pathophysiology
The exact pathogenesis of [disease name] is not fully understood.
OR
It is thought that [disease name] is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].
OR
[Pathogen name] is usually transmitted via the [transmission route] route to the human host.
OR
Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.
OR
[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].
OR
The progression to [disease name] usually involves the [molecular pathway].
OR
The pathophysiology of [disease/malignancy] depends on the histological subtype.
Causes
- The cause of kawasaki disease has not been identified.
- The current etiological theories center primarily on immunological causes for the disease.
- Much research is being performed to discover a definitive toxin or antigenic substance, possibly a superantigen, that is the specific cause of the disease.
- An unknown virus may play a role as an inciting factor as well.
- There are several hypothesis for the causes of Kawasaki disease, the Infectious agents which are thought to induce kawasaki disease are:[7][8]
- Parvovirus B19
- Meningococcal septicemia
- Adenovirus
- Bacterial toxin–mediated superantigens
- Cytomegalovirus
- Epstein-Barr virus
- Human lymphotropic virus infection
- Klebsiella pneumoniae bacteremia
- Mycoplasma pneumoniae
- Mite-associated bacteria
- Measles
- Propionibacterium acnes
- Parainfluenza type 3 virus
- Rotavirus infection
- Rickettsia species
- Tick-borne diseases
Differentiating Kawasaki disease from other diseases
Different rash-like conditions can be confused with Kawasaki disease and are thus included in its differential diagnosis. The various conditions that should be differentiated from Kawasaki disease include:[9][10][11][12][13][14][15]
Disease | Features |
---|---|
Kawasaki disease |
|
Impetigo | |
Insect bites |
|
Measles |
|
Monkeypox |
|
Rubella |
|
Atypical measles |
|
Coxsackievirus |
|
Acne |
|
Syphilis | It commonly presents with gneralized systemic symptoms such as malaise, fatigue, headache and fever. Skin eruptions may be subtle and asymptomatic It is classically described as:
|
Molluscum contagiosum |
|
Mononucleosis |
|
Toxic erythema | |
Rat-bite fever | |
Parvovirus B19 | |
Cytomegalovirus |
|
Scarlet fever |
|
Rocky Mountain spotted fever |
|
Stevens-Johnson syndrome |
|
Varicella-zoster virus | |
Chickenpox |
|
Meningococcemia | |
Rickettsial pox | |
Meningitis |
|
Disease | Epidemiology | Predisposing factors | Clinical features | Lab abnormalities | |
---|---|---|---|---|---|
Signs | Symptoms | ||||
Kawasaki | Occurs in children, usually age 1-4 years | Interaction of genetic and environmental factors, possibly including an infection in combination with genetic predisposition to an autoimmune mechanism (autoimmune vasculitis) | Non-suppurative, painless bilateral conjunctival inflammation (conjunctivitis), strawberry tongue (marked redness with prominent gustative papillae), deep transverse grooves across the nails may develop (Beau’s lines), lymphadenopathy present(acute, non-purulent, cervical), may lead to coronary artery aneurysms. | High and persistent fever that is not very responsive to normal treatment with acetaminophen or NSAIDs, diffuse macular-papular erythematous rash | Liver function tests may show evidence of hepatic inflammation and low serum albumin levels, low hemoglobulin and age-adjusted hemoglobulin concentrations, thrombocytosis, anemia. Echocardiographic abnormalities, such as valvulitis (mitral or tricuspid regurgitation) and coronary artery lesions, are significantly more common in Kawasaki disease. [16] Pyuria of uretheral origin. |
Toxic shock syndrome | Occurs in both adults and children (9:1 female predominance) | Occurs in association with vaginitis during menstruation following tampon use (S. aureus); as a complication of soft tissue infections (S. pyogenes or GAS) or in females undergoing medical abortion (C. sordellii). | Hypotension, tachycardia, mucous membrane hyperemia (vaginal, oral, conjunctival) | Fever, diarrhea, vomiting, diffuse scarlantiform rash | Hyponatremia and uremia. Hepatic dysfunction (total bilirubin, serum asparate aminotransferase or serum alanine aminotransferase levels >2 times upper normal limit), leukocytosis with a polymorphonuclear shift to the left. Platelets < 100,000 per mm3 (thrombocytopenia), pyuria of renal origin. |
Scarlet fever | Distributed equally among both genders. Most commonly affects children between five and fifteen years of age. | Occurs after streptococcal pharyngitis/tonsillitis | Pastia's sign (puncta and skin crease accentuation of the erythema), strawberry tongue, cervical lymphadenopathy may be present. Scarlet fever appears similar to Kawasaki's disease in some aspects, but lacks the eye signs or the swollen, red fingers and toes | Characteristic sandpaper-like rash which appears days after the illness begins (although the rash can appear before illness or up to 7 days later), rash may first appear on the neck, underarm, and groin | Leukocytosis with left shift and possibly eosinophilia a few weeks after convalescence. Anti-deoxyribonuclease B, antistreptolysin-O titers (antibodies to streptococcal extracellular products), antihyaluronidase, and antifibrinolysin may be positive. |
Kawasaki disease must be differentiated from other causes of fever and rash in infants
Disease | Agent | Typical Season | Typical Age | Prodrome | Fever | Duration of the rash (days) | Rash | Other Signs & Symptoms |
---|---|---|---|---|---|---|---|---|
Kawasaki disease | Unknown | Winter - Spring | < 5 years | 3 days of abrupt fever | High; fever of 5 days is a diagnostic criteria | 5 - 7 | Erythematous, morbilliform, maculopapular or scarlatiniform, central distribution; erythematous, indurated palms and soles | Acute: dry, fissured and injected lips, strawberry tongue; irritability; cervical lymphadenopathy; conjunctival injection; peripheral edema; Subacute: finger-tip desquamation; Complications: arthritis, carditis |
Measles | Paramyxovirus Measles virus |
Winter - Spring | 1 to 20 years | 2-4 days of cough, conjunctivitis, and coryza | High | 5 - 6 | Erythematous, irregular size, maculopapular; starts on temples and behind ears; progresses down from face; fades to brownish | Koplik's spots: C blue-white papules (salt grains) on bright red mucosa opposite premolar teeth |
Roseola Infantum (exanthem subitum) | Human herpes virus type 6 | Any season | 6 months to 2 years | None | High | 1-2; it follows defervescence | Discrete erythematous macules, rarely involves face, begins as fever ends | Lymphadenopathy, irritability |
Rubella | Togavirus | Spring | 7 months to 29 years | 0 - 4 days; mild malaise, fever; absent in children | Low grade | 1 - 3 | Discrete, rose-pink, diffuse, maculopapular; progresses downward from face, may change quickly | Arthralgia (usually in adults), tender posterior cervical and suboccipital lymphadenopathy, malaise, petechiae on soft palate |
Scarlet Fever | ß-hemolytic streptococci | Winter | > 2 years | 0 - 6 day, marked | Low to high | 2 - 7 | Scarlet "sunburn" with punctate papules "sandpaper", circumoral pallor, increased intensity in skin folds, blanches stars face/head, upper trunk and progresses downward | Sore throat, exudative tonsillitis, vomiting, abdominal pain, lmphadenopathy, white then red strawberry tongue |
Erythema Infectiosum (Fifth Disease) | Human parvovirus type B19 | Spring | 5 - 10 years | None, usually in children, may occur in adults | None to low-grade | 2 - 4 | Starts as “slapped cheek”, maculopapular; progresses to reticular (lacy) pattern; can recur with environmental changes such as sunlight exposure | Arthralgia/arthritis in adults, adenopathy |
Enterovirus | Echovirus Coxsackie virus |
Summer - Fall | Mainly childhood | 0 - 1 day fever and myalias | Low to high | 1 - 5 | Fine, pink, always affects face; variant is Boston exanthem (large ~ 1 cm, discrete maculopapules) | Sore throat, headache, malaise, no lymphadenopathy, gastroenteritis |
Dengue Fever | Flavivirus Dengue virus types 1 - 4 |
None | High | 1 - 5 | Generalized maculopapular rash after defervescence; spares palms and soles | Headache, myalgia, abdominal pain, pharyngitis, vomiting | ||
Drug induced rash | Many | Any | Any | Possible due to underlying illness | Possible | Varies | Typically diffuse but may be concentrated in diaper area, typically no progression, erythema multiform rash can progress over a few days | Possibly due to underlying illness or complications |
Infectious Mononucleosis | Epstein-Barr Virus | None | 10 - 30 years | 2 - 5 days of malaise and fatigue | Low to high | 2 - 7 | Trunk and proximal extremities. Rash common if Ampicillin given | Pharyngitis, lymphadenopathy, splenomegaly, malaise |
Pharyngoconjunctival Fever | Adenovirus types 2, 3, 4, 7, 7a | Winter - Spring | < 5 years | Low to high | 3 - 5 | Starts on face and spreads down to trunk and extremities | Sore throat, conjunctivitis, headache, anorexia |
The following table is a list of differential diagnosis oral lesions presenting similar to measles:
Disease | Presentation | Risk Factors | Diagnosis | Affected Organ Systems | Important features | Picture |
---|---|---|---|---|---|---|
Coxsackie virus |
|
|
<figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline> | |||
Chicken pox |
|
|
|
|
<figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline> | |
Measles |
|
|
|
|
<figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline> | |
Herpangina |
|
|
|
|
|
|
Primary herpetic gingivoestomatitis[20] |
|
|
|
|
|
<figure-inline><figure-inline><figure-inline><figure-inline><figure-inline><figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline> |
Koplik spots must be differentiated from other diseases causing oral lesions such as leukoplakia and herpes simplex virus infection.
Disease | Presentation | Risk Factors | Diagnosis | Affected Organ Systems | Important features | Picture |
---|---|---|---|---|---|---|
Diseases predominantly affecting the oral cavity | ||||||
Oral Candidiasis |
|
|
|
Localized candidiasis
Invasive candidasis |
|
|
Herpes simplex oral lesions |
|
|
|
|
||
Aphthous ulcers |
|
|
|
|
|
|
Squamous cell carcinoma |
|
|
||||
Leukoplakia |
|
|
|
|
||
Melanoma |
|
|
|
|
||
Fordyce spots |
|
|
|
|
||
Burning mouth syndrome |
|
|
||||
Torus palatinus |
|
|||||
Diseases involving oral cavity and other organ systems | ||||||
Behcet's disease |
|
|
|
|||
Crohn's disease |
|
|
|
|||
Agranulocytosis |
|
|
||||
Syphilis[24] |
|
|
|
|||
Coxsackie virus |
|
|
||||
Chicken pox |
|
|
|
|
||
Measles |
|
|
|
Epidemiology and Demographics
Kawasaki disease occurs worldwide, with the highest incidence in Japan, and it most often affects boys and younger children. KS may have a winter-spring seasonality, and community-wide outbreaks have been reported occasionally. In the continental United States, population-based and hospitalization studies have estimated an incidence of KS ranging from 9 to 19 per 100,000 children younger than 5 years of age. Approximately 4248 hospitalizations for Kawasaki disease, of which 3277 (77%) were for children under 5 years of age, were estimated among children younger than 18 years of age in the United States in the year 2000.
CDC uses hospital discharge data, a passive KS surveillance system, and special studies to describe the incidence and epidemiology of KS in the United States. The KS surveillance system has been maintained by CDC since 1976 and is based on voluntary reporting of KS cases by health care providers and local and state health authorities. A standardized case report form is used to collect information on patients.
For epidemiologic surveillance, CDC defines a case of KS as illness in a patient with fever of 5 or more days duration (or fever until the date of administration of intravenous immunoglobulin if it is given before the fifth day of fever), and the presence of at least 4 of the following 5 clinical signs:
- Rash
- Cervical lymphadenopathy (at least 1.5 cm in diameter)
- Bilateral conjuctival injection
- Oral mucosal changes
- Peripheral extremity changes.
Patients whose illness does not meet the above KS case definition but who have fever and coronary artery abnormalities are classified as having atypical or incomplete KS.
Incidence
By far, the highest incidence of Kawasaki disease occurs in Japan (175 per 100,000), though its incidence in the United States is increasing. Kawasaki disease is predominantly a disease of young children, with 80% of patients younger than 5 years of age. Additional risk factors in the United States include Asian race and male sex.
Risk Factors
- Common risk factors in the development of Kawasaki disease are believed to be environmental, genetic, and viral.[26]
- Kawasaki disease affects children of all races and ages and both genders.[27]
- Kawasaki disease occurs most often in children of Asian and Pacific Island descent.
- Kawasaki disease is more likely to affect boys than girls.
- Most cases of Kawasaki disease occur in children younger than 5 years of age.
- Kawasaki disease is rare in children older than 8 years of age.
Screening
Natural History, Complications, and Prognosis
Natural History
Complications
Prognosis
The cardiac complications are, by far, the most important aspect of the disease. Kawasaki disease can cause vasculitic changes (inflammation of blood vessels) in the coronary arteries and subsequent coronary artery aneurysms. These aneurysms can lead to myocardial infarction (heart attack) even in young children. Overall, about 10–18% of children with Kawasaki disease develop coronary artery aneurysms[28], with much higher prevalence among patients who are not treated early in the course of illness. Kawasaki disease is the most common cause of acquired heart disease among children in the United States.
With early treatment, rapid recovery from the acute symptoms can be expected and the risk of coronary artery aneurysms greatly reduced. Untreated, the acute symptoms of Kawasaki disease are self-limited (i.e. the patient will recover eventually), but the risk of coronary artery involvement is much greater. Overall, about 2% of patients die from complications of coronary vasculitis. Patients who have had Kawasaki disease should have an echocardiogram initially every few weeks, and then every 1–2 years to screen for progression of cardiac involvement.
It is also not uncommon that a relapse of symptoms may occur soon after initial treatment with IVIG. This usually requires re-hospitalization and retreatment. Treatment with IVIG can cause allergic and non-allergic acute reactions, aseptic meningitis, fluid overload and, rarely, other serious reactions. Aspirin may increase the risk of bleeding from other causes and may be associated with Reye's syndrome. Overall, life-threatening complications resulting from therapy for Kawasaki disease are exceedingly rare, especially compared with the risk of non-treatment.
Diagnosis
Diagnostic Criteria
Kawasaki disease is diagnosed clinically (by medical signs and symptoms), and there exists no specific laboratory test that can tell if someone has it. It is normally difficult to establish the diagnosis, especially early in the course of illness, and frequently children are not diagnosed until they have seen their doctor several times, or visited a number of different health care providers. Many other serious illnesses can cause similar symptoms, and must be considered in the differential diagnosis, including scarlet fever, toxic shock syndrome, and juvenile idiopathic arthritis.
Classically, five days of fever plus four of five diagnostic criteria must be met in order to establish the diagnosis.
The criteria are:
(1) Mucositis: erythema of the palatine mucosa, fissure erythematous lips, "strawberry tongue"
(2) Rash: Polymorphus, usually urticarial erythematous rash mainly in external extremities. The rash can spread to trunk
(3) Extremities changes: Edema of hand and feet, erythema of palms & soles, desquamation of fingertips
(4) Bilateral non-exudative conjuctival erythema
(5) Cervical lymphadenopathy for at least 15 milimeters
Many children, especially infants, eventually diagnosed with Kawasaki disease do not exhibit all of the above criteria. In fact, many experts now recommend treating for Kawasaki disease even if only three days of fever have passed and at least three diagnostic criteria are present, especially if other tests reveal abnormalities consistent with Kawasaki disease. In addition, the diagnosis can be made purely by the detection of coronary artery aneurysms in the proper clinical setting.
History and Symptoms
Kawasaki disease often begins with a high and persistent fever that is not very responsive to normal doses of acetaminophen or ibuprofen. The fever may persist steadily for up to two weeks and is normally accompanied by irritability. Affected children develop red eyes, red mucous membranes in the mouth, red cracked lips, a "strawberry tongue", iritis, keratic precipitates (detectable by an ophthalmologist but usually too small to be seen by the unaided eye), and swollen lymph nodes. Skin rashes occur early in the disease, and peeling of the skin in the genital area, hands, and feet (especially around the nails and on the palms and soles) may occur in later phases. Some of these symptoms may come and go during the course of the illness. If left untreated, the symptoms will eventually relent, but coronary artery aneurysms will not improve, resulting in a significant risk of death or disability due to myocardial infarction (heart attack). If treated in a timely fashion, this risk can be mostly avoided and the course of illness cut short.
- High-grade fever (greater than 39 °C or 102 °F; often as high as 40 °C or 104 °F) that normally lasts for more than a week if left untreated.
- Red eyes (conjunctivitis) without pus or drainage, also known as "conjunctival injection"
- Bright red, chapped, or cracked lips
- Red mucous membranes in the mouth
- Strawberry tongue, white coating on the tongue or prominent red bumps (papillae) on the back of the tongue
- Red palms of the hands and the soles of the feet
- Swollen hands and feet
- Rash which may take many forms, but not vesicular (blister-like), on the trunk
- Swollen lymph nodes (frequently only one lymph node is swollen), particularly in the neck area
- Joint pain (arthralgia) and swelling, frequently symmetrical
- Irritability
- Tachycardia (rapid heart beat)
- Peeling (desquamation) palms and soles (later in the illness); peeling may begin around the nails
AHA Scientific Statement on Kawasaki Disease
Recommendations for Cardiovascular Assessment for Diagnosis and Monitoring During the Acute Illness
Class I |
"1. Echocardiography should be performed when the diagnosis of KD is considered, but unavailability or technical limitations should not delay treatment.(Level of Evidence: B) " |
"2. Coronary arteries should be imaged, and quantitative assessment of luminal dimensions, normalized as Z scores adjusted for body surface, should be performed.(Level of Evidence: B) " |
"3. For uncomplicated patients, echocardiog- raphy should be repeated both within 1 to 2 weeks and 4 to 6 weeks after treatment.(Level of Evidence: B) " |
"4. For patients with important and evolving coronary artery abnormalities (Z score >2.5) detected during the acute illness, more fre- quent echocardiography (at least twice per week) should be performed until luminal dimensions have stopped progressing to determine the risk for and presence of thrombosis.(Level of Evidence: B) " |
Class IIa |
"1. To detect coronary artery thrombosis, it may be reasonable to perform echocardiography for patients with expanding large or giant aneurysms twice per week while dimensions are expanding rapidly and at least once weekly in the first 45 days of illness, and then monthly until the third month after illness onset, because the failure to escalate thromboprophylaxis in time with the rapid expansion of aneurysms is a primary cause of morbidity and mortality . (Level of Evidence: C) " |
Physical Examination
A physical examination will demonstrate many of the features listed above.
Laboratory Findings
- There are no specific laboratory findings associated with [disease name].
- A [positive/negative] [test name] is diagnostic of [disease name].
- An [elevated/reduced] concentration of [serum/blood/urinary/CSF/other] [lab test] is diagnostic of [disease name].
- Other laboratory findings consistent with the diagnosis of [disease name] include [abnormal test 1], [abnormal test 2], and [abnormal test 3].
Blood tests
- Complete blood count (CBC) may reveal normocytic anemia and eventually thrombocytosis
- Erythrocyte sedimentation rate (ESR) will be elevated
- C-reactive protein (CRP) will be elevated
- Liver function tests may show evidence of hepatic inflammation and low serum albumin
Imaging Findings
Other Diagnostic Studies
Other tests (may or may not be performed)
- Electrocardiogram may show evidence of ventricular dysfunction or, occasionally, arrhythmia due to myocarditis
- Echocardiogram may show subtle coronary artery changes or, later, true aneurysms.
- Ultrasound or computerized tomography may show hydrops (enlargement) of the gallbladder
- Urinalysis may show white blood cells and protein in the urine (pyuria and proteinuria) without evidence of bacterial growth
- Lumbar puncture may show evidence of aseptic meningitis
- Angiography was historically used to detect coronary artery aneurysms and remains the gold standard for their detection, but is rarely used today unless coronary artery aneurysms have already been detected by echocardiography.
Treatment
Medical Therapy
Intravenous Immunoglobulin (IVIG) and aspirin are indicated in the treatment of Kawasaki Disease. It is imperative that treatment be started as soon as the diagnosis is made to prevent damage to the coronary arteries. Except for Kawasaki disease and a couple of other indications, aspirin is otherwise normally not recommended for children due to its association with Reye's syndrome. Children with Kawasaki disease should be hospitalized.
- 1. Initial treatment [29]
- Preferred regimen: IVIG 2 g/kg single infusion within the first 7-10 days of illness AND Aspirin 80-100 mg/kg/day qid , reduce the aspirin dose after the child has been afebrile for 48 to 72 hours, then begin low-dose aspirin (3 to 5 mg/kg/day) and maintain it until the patient shows no evidence of coronary changes by 6 to 8 weeks after the onset of illness
- Note (1): Other clinicians continue highdose aspirin until day 14 of illness and 48 to 72 hours after fever cessation
- Note (2): For children who develop coronary abnormalities, aspirin may be continued indefinitely
- 2. Treatment of Patients Who Failed to Respond to Initial Therapy (persistent or recrudescent fever ≥ 36 hours after completion of the initial IVIG infusion)
- Preferred regimen: IVIG 2 g/kg q24h for 1-3 days OR Methylprednisolone 30 mg/kg IV for 2-3 hours q24h for 1-3 days
AHA Scientific Statement on Kawasaki Disease
Recommendations for Initial Treatment With Intravenous Immunoglobulin (IVIG) and Asetil Salisilat Acid (ASA)
Class I |
"1. Patients with complete KD criteria and those who meet the algorithm criteria for incomplete KD should be treated with high-dose IVIG (2 g/kg given as a single intravenous infusion) within 10 days of illness onset but as soon as possible after diagnosis.(Level of Evidence: A) " |
Class IIa |
"1. It is reasonable to administer IVIG to children presenting after the 10th day of illness (ie, in whom the diagnosis was missed earlier) if they have either persistent fever without other explanation or coronary artery abnormalities together with ongoing systemic inflammation, as manifested by elevation of ESR or CRP (CRP >3.0 mg/dL). (Level of Evidence: B) " |
"2. Administrationofmoderate-(30–50mg·kg−1·d−1) to high-dose (80–100 mg·kg−¹·d−¹) ASA is reasonable until the patient is afebrile, although there is no evidence that it reduces coronary artery aneurysms. (Level of Evidence: C) " |
Class III |
"1. IVIG generally should not be administered to patients beyond the tenth day of illness in the absence of fever, significant elevation of inflammatory markers, or coronary artery abnormalities . (Level of Evidence: C) " |
"2. The ESR is accelerated by IVIG therapy and therefore should not be used to assess response to IVIG therapy. A persistently high ESR alone should not be interpreted as a sign of IVIG resistance. (Level of Evidence: C) " |
Recommendations for Adjunctive Therapies for Primary Treatment
Class IIb |
"1. Administration of a longer course of corticosteroids (eg, tapering over 2–3 weeks), together with IVIG 2 g/kg and ASA, may be considered for treatment of high-risk patients with acute KD, when such high risk can be identified in patients before initiation of treatment. (Level of Evidence: B) " |
Class III |
"1. Single-dose pulse methylprednisolone should not be administered with IVIG as routine primary therapy for patients with Kawasaki Disease. (Level of Evidence: B) " |
Recommendations for Additional Therapy in the IVIG-Resistant Patient
Class IIa |
"1. It is reasonable to administer a second dose of IVIG (2 g/kg) to patients with persistent or recrudescent fever at least 36 hours after the end of the first IVIG infusion. (Level of Evidence: B) " |
Class IIb |
"1. Administration of high-dose pulse steroids (usually methylprednisolone 20–30 mg/kg intravenously for 3 days, with or without a subsequent course and taper of oral prednisone) may be considered as an alternative to a second infusion of IVIG or for retreatment of patients with KD who have had recurrent or recrudescent fever after additional IVIG. (Level of Evidence: B) " |
"2. Administration of a longer (eg, 2–3 weeks) tapering course of prednisolone or prednisone, together with IVIG 2 g/kg and ASA, may be considered in the retreatment of patients with KD who have had recurrent or recrudescent fever after initial IVIG treatment. (Level of Evidence: B) " |
"3. Administration of infliximab (5 mg/kg) may be considered as an alternative to a second infusion of IVIG or corticosteroids for IVIG-resistant patients. (Level of Evidence: C) " |
"4. Administration of cyclosporine may be considered in patients with refractory KD in whom a second IVIG infusion, infliximab, or a course of steroids has failed. (Level of Evidence: C) " |
"5. Administration of immunomodulatory monoclonal antibody therapy (except TNF-α block- ers), cytotoxic agents, or (rarely) plasma exchange may be considered in highly refractory patients who have failed to respond to a second infusion of IVIG, an extended course of steroids, or infliximab. (Level of Evidence: C) " |
Recommendations for Treatment of Coronary Artery Thrombosis
Class I |
"1. Coronary artery thrombosis with actual or impending occlusion of the arterial lumen should be treated with thrombolytic therapy or, in patients of sufficient size, by mechanical restoration of coronary artery blood flow at cardiac catheterization.(Level of Evidence: C) " |
"2. Thrombolytic agents should be administered together with low-dose ASA and low-dose heparin, with careful monitoring for bleeding.(Level of Evidence: C) " |
Class IIb |
"1. Treatment of coronary artery thrombosis with substantial thrombus burden and high risk of occlusion with a combination of reduced-dose thrombolytic therapy and abciximab may be considered. (Level of Evidence: C) " |
Risk-Stratified Recommendations for Long-Term Evaluation and Management
No Involvement (Z Score Always <2)
Class IIa |
"1. It is reasonable to use echocardiographic coronary artery luminal dimensions converted to BSA-adjusted Z scores to determine risk stratification. (Level of Evidence: B) ". (Level of Evidence: C) " |
Type and frequency of additional cardiology assessment (other cardiology testing) |
Class IIa |
"1. It is reasonable that no additional cardiology assessment be performed. (Level of Evidence: B) ". (Level of Evidence: C) " |
Cardiovascular risk factor assessment and management |
Class IIa |
"1. It is reasonable to provide general counseling regarding healthy lifestyle and activity promotion at every visit; this may be provided by the primary care provider. (Level of Evidence: B) ". (Level of Evidence: C) " |
"2. It is reasonable to assess blood pressure, fast- ing lipid profile, body mass index (and plot), waist circumference, dietary and activity assessment, and smoking at least once and ideally at least 1 year from the episode of acute KD; this may be performed by the primary care provider. (Level of Evidence: B) ". (Level of Evidence: C) " |
Medical therapy (β-blockers, angiotensin-converting enzyme inhibitor [ACEI], statin) |
Class III |
"1. No additional medical therapy should be given. (Level of Evidence: C) " |
Thromboprophylaxis |
Class IIa |
"1. It is reasonable to give low-dose ASA for up to 4 to 6 weeks after the episode of acute KD, which should be discontinued thereafter. (Level of Evidence: C) ". (Level of Evidence: C) " |
Physical activity |
Class IIa |
"1. It is reasonable to provide physical activity counseling at every visit with no restrictions or precautions at any time. (Level of Evidence: B) ". (Level of Evidence: C) " |
Reproductive counselling |
Class IIa |
"1. It is reasonable to provide age-appropriate counseling regarding contraception and pregnancy without modification. (Level of Evidence: B) ". (Level of Evidence: C) " |
Dilation Only (Z Score ≥2 but <2.5, or a Decrease in Z Score During Follow-up ≥1)
Class IIa |
"1. If luminal dimensions have returned to normal by 4 to 6 weeks after KD onset, it is reasonable to discharge the patient from cardiology care, although ongoing follow-up to 12 months may be considered. (Level of Evidence: B) ". (Level of Evidence: C) " |
"2. If dilation remains present at 4 to 6 weeks after KD onset, then it is reasonable to continue follow-up to 12 months. If the luminal dimensions return to normal before then, it is reasonable to discharge the patient from ongoing cardiology care. (Level of Evidence: B) ". (Level of Evidence: C) " |
"3. Resolution is expected within 1 year. If dilation persists at 1 year, consider whether this represents a dominant branch. If this is a probable explanation, then it is reasonable to discharge the patient from ongoing cardiology care, although ongoing follow-up every 2 to 5 years may be considered. Patients and families should be advised to remember that having had KD is part of the patient’s permanent medical history. (Level of Evidence: C) ". (Level of Evidence: C) " |
Type and frequency of additional cardiology assessment (other cardiology testing) |
Class IIa |
"1. It is reasonable that no additional cardiology assessment be performed. (Level of Evidence: B) ". (Level of Evidence: C) " |
Cardiovascular risk factor assessment and management |
Class IIa |
"1. It is reasonable to provide general counseling regarding healthy lifestyle and activity promotion at every visit; this may be provided by the primary care provider. (Level of Evidence: C) ". (Level of Evidence: C) " |
"2. It is reasonable to assess blood pressure, fasting lipid profile, body mass index (and plot), waist circumference, dietary and activity assessment, and smoking at least once and ideally at least 1 year from the episode of acute KD; this may be performed by the primary care provider. (Level of Evidence: C) ". (Level of Evidence: C) " |
Medical therapy (β-blockers, ACEI, statin) |
Class III |
"1. No additional medical therapy should be given. (Level of Evidence: C) " |
Thromboprophylaxis |
Class IIa |
"1. It is reasonable to give low-dose ASA until 4 to 6 weeks after the acute episode, which should be discontinued thereafter. (Level of Evidence: C) ". (Level of Evidence: C) " |
Physical activity |
Class IIa |
"1. It is reasonable to provide physical activity counseling at every visit with no restrictions or precautions at any time. (Level of Evidence: B) " |
Reproductive counseling |
Class IIa |
"1. It is reasonable to provide age-appropriate counseling regarding contraception and pregnancy without modification. (Level of Evidence: B) " |
Regression to Normal Z Score or Dilation Only
Frequency of cardiology assessment (to include history and physical examination, echocardiography, electrocardiography) |
Class IIa |
"1. It is reasonable to assess every 1 to 3 years. It is reasonable not to perform echocardiogra- phy unless there is evidence for inducible myocardial ischemia or the patient has symptoms suggestive of ischemia or signs suggestive of ventricular dysfunction. (Level of Evidence: B) " |
Type and frequency of additional cardiology assessment (other cardiology testing) |
Class IIa |
"1. It is reasonable to assess for inducible myocardial ischemia (stress echocardiography, stress with MRI, stress NM perfusion imaging, PET) every 3 to 5 years or if the patient has symptoms suggestive of ischemia or signs suggestive of ventricular dysfunction. (Level of Evidence: B) " |
Class IIb |
"1. Further imaging with angiography (CT, MRI, invasive) may be considered only if there is evidence for inducible myocardial ischemia or ventricular dysfunction. (Level of Evidence: C) " |
Cardiovascular risk factor assessment and management |
Class IIa |
"1. It is reasonable to provide general counseling regarding healthy lifestyle and activity promotion at every visit; this may additionally be provided by the primary care provider.(Level of Evidence: C) " |
"2. It is reasonable to assess blood pressure, fasting lipid profile, body mass index (and plot), waist circumference, dietary and activity assessment, and smoking every 2 years; this may be performed by the primary care provider. It is reasonable to obtain a follow- up fasting lipid profile. (Level of Evidence: C) " |
Medical therapy (β-blockers, ACEI, statin) |
Class IIb |
"1. Empirical statin therapy for non–lipid-lowering (pleiotropic) effects may be considered.(Level of Evidence: C) " |
Class III |
"1. Empirical treatment with β-blockers is not indicated.(Level of Evidence: C) " |
Thromboprophylaxis |
Class IIb |
"1. Ongoing treatment with low-dose ASA may be considered, although it is reasonable to discontinue.(Level of Evidence: C) " |
Class IIa |
"1. Use of an alternative antiplatelet agent (eg, a thienopyridine such as clopidogrel) instead of ASA is reasonable if the patient is intol- erant or resistant to ASA.(Level of Evidence: C) " |
Physical activity |
Class IIa |
"1. It is reasonable to provide physical activity counseling at every visit with no restrictions or precautions at any time .(Level of Evidence: C) " |
Reproductive counselling |
Class IIa |
"1. It is reasonable to provide age-appropriate counseling regarding contraception and pregnancy without modification.(Level of Evidence: B) " |
Medium Aneurysms (Z Score ≥5 to <10, With an Absolute Luminal Dimension <8 mm)
Current or Persistent Medium Aneurysms
Frequency of cardiology assessment (to include history and physical examination, echocardiography, electrocardiography) |
Class IIa |
"1. It is reasonable to provide physical activity counseling at every visit with no restrictions or precautions at any time .(Level of Evidence: B) " |
Type and frequency of additional cardiology assessment (other cardiology testing) |
Class IIa |
"1. It is reasonable to assess for inducible myo- cardial ischemia (stress echocardiography, stress with MRI, stress NM perfusion imaging, PET) every 1 to 3 years or if the patient has symptoms suggestive of ischemia or signs suggestive of ventricular dysfunction.(Level of Evidence: B) " |
Class IIb |
"1. Further imaging with angiography (CT, MRI, invasive) may be considered for periodic sur- veillance every 2 to 5 years.(Level of Evidence: C) " |
Cardiovascular risk factor assessment and management |
Class IIa |
"1. It is reasonable to provide general counseling regarding healthy lifestyle and activity promotion at every visit; this may additionally be provided by the primary care provider.(Level of Evidence: C) " |
"2. It is reasonable to assess blood pressure, fasting lipid profile, body mass index (and plot), waist circumference, dietary and activity assessment, and smoking at least once and ideally at least 1 year from the episode of acute KD; this may be performed by the primary care provider. It is reasonable to obtain a follow-up fasting lipid profile.(Level of Evidence: C) " |
Medical therapy (β-blockers, ACEI, statin) |
Class IIb |
"1. Empirical statin therapy for non–lipid-lowering (pleiotropic) effects may be considered.(Level of Evidence: C) " |
Class III |
"1. Empirical treatment with β-blockers is not indicated.(Level of Evidence: C) " |
Thromboprophylaxis |
Class I |
"1. Patients should be treated with low-dose ASA.(Level of Evidence: C) " |
Class IIa |
"1. Use of an alternative antiplatelet agent (eg, a thienopyridine such as clopidogrel) instead of ASA is reasonable if the patient is intoler- ant or resistant to ASA.(Level of Evidence: C) " |
Class IIb |
"1. Additional patient and coronary artery characteristics may be considered in decision making regarding intensification of thromboprophylaxis.(Level of Evidence: C) " |
"2. Dual-antiplatelet therapy with an additional antiplatelet agent (eg, a thienopyridine such as clopidogrel) may be considered.(Level of Evidence: C) " |
Class III |
"1. Use of anticoagulation (warfarin, LMWH) is not indicated.(Level of Evidence: C) " |
Physical activity |
Class I |
"1. For patients taking dual-antiplatelet therapy, activities involving a risk of bodily contact, trauma, or injury should be restricted or modified.(Level of Evidence: B) " |
Class IIa |
"1. It is reasonable to provide physical activity counseling at every visit without restrictions or precautions. Participation in competitive sports or high-intensity activities should be guided by results from testing for inducible myocardial ischemia or exercise-induced arrhythmias.(Level of Evidence: C) " |
Reproductive counselling |
Class IIa |
"1. It is reasonable to discourage use of oral contraceptive drugs that increase thrombosis risk, to recommend that pregnancy be supervised by a multidisciplinary team including a cardiologist, and to alter thromboprophylaxis management during pregnancy and delivery.(Level of Evidence: B) " |
Regression to Small Aneurysms
Frequency of cardiology assessment (to include history and physical examination, echocardiography, electrocardiography) |
Class IIa |
"1. Ongoing follow-up assessment every year is reasonable.(Level of Evidence: B) " |
Type and frequency of additional cardiology assessment (other cardiology testing) |
Class IIa |
"1. It is reasonable to assess for inducible myocardial ischemia (stress echocardiography, stress with MRI, stress NM perfusion imaging, PET) every 2 to 3 years or if the patient has symptoms suggestive of ischemia or signs suggestive of ventricular dysfunction.(Level of Evidence: B) " |
Class IIb |
"1. Further imaging with angiography (CT, MRI, invasive) may be considered for periodic surveillance every 3 to 5 years.(Level of Evidence: C) " |
Cardiovascular risk factor assessment and management |
Class IIa |
"1. It is reasonable to provide general counseling regarding healthy lifestyle and activity promotion at every visit; this may additionally be provided by the primary care provider.(Level of Evidence: C) " |
"2. It is reasonable to assess blood pressure, fasting lipid profile, body mass index (and plot), waist circumference, dietary and activ- ity assessment, and smoking every year; this may be performed by the primary care provider. It is reasonable to obtain a follow- up fasting lipid profile.(Level of Evidence: C) " |
Medical therapy (β-blockers, ACEI, statin) |
Class IIb |
"1. Empirical statin therapy for non–lipid-lowering (pleiotropic) effects may be considered.(Level of Evidence: C) " |
Class III |
"1. Empirical treatment with β-blockers is not indicated.(Level of Evidence: C) " |
Thromboprophylaxis |
Class I |
"1. Patients should be treated with low-dose ASA.(Level of Evidence: C) " |
Class IIa |
"1. Use of an alternative antiplatelet agent (eg, a thienopyridine such as clopidogrel) instead of ASA is reasonable if the patient is intolerant or resistant to ASA.(Level of Evidence: C) " |
Class IIb |
"1. Dual-antiplatelet therapy with an additional antiplatelet agent (eg, a thienopyridine such as clopidogrel) may be considered.(Level of Evidence: C) " |
"2. Additional patient and coronary artery characteristics may be considered in decision making regarding intensification or discontinuation of thromboprophylaxis.(Level of Evidence: C) " |
Class III |
"1. Use of anticoagulation is not indicated.(Level of Evidence: C) " |
Physical activity |
Class I |
"1. For patients taking dual-antiplatelet therapy, activities involving a risk of bodily contact, trauma, or injury should be restricted or modified.(Level of Evidence: B) " |
Class IIa |
"1. It is reasonable to provide physical activity counseling at every visit without restrictions or precautions. Participation in competitive sports or high-intensity activities should be guided by results from testing for inducible myocardial ischemia or exercise-induced arrhythmias.(Level of Evidence: C) " |
Reproductive counselling |
Class IIa |
"1. It is reasonable to discourage use of oral contraceptive drugs that increase thrombo- sis risk, to recommend that pregnancy be supervised by a multidisciplinary team includ- ing a cardiologist, and to alter thromboprophylaxis management during pregnancy and delivery.(Level of Evidence: B) " |
Regression to Normal Z Score or Dilation Only
Frequency of cardiology assessment (to include history and physical examination, echocardiography, electrocardiography) |
Class IIb |
"1. It is reasonable to discourage use of oral contraceptive drugs that increase thrombo- sis risk, to recommend that pregnancy be supervised by a multidisciplinary team includ- ing a cardiologist, and to alter thromboprophylaxis management during pregnancy and delivery.(Level of Evidence: B) " |
Type and frequency of additional cardiology assessment (other cardiology testing) |
Class IIa |
"1. It is reasonable to assess for inducible myocardial ischemia (stress echocardiography, stress with MRI, stress NM perfusion imaging, PET) every 2 to 4 years or if the patient has symptoms suggestive of ischemia or signs suggestive of ventricular dysfunction.(Level of Evidence: B) " |
"2. It is reasonable to perform no further imaging with angiography (CT, MRI, invasive) in the absence of evidence of inducible myocardial ischemia. |
Cardiovascular risk factor assessment and management |
Class IIa |
"1. It is reasonable to provide general counseling regarding healthy lifestyle and activity promotion at every visit; this may additionally be provided by the primary care provider.(Level of Evidence: C) " |
"2. It is reasonable to assess blood pressure, fasting lipid profile, body mass index (and plot), waist circumference, dietary and activ- ity assessment, and smoking every 2 years; this may be performed by the primary care provider. It is reasonable to obtain a follow- up fasting lipid profile.(Level of Evidence: C) " |
Medical therapy (β-blockers, statin) |
Class IIb |
"1. Empirical statin therapy for non–lipid-lowering (pleiotropic) effects may be considered.(Level of Evidence: C) " |
Class III |
"1. Empirical treatment with β-blockers is not indicated.(Level of Evidence: C) " |
Thromboprophylaxis |
Class IIa |
"1. It is reasonable to continue treatment with low-dose ASA.(Level of Evidence: C) " |
"2. Use of an alternative antiplatelet agent (eg, a thienopyridine such as clopidogrel) instead of ASA is reasonable if the patient is intolerant or resistant to ASA.(Level of Evidence: C) " |
Class IIb |
"1. Use of an additional antiplatelet agent (eg, a thienopyridine such as clopidogrel) is not recommended except in the presence of inducible myocardial ischemia.(Level of Evidence: C) " |
"2. Additional patient and coronary artery characteristics may be considered in decision making regarding intensification or discontinuation of thromboprophylaxis.(Level of Evidence: C) " |
Class III |
"1. Use of anticoagulation (warfarin/LMWH) is not indicated.(Level of Evidence: C) " |
Physical activity |
Class IIa |
"1. It is reasonable to provide physical activity counseling at every visit without restrictions or precautions. Participation in competitive sports or high-intensity activities should be guided by results from testing for inducible myocardial ischemia or exercise-induced arrhythmias.(Level of Evidence: C) " |
Reproductive counselling |
Class IIa |
"1. It is reasonable to provide age-appropriate counseling regarding contraception and pregnancy without modification.(Level of Evidence: B) " |
Large and Giant Aneurysms (Z Score ≥10 or Absolute Dimension ≥8 mm)
Frequency of cardiology assessment (to include history and physical examination, echocardiography, electrocardiography) |
Class IIa |
"1. It is reasonable to assess patients at 1, 2, 3, 6, 9, and 12 months after the episode of acute KD in the first year and every 3 to 6 months thereafter.(Level of Evidence: C) " |
Type and frequency of additional cardiology assess- ment (other cardiology testing) |
Class IIa |
"1. It is reasonable to assess for inducible myocardial ischemia (stress echocardiography, stress with MRI, stress NM perfusion imaging, PET) every 6 to 12 months or if the patient has symptoms suggestive of ischemia or signs suggestive of ventricular dysfunction.(Level of Evidence: B) " |
Class IIb |
"1. Further imaging with angiography (CT, MRI, invasive) may be considered for diagnostic and prognostic purposes during the first year and may be considered for periodic surveillance every 1 to 5 years thereafter.(Level of Evidence: C) " |
Cardiovascular risk factor assessment and management |
Class IIa |
"1. It is reasonable to provide general counseling regarding healthy lifestyle and activity promotion at every visit; this may additionally be provided by the primary care provider.(Level of Evidence: C) " |
Class IIa |
"1. It is reasonable to assess blood pressure, body mass index (and plot), waist circumference, dietary and activity assessment, and smoking every 6 to 12 months; this may be performed by the primary care provider. It is reasonable to obtain a fasting lipid profile during follow- up.(Level of Evidence: C) " |
Medical therapy (β-blockers, ACEI, statin) |
Class IIb |
"1. Empirical statin therapy for non–lipid-lowering (pleiotropic) effects may be considered.(Level of Evidence: C) " |
"2. Empirical treatment with β-blockers may be considered .(Level of Evidence: C) " |
Thromboprophylaxis |
Class I |
"1. Patients should be treated with low-dose ASA.(Level of Evidence: C) " |
Class IIa |
"1. Use of an alternative antiplatelet agent (eg, a thienopyridine such as clopidogrel) instead of ASA is reasonable if the patient is intolerant or resistant to ASA.(Level of Evidence: C) " |
"2. Use of warfarin to achieve a target international normalized ratio of 2 to 3 is reasonable.(Level of Evidence: B) " |
"3. Use of LMWH to achieve target anti-factor Xa levels of 0.5 to 1.0 U/mL is reasonable as an alternative to warfarin.(Level of Evidence: C) " |
Class IIb |
"1. Use of an additional antiplatelet agent (eg, a thienopyridine such as clopidogrel) may be considered together with ASA and warfarin/ LMWH (triple therapy) for thromboprophylaxis in the setting of very extensive or distal coronary artery aneurysms, or if there is a history of coronary artery thrombosis.(Level of Evidence: C) " |
"2. Additional patient and coronary artery characteristics (Table 9) may be considered in decision making regarding adjustments to strategy for thromboprophylaxis.(Level of Evidence: C) " |
Physical activity |
Class I |
"1. Activities involving a risk of bodily contact, trauma, or injury should be restricted or modified if the patient is on dual-antiplatelet or anticoagulation therapy.(Level of Evidence: B) " |
Class IIa |
"1. It is reasonable to provide physical activity counseling at every visit without restrictions or precautions. Participation in competitive sports or high intensity activities should be guided by results from testing for inducible myocardial ischemia or exercise-induced arrhythmias.(Level of Evidence: C) " |
Reproductive counselling |
Class IIa |
"1. It is reasonable to discourage use of oral contraceptive drugs that increase thrombosis risk, to recommend that pregnancy be super- vised by a multidisciplinary team including a cardiologist, and to alter thromboprophylaxis management during pregnancy and delivery.(Level of Evidence: B) " |
Regression to Medium Aneurysms
Frequency of cardiology assessment (to include history and physical examination, echocardiography, electrocardiography) |
Class IIa |
"1. It is reasonable to assess the patient every 6 to 12 months.(Level of Evidence: C) " |
Type and frequency of additional cardiology assessment (other cardiology testing) |
Class IIa |
"1. It is reasonable to assess for inducible myocardial ischemia (stress echocardiography, stress with MRI, stress NM perfusion imaging, PET) every year or if the patient has symptoms suggestive of ischemia or signs suggestive of ventricular dysfunction.(Level of Evidence: B) " |
Class IIb |
"1. Further imaging with angiography (CT, MRI, invasive) may be considered for periodic surveillance every 2 to 5 years.(Level of Evidence: C) " |
Cardiovascular risk factor assessment and management |
Class IIa |
"1. It is reasonable to provide general counseling regarding healthy lifestyle and activity promotion at every visit; this may additionally be provided by the primary care provider.(Level of Evidence: C) " |
"2. It is reasonable to assess blood pressure, body mass index (and plot), waist circumference, dietary and activity assessment, and smoking every year; this may be performed by the primary care provider. It is reason- able to obtain a follow-up fasting lipid profile.(Level of Evidence: C) " |
Medical therapy (β-blockers, ACEI, statin) |
Class IIb |
"1. Empirical statin therapy for non–lipid-lowering (pleiotropic) effects may be considered.(Level of Evidence: C) " |
"2. Empirical treatment with β-blockers may be considered.(Level of Evidence: C) " |
Thromboprophylaxis |
Class I |
"1. Patients should be treated with low-dose ASA.(Level of Evidence: C) " |
Class IIa |
"1. Use of an alternative antiplatelet agent (eg, a thienopyridine such as clopidogrel) instead of ASA is reasonable if the patient is intolerant or resistant to ASA.(Level of Evidence: C) " |
"2. Discontinuation of anticoagulation (warfarin/ LMWH) and substitution with an additional antiplatelet agent (eg, a thienopyridine such as clopidogrel) is reasonable.(Level of Evidence: C) " |
Class IIb |
"1. Additional patient and coronary artery characteristics may be considered in decision making regarding adjustments to strategy for thromboprophylaxis.(Level of Evidence: C) " |
Class III |
"1. Use of anticoagulation (warfarin, LMWH) is not indicated.(Level of Evidence: C) " |
Physical activity |
Class I |
"1. Activities involving a risk of bodily contact, trauma, or injury should be restricted or modified for patients on dual-antiplatelet or anticoagulation therapy.(Level of Evidence: B) " |
Class IIa |
"1. It is reasonable to provide physical activity counseling at every visit without restrictions or precautions. Participation in competitive sports or high-intensity activities should be guided by results from testing for inducible myocardial ischemia or exercise-induced arrhythmias.(Level of Evidence: C) " |
Reproductive counselling |
Class IIa |
"1. It is reasonable to discourage use of oral contraceptive drugs that increase thrombosis risk, to recommend that pregnancy be super- vised by a multidisciplinary team including a cardiologist, and to alter thromboprophylaxis management during pregnancy and delivery.(Level of Evidence: B) " |
Regression to Small Aneurysms
Frequency of cardiology assessment (to include history and physical examination, echocardiography, electrocardiography) |
Class IIa |
"1. It is reasonable to assess the patient every 6 to 12 months.(Level of Evidence: C) " |
Type and frequency of additional cardiology assessment (other cardiology testing) |
Class IIa |
"1. It is reasonable to assess for inducible myocardial ischemia (stress echocardiography, stress with MRI, stress NM perfusion imaging, PET) every 1 to 2 years or if the patient has symptoms suggestive of ischemia or signs suggestive of ventricular dysfunction.(Level of Evidence: B) " |
Class IIb |
"1. Further imaging with angiography (CT, MRI, invasive) may be considered for periodic surveillance every 2 to 5 years.(Level of Evidence: C) " |
Cardiovascular risk factor assessment and management |
Class IIa |
"1. It is reasonable to provide general counseling regarding healthy lifestyle and activity promotion at every visit; this may additionally be provided by the primary care provider.(Level of Evidence: C) " |
"2. It is reasonable to assess blood pressure, body mass index (and plot), waist circumference, dietary and activity assessment, and smoking every year; this may be performed by the primary care provider. It is reason- able to obtain a follow-up fasting lipid profile.(Level of Evidence: C) " |
Medical therapy (β-blockers, ACEI, statin) |
Class IIb |
"1. Empirical statin therapy for non–lipid-lowering (pleiotropic) effects may be considered.(Level of Evidence: C) " |
"2. Empirical treatment with β-blockers may be considered.(Level of Evidence: C) " |
"3. Discontinuation of additional medical therapy may be considered.(Level of Evidence: C) " |
Thromboprophylaxis |
Class I |
"1. Patients should be treated with low-dose ASA.(Level of Evidence: C) " |
Class IIa |
"1. Use of an alternative antiplatelet agent (eg, a thienopyridine such as clopidogrel) instead of ASA is reasonable if the patient is intolerant or resistant to ASA.(Level of Evidence: C) " |
Class IIb |
"1. Additional patient and coronary artery char- acteristics may be considered in decision making regarding adjustments to strategy for thromboprophylaxis.(Level of Evidence: C) " |
Class III |
"1. Anticoagulation or dual-antiplatelet therapy is not indicated.(Level of Evidence: C) " |
Physical activity |
Class I |
"1. For patients on anticoagulation or dual-antiplatelet therapy, activities involving a risk of bodily contact, trauma, or injury should be restricted or modified.(Level of Evidence: B) " |
Class IIa |
"1. It is reasonable to provide physical activity counseling at every visit without restrictions or precautions. Participation in competitive sports or high-intensity activities should be guided by results from testing for inducible myocardial ischemia or exercise-induced arrhythmias.(Level of Evidence: C) " |
Reproductive counselling |
Class IIa |
"1. It is reasonable to provide age-appropriate counseling regarding contraception. It is reasonable to recommend that pregnancy be supervised by a multidisciplinary team including a cardiologist and to alter thromboprophylaxis management during pregnancy and delivery.(Level of Evidence: B) " |
Regression to Normal Z Score or Dilation Only
Frequency of cardiology assessment (to include history and physical examination, echocardiography, electrocardiography) |
Class IIa |
"1. It is reasonable to assess the patient every 1 to 2 years. Not performing routine 2D echocardiography may be considered unless there is evidence for inducible myocardial ischemia or the patient has symptoms suggestive of ischemia or signs suggestive of ventricular dysfunction.(Level of Evidence: C) " |
Type and frequency of additional cardiology assessment (other cardiology testing) |
Class IIa |
"1. It is reasonable to assess for inducible myocardial ischemia (stress echocardiography, stress with MRI, stress NM perfusion imaging, PET) every 2 to 5 years or if the patient has symptoms suggestive of ischemia or signs suggestive of ventricular dysfunction.(Level of Evidence: B) " |
Cardiovascular risk factor assessment and management |
Class IIa |
"1. It is reasonable to provide general counseling regarding healthy lifestyle and activity promotion at every visit; this may additionally be provided by the primary care provider.(Level of Evidence: C) " |
"2. It is reasonable to assess blood pressure, body mass index (and plot), waist circumference, dietary and activity assessment, and smoking every 2 years; this may be performed by the primary care provider. It is reasonable to obtain a follow-up fasting lipid profile as per the Expert Panel guidelines.(Level of Evidence: C) " |
Medical therapy (β-blockers, ACEI, statin) |
Class IIb |
"1. Empirical statin therapy for non–lipid-lowering (pleiotropic) effects may be considered.(Level of Evidence: C) " |
Class III |
"1. Empirical treatment with β-blockers is not indicated.(Level of Evidence: C) " |
Thromboprophylaxis |
Class IIa |
"1. It is reasonable to continue treatment with low-dose ASA.(Level of Evidence: C) " |
"2. Use of an alternative antiplatelet agent (eg, a thienopyridine such as clopidogrel) instead of ASA is reasonable if the patient is intol- erant or resistant to ASA.(Level of Evidence: C) " |
Class IIb |
"1. Additional patient and coronary artery characteristics may be considered in decision making regarding intensification or discontinuation of thromboprophylaxis.(Level of Evidence: C) " |
Class III |
"1. Use of anticoagulation (warfarin/LMWH) or dual-antiplatelet therapy is not indicated.(Level of Evidence: C) " |
Physical activity |
Class I |
"1. For patients on anticoagulation or dual-anti- platelet therapy, activities involving a risk of bodily contact, trauma, or injury should be restricted or modified.(Level of Evidence: B) " |
Class IIa |
"1. It is reasonable to provide physical activity counseling at every visit without restrictions or precautions. Participation in competitive sports or high-intensity activities should be guided by results from testing for inducible myocardial ischemia or exercise-induced arrhythmias.(Level of Evidence: C) " |
Reproductive counselling |
Class IIa |
"1. It is reasonable to provide age-appropriate counseling regarding contraception. It is reasonable to recommend that pregnancy be supervised by a multidisciplinary team including a cardiologist and to alter thrombo- prophylaxis management during pregnancy and delivery.(Level of Evidence: B) " |
Recommendations for Testing for Inducible Ischemia
Class IIa |
"1. It is reasonable to use stress echocardiography or CMRI, NM MPI, or PET for assessment of inducible myocardial ischemia.
Note: The general principle is to minimize risk to the patient, particularly cumulative radiation dose, and this should guide selection of testing modality based on patient and institutional characteristics(Level of Evidence: B) " |
Class III |
"1. Exercise treadmill electrocardiographic testing alone should not be used for assessment for inducible myocardial ischemia.(Level of Evidence: C) " |
Recommendation for Assessment of Patients With Inducible Myocardial Ischemia
Class I |
"1. Patients with evidence of inducible myocardial ischemia on testing should undergo invasive coronary angiography.(Level of Evidence: B) " |
Recommendations for Indications for Mechanical Revascularization
Class I |
"1. Adult patients with remote history of KD presenting with STEMI should be referred emergently for coronary angiography for determination of best means of flow restoration in the culprit artery.(Level of Evidence: C) " |
"2. Revascularization should be performed in KD patients with stable angina and high-risk coronary anatomy including left main CAD, multi- vessel coronary disease with reduction in LV function, multivessel coronary disease with diabetes mellitus, or high-risk noninvasive ischemia testing.(Level of Evidence: C) " |
"3. Revascularization should be performed for patients with non–ST-segment elevation and coronary anatomy amenable to revascularization on coronary angiography.(Level of Evidence: C) " |
Class IIa |
"1. Revascularization for patients with stable angina and symptoms refractory to maximal medical therapy is reasonable. (Level of Evidence: C) " |
Class IIb |
"1. Revascularization for KD patients with silent ischemia and ischemia involving >10% of LV mass may be considered. (Level of Evidence: C) " |
Class III |
"1. Revascularization should be avoided in KD patients in the acute/subacute phase of the illness with STEMI attributable to acute thrombotic occlusion of an aneurysm.(Level of Evidence: C) " |
Recommendations for Modes of Revascularization
Class I |
"1. CABG is preferred to PCI in KD patients with left main CAD, multivessel CAD with reduced LV function, multivessel CAD with lesions not amenable to PCI, and multivessel CAD in diabetic patients.(Level of Evidence: B) " |
"2. CABG is preferred to PCI in older children and adults with KD and multivessel involvement .(Level of Evidence: C) " |
"3. CABG should be performed with bilateral internal thoracic arterial grafts where possible.(Level of Evidence: B) " |
"4. PCI is preferred in patients with single-vessel or focal multivessel disease amenable to PCI.(Level of Evidence: C) " |
"5. RA and stents should be used in PCI of calcified lesions.(Level of Evidence: C) " |
Class IIa |
"1. The use of multivessel PCI is reasonable for KD patients with focal lesions amenable to PCI. (Level of Evidence: C) " |
"2. The use of DESs during PCI is reasonable for KD patients who do not require long- term anticoagulation. (Level of Evidence: C) " |
"3. The use of IVUS is reasonably indicated during PCI in KD patients to ensure adequate stent sizing and deployment. (Level of Evidence: C) " |
Class IIb |
"1. Multivessel PCI may be considered for patients who are acceptable CABG candidates but prefer to avoid CABG, provided the risks and benefits of both approaches are discussed with and understood by the patient. (Level of Evidence: C) " |
"2. The use of DESs during PCI may be considered for KD patients who require anti- coagulation, provided the bleeding risk of the patient is acceptable. (Level of Evidence: C) " |
Class III |
"1. Stand-alone balloon angioplasty should not be used for PCI in KD patients with coronary obstructions.(Level of Evidence: C) " |
Recommendation for Cardiac Transplantation
Class IIa |
"1. The use of multivessel PCI is reasonable for KD patients with focal lesions amenable to PCI. (Level of Evidence: C) " |
Surgery
Prevention
AHA Scientific Statement on Kawasaki Disease
Recommendations for Prevention of Thrombosis During the Acute Illness
Class I |
"1. Low-dose ASA (3–5 mg·kg−¹·d−¹) should be administered to patients without evidence of coronary artery changes until 4 to 6 weeks after onset of illness.(Level of Evidence: C) " |
Class IIa |
"1. For patients with rapidly expanding coronary artery aneurysms or a maximum Z score of ≥10, systemic anticoagulation with LMWH or warfarin (international normalized ratio target 2.0–3.0) in addition to low dose ASA is reasonable. (Level of Evidence: B) " |
Class IIb |
"1. For patients at increased risk of thrombosis, for example, with large or giant aneurysms (≥8 mm or Z score ≥10) and a recent history of coronary artery thrombosis, “triple therapy” with ASA, a second antiplatelet agent, and anticoagulation with warfarin or LMWH may be considered. (Level of Evidence: C) " |
Class III |
"1. Ibuprofen and other non steroidal anti-inflammatory drugs with known or potential involvement of cyclooxygenase pathway may be harmful in patients taking ASA for its antiplatelet effects. (Level of Evidence: B) " |
Recommendations for Risk Stratification of Coronary Artery Abnormalities
Class IIa |
"1. It is reasonable to use echocardiographic coronary artery luminal dimensions converted to BSA-adjusted Z scores to determine risk stratification. (Level of Evidence: B) " |
"2. It is reasonable to incorporate both maximal and current coronary artery involvement in risk stratification. (Level of Evidence: C) " |
"3. It is reasonable to incorporate the presence of additional features other than coronary artery luminal dimensions into decisions regarding risk stratification. (Level of Evidence: C) " |
References
- ↑ Burns, Jane C.; Kushner, Howard I.; Bastian, John F.; Shike, Hiroko; Shimizu, Chisato; Matsubara, Tomoyo; Turner, Christena L. (2000). "Kawasaki Disease: A Brief History". Pediatrics. 106 (2): e27–e27. doi:10.1542/peds.106.2.e27. ISSN 0031-4005.
- ↑ Kawasaki Disease. Centers for Disease Control and Prevention (2013). http://www.cdc.gov/kawasaki/ Accessed on July 28, 2016.
- ↑ Kawasaki T (1967). "[Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children]". Arerugi (in Japanese)
|format=
requires|url=
(help). 16 (3): 178–222. PMID 6062087. - ↑ Kawasaki T (1967). "[Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children]". Arerugi (in Japanese)
|format=
requires|url=
(help). 16 (3): 178–222. PMID 6062087. - ↑ Episode 86 (4x16) - The Little Things (2 March, 2006)
- ↑ Kawasaki T (1967). "[Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children]". Arerugi (in Japanese)
|format=
requires|url=
(help). 16 (3): 178–222. PMID 6062087. - ↑ Pinna GS, Kafetzis DA, Tselkas OI, Skevaki CL (June 2008). "Kawasaki disease: an overview". Curr. Opin. Infect. Dis. 21 (3): 263–70. doi:10.1097/QCO.0b013e3282fbf9cd. PMID 18448971.
- ↑ Yanagawa H, Nakamura Y, Yashiro M, Ojima T, Tanihara S, Oki I, Zhang T (December 1998). "Results of the nationwide epidemiologic survey of Kawasaki disease in 1995 and 1996 in Japan". Pediatrics. 102 (6): E65. PMID 9832593.
- ↑ Hartman-Adams H, Banvard C, Juckett G (2014). "Impetigo: diagnosis and treatment". Am Fam Physician. 90 (4): 229–35. PMID 25250996.
- ↑ Mehta N, Chen KK, Kroumpouzos G (2016). "Skin disease in pregnancy: The approach of the obstetric medicine physician". Clin Dermatol. 34 (3): 320–6. doi:10.1016/j.clindermatol.2016.02.003. PMID 27265069.
- ↑ Moore, Zack S; Seward, Jane F; Lane, J Michael (2006). "Smallpox". The Lancet. 367 (9508): 425–435. doi:10.1016/S0140-6736(06)68143-9. ISSN 0140-6736.
- ↑ Ibrahim F, Khan T, Pujalte GG (2015). "Bacterial Skin Infections". Prim Care. 42 (4): 485–99. doi:10.1016/j.pop.2015.08.001. PMID 26612370.
- ↑ Ramoni S, Boneschi V, Cusini M (2016). "Syphilis as "the great imitator": a case of impetiginoid syphiloderm". Int J Dermatol. 55 (3): e162–3. doi:10.1111/ijd.13072. PMID 26566601.
- ↑ Kimura U, Yokoyama K, Hiruma M, Kano R, Takamori K, Suga Y (2015). "Tinea faciei caused by Trichophyton mentagrophytes (molecular type Arthroderma benhamiae ) mimics impetigo : a case report and literature review of cases in Japan". Med Mycol J. 56 (1): E1–5. doi:10.3314/mmj.56.E1. PMID 25855021.
- ↑ CEDEF (2012). "[Item 87--Mucocutaneous bacterial infections]". Ann Dermatol Venereol. 139 (11 Suppl): A32–9. doi:10.1016/j.annder.2012.01.002. PMID 23176858.
- ↑ Lin YJ, Cheng MC, Lo MH, Chien SJ (2015). "Early Differentiation of Kawasaki Disease Shock Syndrome and Toxic Shock Syndrome in a Pediatric Intensive Care Unit". Pediatr. Infect. Dis. J. 34 (11): 1163–7. doi:10.1097/INF.0000000000000852. PMID 26222065.
- ↑ "Epidemiology and Prevention of Vaccine-Preventable Diseases".
- ↑ 18.0 18.1 Feikin DR, Lezotte DC, Hamman RF, Salmon DA, Chen RT, Hoffman RE (2000). "Individual and community risks of measles and pertussis associated with personal exemptions to immunization". JAMA. 284 (24): 3145–50. PMID 11135778.
- ↑ 19.0 19.1 Ratnam S, West R, Gadag V, Williams B, Oates E (1996). "Immunity against measles in school-aged children: implications for measles revaccination strategies". Can J Public Health. 87 (6): 407–10. PMID 9009400.
- ↑ Kolokotronis, A.; Doumas, S. (2006). "Herpes simplex virus infection, with particular reference to the progression and complications of primary herpetic gingivostomatitis". Clinical Microbiology and Infection. 12 (3): 202–211. doi:10.1111/j.1469-0691.2005.01336.x. ISSN 1198-743X.
- ↑ Chauvin PJ, Ajar AH (2002). "Acute herpetic gingivostomatitis in adults: a review of 13 cases, including diagnosis and management". J Can Dent Assoc. 68 (4): 247–51. PMID 12626280.
- ↑ Ann M. Gillenwater, Nadarajah Vigneswaran, Hanadi Fatani, Pierre Saintigny & Adel K. El-Naggar (2013). "Proliferative verrucous leukoplakia (PVL): a review of an elusive pathologic entity!". Advances in anatomic pathology. 20 (6): 416–423. doi:10.1097/PAP.0b013e3182a92df1. PMID 24113312. Unknown parameter
|month=
ignored (help) - ↑ Andrès E, Zimmer J, Affenberger S, Federici L, Alt M, Maloisel F. (2006). "Idiosyncratic drug-induced agranulocytosis: Update of an old disorder". Eur J Intern Med. 17 (8): 529–35. Text "pmid 17142169" ignored (help)
- ↑ title="By Internet Archive Book Images [No restrictions], via Wikimedia Commons" href="https://commons.wikimedia.org/wiki/File:A_manual_of_syphilis_and_the_venereal_diseases%2C_(1900)_(14595882378).jpg"
- ↑ "Dermatology Atlas".
- ↑ Sánchez-Manubens, Judith; Bou, Rosa; Anton, Jordi (2014). "Diagnosis and classification of Kawasaki disease". Journal of Autoimmunity. 48-49: 113–117. doi:10.1016/j.jaut.2014.01.010. ISSN 0896-8411.
- ↑ Saguil A, Fargo M, Grogan S (March 2015). "Diagnosis and management of kawasaki disease". Am Fam Physician. 91 (6): 365–71. PMID 25822554.
- ↑ Belay E, Maddox R, Holman R, Curns A, Ballah K, Schonberger L (2006). "Kawasaki syndrome and risk factors for coronary artery abnormalities: United States, 1994-2003". Pediatr Infect Dis J. 25 (3): 245–9. PMID 16511388.
- ↑ "Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease".
External links
- Kawasaki Disease Foundation
- Kawasaki Disease Forum
- Kawasaki Disease Canada
- Kawasaki Disease Research Program
- Kawasaki Disease information from Seattle Children's Hospital Heart Center
- Template:GPnotebook
Template:Diseases of the musculoskeletal system and connective tissue
de:Kawasaki-Syndrom it:Sindrome di Kawasaki he:מחלת קווסקי nl:Ziekte van Kawasaki th:โรคคาวาซากิ