Renal osteodystrophy: Difference between revisions

Jump to navigation Jump to search
Nazia Fuad (talk | contribs)
Line 6: Line 6:
{{SK}}Chronic kidney disease- mineral bone disorder
{{SK}}Chronic kidney disease- mineral bone disorder
==Overview==
==Overview==
Renal osteodystrophy is defined as the complex metabolic bone disorders which are present in [[Chronic kidney disease|chronic renal insufficiency]]. Secondary [[hyperparathyroidism]] and 1,25-dihydroxycholecalciferol (Vitamin D3) deficiency play a major role in renal osteodystrophy. Renal osteodystrophy is defined as an alteration of bone [[morphology]] in patients with [[chronic kidney disease]] and is considered to be a component of [[chronic kidney disease]] - mineral bone disorder (CKD-MBD). [[Chronic kidney disease]] is the major cause of renal osteodystrophy so all those conditions that cause [[chronic kidney disease]] are the risk factors for renal osteodystrophy. [[Hypocalcemia]], [[hyperphosphatemia]], [[vit D deficiency]], [[parathyroid gland]] [[hyperplasia]], [[acidosis]] are the other contributors of renal osteodystrophy. [[Aluminium|Aluminum]] related renal osteodystrophy is mostly seen in patients who undergo [[dialysis]]. Renal [[osteodystrophy]] is an important cause of [[morbidity]], decreased quality of life, and extravascular [[Calcification|calcifications]] that have been associated with increased [[cardiovascular]] mortality. Classification of renal osteodystrophy describes a wider clinical syndrome based on bone turnover, bone [[Mineralization of bone|mineralization]], and bone volume. Renal osteodystrophy should be differentiated from primary [[hyperparathyroidism]], [[hypocalcemia]] and osteoporosis. To investigate renal osteodystrophy, blood levels of [[parathyroid hormone]] (PTH), [[calcium]], [[phosphorus]], [[alkaline phosphatase]], [[bicarbonate]] should initially be ordered. Imaging studies should focus on finding [[calcification]] in soft tissues. A bone [[biopsy]] is indicated if the results of biochemical markers are not consistent, there is unexplained bone pain, or presence of unexplained bone fractures. However, bone [[Biopsy|biopsies]] are infrequently used in clinical practice due to invasiveness and lower cost effectiveness.Common complications of renal osteodystrophy include bone fractures vascular [[calcifications]] leading to [[atherosclerosis]], coronary artery calcification, [[hypertension]], left ventricular hypertrophy, and [[congestive heart failure]]. Extraskeletal calcification can also affect the heart valves and the cardiac conduction system.[[Calcification]] of skin [[arterioles]] may lead to a condition of [[ischemia]] and necrosis of the skin known as [[calciphylaxis]]. Patients with renal osteodystrophy usually present with bone pain, [[Arthralgia]], [[Chest pain]], [[Dyspnea]], and [[Palpitation]]. Physical examination of patients with renal osteodystrophy may include bone [[deformity]], bone fracture, [[Hypertension]], c[[Congestive heart failure|ongestive heart failure]], h[[Heart murmur|eart murmur]], increase pulse pressure (due to [[aortic calcification]]) and skin [[Ischemia]] and [[necrosis]]. In laboratory findings serum [[calcium]] levels are typically low. Serum [[Phosphorous acid|phosphorous]] is elevated depending on the stage of [[Chronic renal failure|chronic kidney disease]], dietary [[Phosphorous acid|phosphorous]], and use of [[phosphate binders]][[Alkaline phosphatase|. Alkaline phosphatase]] levels (total or bone-specific) are elevated and show increased osteoblastic activity. High levels of [[alkaline phosphatase]] are seen in severe [[Osteitis fibrosa cystica|osteitis fibrosa]]. [[Electrocardiogram|Elecrocardiographic]] findings in patients with renal osteodystrophy include [[heart block]], non st elevation [[myocardial infarction]]. Radiographic findings are less sensitive for diagnosis than parathyroid hormone levels. Imaging is usually performed for patients with unexplained bone pain or fractures.Radiographic findings of [[osteitis fibrosa cystica]] include [[Subperiosteal]] resorption.[[Resorptive]] loss of bone may be seen at the terminal [[Phalanges of the hand|phalanges]], distal ends of the [[Clavicle|clavicles]], and in the [[skull]]. Radiographs will show soft tissue [[calcification]] that involves the [[vasculature]]. [[Phosphate binders]] and supplemental [[calcium]] are mainly used for [[prevention]] and treatment of renal osteodystrophy.The major objective in the prevention and management of renal osteodystrophy is either prevention of [[hyperparathyroidism]] or treatment if present already.
Renal osteodystrophy (ROD) is within the broad spectrum of Chronic Kidney Disease (CKD)- Mineral Bone Disease (MBD). The disease occurs as a natural complication of the CKD and is characterized by abnormal levels and metabolism of [[Calcium]] (Ca), [[phosphorus]] (Ph) , [[Parathyroid hormone|Parathyroid Hormone]] (PTH) and [[Vitamin D]], as well as calcification of soft tissues and bone turniver and mineralization abnormalities. Secondary [[hyperparathyroidism]] and 1,25-dihydroxycholecalciferol (Vitamin D3) deficiency play a major role in ROD. Any factor leading to CKD is potentially a risk factor for ROD. [[Hypocalcemia]], [[hyperphosphatemia]], [[vit D deficiency]], [[parathyroid gland]] [[hyperplasia]] and [[acidosis]] are the other contributors of ROD. [[Aluminium|Aluminum]] related ROD is mostly seen in patients who undergo [[dialysis]]. ROD is an important cause of [[morbidity]], decreased quality of life, and extravascular [[Calcification|calcifications]] that have been associated with increased [[cardiovascular]] mortality. Primary investigation of ROD includes measurement of blood levels of [[parathyroid hormone]] (PTH), [[calcium]], [[phosphorus]], [[alkaline phosphatase]] and [[bicarbonate]]. Imaging studies should focus on finding [[calcification]] in soft tissues. A bone [[biopsy]] is indicated if the results of biochemical markers are not consistent or when there is unexplained bone pain, or in case of presence of unexplained bone fractures. However, bone [[Biopsy|biopsies]] are infrequently used in clinical practice due to invasiveness and low cost-effectiveness. Common complications of ROD include bone fractures and vascular [[calcifications]] leading to [[atherosclerosis]], coronary artery calcification, [[hypertension]], left ventricular hypertrophy, and [[congestive heart failure|congestive heart failure (CHD)]]. Extraskeletal calcification can also affect the heart valves and the cardiac conduction system.[[Calcification]] of skin [[arterioles]] may lead to a condition of [[ischemia]] and necrosis of the skin known as [[calciphylaxis]]. Patients with renal osteodystrophy usually present with bone pain, [[Arthralgia]], [[Chest pain]], [[Dyspnea]], and [[Palpitation]]. Physical examination of patients with renal osteodystrophy may include bone [[deformity]], bone fracture, [[Hypertension]], c[[Congestive heart failure|ongestive heart failure]], h[[Heart murmur|eart murmur]], increased pulse pressure (due to [[aortic calcification]]) and skin [[Ischemia]] and [[necrosis]]. In laboratory findings serum [[calcium]] levels are typically low. Serum [[Phosphorous acid|phosphorous]] is elevated depending on the stage of [[Chronic renal failure|chronic kidney disease]], dietary [[Phosphorous acid|phosphorous]], and use of [[phosphate binders]][[Alkaline phosphatase|. Alkaline phosphatase]] levels (total or bone-specific) are elevated and show increased osteoblastic activity. High levels of [[alkaline phosphatase]] are seen in severe [[Osteitis fibrosa cystica|osteitis fibrosa]]. [[Electrocardiogram|Elecrocardiographic]] findings in patients with renal osteodystrophy include [[heart block]] and non-st-elevation [[myocardial infarction]]. Radiographic findings are less sensitive for diagnosis compared to parathyroid hormone levels. Imaging is usually performed for patients with unexplained bone pain or fractures. Radiographic findings of [[osteitis fibrosa cystica]] include [[Subperiosteal]] resorption.[[Resorptive]] loss of bone may be seen at the terminal [[Phalanges of the hand|phalanges]], distal ends of the [[Clavicle|clavicles]], and in the [[skull]]. Radiographs will show soft tissue [[calcification]] that involves the [[vasculature]]. [[Phosphate binders]] and supplemental [[calcium]] are mainly used for [[prevention]] and treatment of renal osteodystrophy.The major objective in the prevention and management of renal osteodystrophy is either prevention of [[hyperparathyroidism]] or its treatment if present.




Line 73: Line 73:
== Pathophysiology  ==
== Pathophysiology  ==


The following factors in chronic kidney disease are considered to be the main contributors to renal osteodystrophy:<ref name="GonzalezMartin19952">{{cite journal|last1=Gonzalez|first1=E. A.|last2=Martin|first2=K. J.|title=Renal osteodystrophy: pathogenesis and management|journal=Nephrology Dialysis Transplantation|volume=10|issue=supp3|year=1995|pages=13–21|issn=0931-0509|doi=10.1093/ndt/10.supp3.13}}</ref><ref name="MoeDrüeke20064">{{cite journal|last1=Moe|first1=S.|last2=Drüeke|first2=T.|last3=Cunningham|first3=J.|last4=Goodman|first4=W.|last5=Martin|first5=K.|last6=Olgaard|first6=K.|last7=Ott|first7=S.|last8=Sprague|first8=S.|last9=Lameire|first9=N.|last10=Eknoyan|first10=G.|title=Definition, evaluation, and classification of renal osteodystrophy: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO)|journal=Kidney International|volume=69|issue=11|year=2006|pages=1945–1953|issn=00852538|doi=10.1038/sj.ki.5000414}}</ref><ref name="MoeDrüeke20062" />
Initially in the course of renal disease, compensatory mechanisms try to increase serum calcium and decrease serum phosphorus. These mechanisms include increased levels of [[fibroblast growth factor 23]] (FGF23) which in turn increases urinary phosphorus excretion. On the other hand increased PTH levels further increase urinary excretion of phosphorus. However, as the renal disease becomes chronic, these compensatory mechanisms tire and the characteristic features of ROD become evident <ref>{{Cite web|url=https://onlinelibrary.wiley.com/doi/full/10.1111/nep.13457|title=Mineral bone disorders in chronic kidney disease|last=|first=|date=|website=|archive-url=|archive-date=|dead-url=|access-date=}}</ref>. The following factors in chronic kidney disease are considered to be the main contributors to ROD:<ref name="GonzalezMartin19952">{{cite journal|last1=Gonzalez|first1=E. A.|last2=Martin|first2=K. J.|title=Renal osteodystrophy: pathogenesis and management|journal=Nephrology Dialysis Transplantation|volume=10|issue=supp3|year=1995|pages=13–21|issn=0931-0509|doi=10.1093/ndt/10.supp3.13}}</ref><ref name="MoeDrüeke20064">{{cite journal|last1=Moe|first1=S.|last2=Drüeke|first2=T.|last3=Cunningham|first3=J.|last4=Goodman|first4=W.|last5=Martin|first5=K.|last6=Olgaard|first6=K.|last7=Ott|first7=S.|last8=Sprague|first8=S.|last9=Lameire|first9=N.|last10=Eknoyan|first10=G.|title=Definition, evaluation, and classification of renal osteodystrophy: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO)|journal=Kidney International|volume=69|issue=11|year=2006|pages=1945–1953|issn=00852538|doi=10.1038/sj.ki.5000414}}</ref><ref name="MoeDrüeke20062" />
* [[Hyperphosphatemia]]: when [[GFR]] falls below 60 ml/min in [[chronic kidney disease]] there is impaired renal [[phosphorus]] excretion resulting in [[hyperphosphatemia]].
* [[Hyperphosphatemia]]: when [[GFR]] falls below 60 ml/min in [[chronic kidney disease]] there is impaired renal [[phosphorus]] excretion resulting in [[hyperphosphatemia]].
* [[Hypocalcemia]], because of decreased excretion of [[phosphate]] by the damaged kidneys.
* [[Hypocalcemia]], because of decreased excretion of [[phosphate]] by the damaged kidneys.
* Low activated [[Vitamin D3|vitamin D<sub>3</sub>]] levels happen because the damaged kidneys are unable to convert [[Vitamin D3|vitamin D<sub>3</sub>]] into its active form, [[calcitriol]], which results in further [[hypocalcemia]].
* Low activated [[Vitamin D3|vitamin D<sub>3</sub>]] levels happen due to increased FGF23, because the damaged kidneys are unable to convert [[Vitamin D3|vitamin D<sub>3</sub>]] into its active form, [[calcitriol]], which results in further [[hypocalcemia]].
* [[Hyperphosphatemia]] combined with [[hypocalcemia]] results in [[hyperparathyroidism]]  
* [[Hyperphosphatemia]] combined with [[hypocalcemia]] results in [[hyperparathyroidism]]  
* Elevated level of [[hyperparathyroid|parathyroid]] hormone leads to [[Osteitis fibrosa cystica|osteitis fibrosa]].
* Elevated level of [[hyperparathyroid|parathyroid]] hormone leads to [[Osteitis fibrosa cystica|osteitis fibrosa]].

Revision as of 20:13, 9 February 2019

WikiDoc Resources for Renal osteodystrophy

Articles

Most recent articles on Renal osteodystrophy

Most cited articles on Renal osteodystrophy

Review articles on Renal osteodystrophy

Articles on Renal osteodystrophy in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Renal osteodystrophy

Images of Renal osteodystrophy

Photos of Renal osteodystrophy

Podcasts & MP3s on Renal osteodystrophy

Videos on Renal osteodystrophy

Evidence Based Medicine

Cochrane Collaboration on Renal osteodystrophy

Bandolier on Renal osteodystrophy

TRIP on Renal osteodystrophy

Clinical Trials

Ongoing Trials on Renal osteodystrophy at Clinical Trials.gov

Trial results on Renal osteodystrophy

Clinical Trials on Renal osteodystrophy at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Renal osteodystrophy

NICE Guidance on Renal osteodystrophy

NHS PRODIGY Guidance

FDA on Renal osteodystrophy

CDC on Renal osteodystrophy

Books

Books on Renal osteodystrophy

News

Renal osteodystrophy in the news

Be alerted to news on Renal osteodystrophy

News trends on Renal osteodystrophy

Commentary

Blogs on Renal osteodystrophy

Definitions

Definitions of Renal osteodystrophy

Patient Resources / Community

Patient resources on Renal osteodystrophy

Discussion groups on Renal osteodystrophy

Patient Handouts on Renal osteodystrophy

Directions to Hospitals Treating Renal osteodystrophy

Risk calculators and risk factors for Renal osteodystrophy

Healthcare Provider Resources

Symptoms of Renal osteodystrophy

Causes & Risk Factors for Renal osteodystrophy

Diagnostic studies for Renal osteodystrophy

Treatment of Renal osteodystrophy

Continuing Medical Education (CME)

CME Programs on Renal osteodystrophy

International

Renal osteodystrophy en Espanol

Renal osteodystrophy en Francais

Business

Renal osteodystrophy in the Marketplace

Patents on Renal osteodystrophy

Experimental / Informatics

List of terms related to Renal osteodystrophy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Nazia Fuad M.D.

Synonyms and keywords:Chronic kidney disease- mineral bone disorder

Overview

Renal osteodystrophy (ROD) is within the broad spectrum of Chronic Kidney Disease (CKD)- Mineral Bone Disease (MBD). The disease occurs as a natural complication of the CKD and is characterized by abnormal levels and metabolism of Calcium (Ca), phosphorus (Ph) , Parathyroid Hormone (PTH) and Vitamin D, as well as calcification of soft tissues and bone turniver and mineralization abnormalities. Secondary hyperparathyroidism and 1,25-dihydroxycholecalciferol (Vitamin D3) deficiency play a major role in ROD. Any factor leading to CKD is potentially a risk factor for ROD. Hypocalcemia, hyperphosphatemia, vit D deficiency, parathyroid gland hyperplasia and acidosis are the other contributors of ROD. Aluminum related ROD is mostly seen in patients who undergo dialysis. ROD is an important cause of morbidity, decreased quality of life, and extravascular calcifications that have been associated with increased cardiovascular mortality. Primary investigation of ROD includes measurement of blood levels of parathyroid hormone (PTH), calcium, phosphorus, alkaline phosphatase and bicarbonate. Imaging studies should focus on finding calcification in soft tissues. A bone biopsy is indicated if the results of biochemical markers are not consistent or when there is unexplained bone pain, or in case of presence of unexplained bone fractures. However, bone biopsies are infrequently used in clinical practice due to invasiveness and low cost-effectiveness. Common complications of ROD include bone fractures and vascular calcifications leading to atherosclerosis, coronary artery calcification, hypertension, left ventricular hypertrophy, and congestive heart failure (CHD). Extraskeletal calcification can also affect the heart valves and the cardiac conduction system.Calcification of skin arterioles may lead to a condition of ischemia and necrosis of the skin known as calciphylaxis. Patients with renal osteodystrophy usually present with bone pain, Arthralgia, Chest pain, Dyspnea, and Palpitation. Physical examination of patients with renal osteodystrophy may include bone deformity, bone fracture, Hypertension, congestive heart failure, heart murmur, increased pulse pressure (due to aortic calcification) and skin Ischemia and necrosis. In laboratory findings serum calcium levels are typically low. Serum phosphorous is elevated depending on the stage of chronic kidney disease, dietary phosphorous, and use of phosphate binders. Alkaline phosphatase levels (total or bone-specific) are elevated and show increased osteoblastic activity. High levels of alkaline phosphatase are seen in severe osteitis fibrosa. Elecrocardiographic findings in patients with renal osteodystrophy include heart block and non-st-elevation myocardial infarction. Radiographic findings are less sensitive for diagnosis compared to parathyroid hormone levels. Imaging is usually performed for patients with unexplained bone pain or fractures. Radiographic findings of osteitis fibrosa cystica include Subperiosteal resorption.Resorptive loss of bone may be seen at the terminal phalanges, distal ends of the clavicles, and in the skull. Radiographs will show soft tissue calcification that involves the vasculature. Phosphate binders and supplemental calcium are mainly used for prevention and treatment of renal osteodystrophy.The major objective in the prevention and management of renal osteodystrophy is either prevention of hyperparathyroidism or its treatment if present.


Historical Perspective

Classification

  • Renal osteodystrophy can be classified according to histology into the following subtypes:[1][2]
Histologic Classification of Renal Osteodystrophy
Disorder Description Pathogenesis Frequency (%)
Osteitis fibrosa  Peritrabecular fibrosis, increased

remodeling — resorption and formation.

Secondary hyperparathyroidism, secondary

role of cytokines and growth factors

50
Osteomalacia  Increased osteoid, defective

mineralization

Aluminum deposition, plus

unknown factors

7
Mixed disease  Features of both osteitis fibrosa

and osteomalacia

Secondary hyperparathyroidism

and aluminum deposition,

plus unknown factors

13
Mild disease  Slightly increased remodeling Early or treated secondary

hyperparathyroidism

3
Adynamic renal

bone disease

Hypocellular bone surfaces,

no remodeling

Aluminum deposition, parathyroid hormone

suppression, and other factors

(deficiency of bone growth factors or

increased suppressors of bone remodeling)

27
  • After the bone pathology is assessed by histomorphometry,renal osteodystrophy can be subdivided according to TMV classification
  • TMV uses three descriptions- bone turnover(T), bone mineralization(M) and bone volume(V).

Pathophysiology

Initially in the course of renal disease, compensatory mechanisms try to increase serum calcium and decrease serum phosphorus. These mechanisms include increased levels of fibroblast growth factor 23 (FGF23) which in turn increases urinary phosphorus excretion. On the other hand increased PTH levels further increase urinary excretion of phosphorus. However, as the renal disease becomes chronic, these compensatory mechanisms tire and the characteristic features of ROD become evident [3]. The following factors in chronic kidney disease are considered to be the main contributors to ROD:[4][5][2]

 Factors in the pathogenesis of hyperparathyroidism in chronic renal disease
Phosphorus retention Hypocalcemia Low calcitriol Skeletal

resistance

Altered

parathyroid function

↓Renal mass + +
Phosphorus + + + unknown
Calcium +
Calciterol + + +
Skeletal resistance +
Desensitization to PTH +
Vit D receptors +
Altered cell growth +
Acidosis +

Causes

Differentiating Renal Osteodystrophy from Other Diseases

  • Renal osteodystrophy must be differentiated from the diseases that cause abnormal bone mineralization, unexplained bone fractures and bone pain:[6]
Differential diagnosis of renal osteodystrophy
Calcium Phosphate Renal function
Renal osteodystrophy Markedly declined
Primary hyperparathyroidism Low to normal Normal or slightly

reduced.

Tertiary hyperparathyroidism Slightly elevated Normal or slightly reduced
Osteoporosis Normal Normal Normal
Vitamin D deficiency Normal

Epidemiology and Demographics

  • The prevelence of renal osteodystrophy is 8,000 per 100,000 in the adult population in US. Incidence of renal osteodystrophy increases in patients with chronic kidney disease who have glomerular filtration rate (GFR) less than 60 mL/min.[6]
  • Prevalence in developing countries:
    • The prevalence of renal osteodystrophy in developing countries is 24.4% to 63%.
    • Aluminum, increased strontium levels and high levels of iron in the blood play a major role in the development of renal osteodystrophy in patients who undergo dialysis in developing countries.

Risk Factors

Natural History, Complications, and Prognosis

Common complications of renal osteodystrophy include:[6]

Prognosis

Diagnosis

Diagnostic Study of Choice

Bone biopsy

Serum biomarkers

  • PTH levels are considered to be the best noninvasive option to assess bone turnover.[4]
  • The following levels of PTH is used to describe the risk for different subtypes of renal osteodystrophy:[1]

History and Symptoms

Physical Examination

Laboratory Findings

  • Measurement of bone turnover on a bone biopsy is determined by labeling the bone with tetracycline. The procedure is done at two separate times approximately 2 weeks apart. The distance between the two areas of tetracycline deposition is measured and can be used to calculate bone growth.

PTH(parathyroid hrmone) levels are the best noninvasive option for assessment of bone turnover.[2]

  • The following parameters are used to define the risk for specific subtypes of renal osteodystrophy.[2]
    • PTH <100 pg/mL is seen in adynamic bone disease and shows a decreased risk of osteitis fibrosa cystica and or MUO(mixed uremic osteodystrophy)
    • PTH >450 pg/mL is present in osteitis fibrosa cystica and/or MUO (mixed uremic osteodystrophy).
    • Intermediate PTH levels between 100 and 450 pg/mL.  Intermediate values may be associated with normal or increased bone turnover or even reduced turnover.[6]

Electrocardiogram

X-ray

Echocardiography or Ultrasound

CT scan

  • CT scan findings associated with renal osteodystrophy are the same that are related to chronic kidney disease.

MRI

  • There are no MRI findings associated with renal osteodystrophy.

Other Imaging Findings

  • There are no other imaging findings associated with renal osteodystrophy.

Other Diagnostic Studies

Treatment

Medical Therapy:

Control of Serum Calcium

  • Calcium malabsorption is seen in end-stage renal disease because of deficient 1,25-dihydroxycholecalciferol.[4]
  • To prevent or suppress oversecretion of parathyroid hormone, calcium concentrations should be maintained at the high end of the normal range.
  • In patients with calcium intakes of 800–1000 mg/day, additional calcium supplements or [][][,gcontaining medications should be avoided.
  • Patients with total calcium intakes (>approx. 1000 mg/day) should be advised to decrease calcium intake.
  • Patients with lower calcium intakes should be advised to increase calcium intake in foods,or take calcium supplements.
  • Calcium-rich foods include dairy, dark green leafy vegetables, calcium-set tofu, and calcium-fortified orange juice.
  • The timing of taking oral calcium is crucial as calcium taken between meals is more like a calcium supplement than a phosphate binder.

Control of Serum Phosphate

Use of Vit D analogue

Surgery

Primary Prevention

Secondary Prevention

References

  1. 1.0 1.1 1.2 1.3 Hruska, Keith A.; Epstein, Franklin H.; Teitelbaum, Steven L. (1995). "Renal Osteodystrophy". New England Journal of Medicine. 333 (3): 166–175. doi:10.1056/NEJM199507203330307. ISSN 0028-4793.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Moe, S.; Drüeke, T.; Cunningham, J.; Goodman, W.; Martin, K.; Olgaard, K.; Ott, S.; Sprague, S.; Lameire, N.; Eknoyan, G. (2006). "Definition, evaluation, and classification of renal osteodystrophy: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO)". Kidney International. 69 (11): 1945–1953. doi:10.1038/sj.ki.5000414. ISSN 0085-2538.
  3. "Mineral bone disorders in chronic kidney disease".
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Gonzalez, E. A.; Martin, K. J. (1995). "Renal osteodystrophy: pathogenesis and management". Nephrology Dialysis Transplantation. 10 (supp3): 13–21. doi:10.1093/ndt/10.supp3.13. ISSN 0931-0509.
  5. Moe, S.; Drüeke, T.; Cunningham, J.; Goodman, W.; Martin, K.; Olgaard, K.; Ott, S.; Sprague, S.; Lameire, N.; Eknoyan, G. (2006). "Definition, evaluation, and classification of renal osteodystrophy: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO)". Kidney International. 69 (11): 1945–1953. doi:10.1038/sj.ki.5000414. ISSN 0085-2538.
  6. 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 https://www.orthopaedicsone.com/display/MSKMed/Renal+osteodystrophy
  7. Nissenson, Allen (2009). Current diagnosis & treatment. New York: McGraw-Hill Medical. ISBN 978-0-07-144787-4.

Related Chapters

External links

Renal Osteodystrophy

Template:Nephrology


Template:WikiDoc Sources